PUBLISHED WORKS
Published papers
2002
-
Some binomial series obtained by the WZ-method.
Adv. in Appl. Math. 29 (2002), no. 4, 599-603.
Links: arXiv:math/0503345,
journal.
2003
-
About a new kind of Ramanujan-type series.
Experiment. Math. 12 (2003), no. 4, 507-510.
Links: journal.
2006
-
Generators of some Ramanujan formulas.
Ramanujan J. 11 (2006), no. 1, 41-48
Links: arXiv:1104.0392,
journal.
-
A new method to obtain series for 1/pi and 1/pi2.
Experiment. Math. 15 (2006), no. 1, 83-89.
Links: journal.
-
A class of conjectured series representations for 1/pi.
Experiment. Math. 15 (2006), no. 4, 409-414.
Links: journal.
2007
-
Historia de las fórmulas y algoritmos para pi.
Gac. R. Soc. Mat. Esp. 10 (2007), no. 1, 159-178.
Links: journal.
-
Construction of binomial sums for pi and polylogarithmic constants inspired by BBP formulas,
with Boris Gourévitch.
Appl. Math. E-Notes 7 (2007), 237-246.
Links: journal.
2008
-
Hypergeometric identities for 10 extended Ramanujan-type series.
Ramanujan J. 15 (2008), no. 2, 219-234.
Links: arXiv:1104.0396,
journal.
-
Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent,
with Jonathan Sondow.
Ramanujan J. 16 (2008), no. 3, 247-270.
Links: arXiv:math/0506319,
journal.
-
Easy proofs of some Borwein algorithms for pi.
Amer. Math. Monthly 115 (2008), no. 9, 850-854.
Links: arXiv:0803.0991,
journal.
2010
-
On WZ-pairs which prove Ramanujan series.
Ramanujan J. 22 (2010), no. 3, 249-259.
Links: arXiv:0904.0406,
journal.
-
History of the formulas and algorithms for pi.
Gems in experimental mathematics, 173-188, Contemp. Math., 517, Amer. Math. Soc., Providence, RI, 2010.
Links: arXiv:0807.0872,
journal.
-
A matrix form of Ramanujan-type series for 1/pi.
Gems in experimental mathematics, 189-206, Contemp. Math., 517, Amer. Math. Soc., Providence, RI, 2010.
Links:
journal.
2011
-
A new Ramanujan-like series for 1/pi2.
Ramanujan J. 26 (2011), no. 3, 369-374.
Links: arXiv:1003.1915,
journal.
2012
-
“Divergent” Ramanujan-type supercongruences,
with Wadim Zudilin.
Proc. Amer. Math. Soc. 140 (2012), no. 3, 765-777.
Links: arXiv:1004.4337,
journal.
-
Mosaic supercongruences of Ramanujan type.
Exp. Math. 21 (2012), no. 1, 65-68.
Links: arXiv:1007.2290,
journal.
-
Ramanujan-like series for 1/pi2 and string theory,
with Gert Almkvist.
Exp. Math. 21 (2012), no. 3, 223-234.
Links: arXiv:1009.5202,
journal.
2013
-
Ramanujan-Sato-like series,
with Gert Almkvist.
Number theory and related fields, 55-74, Springer Proc. Math. Stat., 43, Springer, New York, 2013.
Links: arXiv:1201.5233,
journal.
-
More hypergeometric identities related to Ramanujan-type series.
Ramanujan J. 32 (2013), no. 1, 5-22.
Links: arXiv:1104.1994,
journal.
-
Ramanujan-type formulae for 1/pi: the art of translation,
with Wadim Zudilin.
The legacy of Srinivasa Ramanujan, 181-195, Ramanujan Math. Soc. Lect. Notes Ser., 20, Ramanujan Math. Soc., Mysore, 2013.
Links: arXiv:1302.0548.
-
WZ-proofs of “divergent” Ramanujan-type series.
Advances in combinatorics, 187-195, Springer, Heidelberg, 2013.
Links: arXiv:1012.2681,
journal.
2014
-
Ramanujan series upside-down,
with Mathew Rogers.
J. Aust. Math. Soc. 97 (2014), no. 1, 78-106.
Links: arXiv:1206.3981,
journal.
2015
-
A family of Ramanujan-Orr formulas for 1/pi.
Integral Transforms Spec. Funct. 26 (2015), no. 7, 531-538.
Links: arXiv:1501.06413,
journal.
-
Mahler measure and the WZ algorithm,
with Mathew Rogers.
Proc. Amer. Math. Soc. 143 (2015), no. 7, 2873-2886.
Links: arXiv:1006.1654,
journal.
2016
-
New proofs of Borwein-type algorithms for Pi.
Integral Transforms Spec. Funct. 27 (2016), no. 10, 775-782.
Links: arXiv:1604.00193,
journal.
2017
-
More Ramanujan-Orr formulas for 1/pi.
New Zealand J. Math. 47 (2017), 151-160.
Links: journal.
2018
-
Crouching AGM, hidden modularity,
with Shaun Cooper, Armin Straub and Wadim Zudilin.
Frontiers in orthogonal polynomials and q-series, 169-187,
Contemp. Math. Appl. Monogr. Expo. Lect. Notes, 1, World Sci. Publ., Hackensack, NJ, 2018.
Links: arXiv:1604.01106,
journal.
-
Dougall's 5F4 sum and the WZ algorithm.
Ramanujan J. 46 (2018), no. 3, 667-675.
Links: arXiv:1611.04385,
journal.
-
Self-replication and Borwein-like algorithms.
Ramanujan J. 47 (2018), no. 2, 447-455.
Links: arXiv:1702.05378,
journal.
-
Proofs of some Ramanujan series for 1/pi using a program due to Zeilberger.
J. Difference Equ. Appl. 24 (2018), no. 10, 1643-1648.
Links: arXiv:1804.02695,
journal.
2019
-
WZ pairs and q-analogues of Ramanujan series for 1/pi.
J. Difference Equ. Appl. 24 (2018), no. 12, 1871-1879.
Links: arXiv:1803.08477,
journal.
-
Ramanujan series with a shift.
J. Aust. Math. Soc. 107 (2019), no. 3, 367-380.
Links: arXiv:1802.02023,
journal.
2020
-
When Ramanujan meets Fibonacci and Lucas.
Amer. Math. Monthly 127 (2020), no. 2, 159.
Links: journal (filler 1 page).
-
A method for proving Ramanujan's series for 1/pi.
Ramanujan J. 52 (2020), no. 2, 421-431.
Links: arXiv:1807.07394,
journal.
-
Bilateral Ramanujan-like series for 1/pik and their congruences.
Int. J. Number Theory 16 (2020), no. 9, 1969-1988.
Links: arXiv:1908.05123,
journal.
-
Las series para 1/pi de S. Ramanujan.
Gac. R. Soc. Mat. Esp. 23 (2020), no. 3, 487-506.
Links: journal.
2021
-
Proof of a rational Ramanujan-type series for 1/pi. The fastest one in level 3.
Int. J. Number Theory 17 (2021), no. 2, 473-477.
Links: arXiv:1811.01200,
journal.
-
Proof of Chudnovsky' hypergeometric series for 1/pi using Weber modular polynomials.
Transcendence in algebra, combinatorics, geometry and number theory, 341-354,
Springer Proc. Math. Stat., Springer, 373, Springer, 2021.
Links: arXiv:2003.06668,
journal.
2024
-
Heuristic derivation of Zudilin's supercongruences for rational Ramanujan series.
Revista Matemática Complutense,
published online.
Links: arXiv:2312.16827,
journal.
-
Ramanujan's series for 1/pi.
Encyclopaedia of Srinivasa Ramanujan and His Mathematics, to appear.
Published problems
-
An infinite product for the exponential,
with Jonathan Sondow.
Problem 11381.
Amer. Math. Monthly 115 (2008), no. 7, p. 665.
Links: web of J. Sondow,
journal.
-
A new formula for pi related to series of Ramanujan.
Problem 11-003,
LINK.
Solution with Mathew Rogers (equation (62) in LINK).
SIAM Problems and Solutions, CA, Sequences and Series.