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SOBOLEV ORTHOGONAL POLYNOMIALS:
BALANCE AND ASYMPTOTICS

MANUEL ALFARO, JUAN JOSÉ MORENO–BALCÁZAR, ANA PEÑA,
AND M. LUISA REZOLA

Abstract. Let µ0 and µ1 be measures supported on an unbounded interval
and Sn,λn the extremal varying Sobolev polynomial which minimizes

〈P, P 〉λn =

∫
P 2 dµ0 + λn

∫
P ′2 dµ1, λn > 0,

in the class of all monic polynomials of degree n. The goal of this paper is
twofold. On the one hand, we discuss how to balance both terms of this inner
product, that is, how to choose a sequence (λn) such that both measures µ0

and µ1 play a role in the asymptotics of
(
Sn,λn

)
. On the other hand, we apply

such ideas to the case when both µ0 and µ1 are Freud weights. Asymptotics

for the corresponding Sn,λn are computed, illustrating the accuracy of the
choice of λn .

1. Introduction

One of the central problems in the analytic theory of orthogonal polynomials
is the study of their asymptotic behavior. In this paper we are concerned with
the asymptotic properties of Sobolev orthogonal polynomials, that is, polynomials
orthogonal with respect to an inner product involving derivatives. In this sense,
given µ0 and µ1 finite Borel measures supported on an interval I ⊂ R and λ > 0,
we consider the Sobolev inner product

(1) 〈P, Q〉λ =
∫

P Q dµ0 + λ

∫
P ′ Q′ dµ1

in the space of all polynomials with real coefficients.
We denote by Pn,µ0 , Pn,µ1 and Sn,λ the corresponding monic polynomials or-

thogonal with respect to µ0, µ1 and 〈·, ·〉λ, respectively.
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Let µ0 and µ1 be measures compactly supported on R. Whether (µ0, µ1) is a
coherent pair, which means that there exist nonzero constants σn such that the
corresponding monic polynomials satisfy for each n,

Pn,µ1 =
P ′

n+1,µ0

n + 1
+ σn

P ′
n,µ0

n

or, if µ0 and µ1 fulfill much milder conditions, i.e., they belong to the well-known
Szegő class, then it has been established (see [9] and [8]) that the ratio asymptotics

lim
n→∞

Sn,λ(z)
Pn,µ1(z)

=
2

ϕ′(z)

holds uniformly on compact subsets of C \ [−1, 1], where ϕ(z) = z +
√

z2 − 1 with√
z2 − 1 > 0 when z > 1. In other words, the measure µ0 does not appear explicitly

within the asymptotic expression.
Nevertheless, a closer look at the inner product (1) explains the “dominance”

of the measure µ1 in the asymptotics: the derivative makes the leading coefficient
of the polynomials in the second integral of (1) be multiplied by the degree of the
polynomial. Thus, if we want both measures to have an impact on the behavior of
the polynomials for n → ∞, it seems natural to “balance” the inner product, that
is, to compensate both integrals by introducing a varying parameter λn.

In a general framework, we consider the varying Sobolev inner product 〈P, Q〉λn
.

We denote by Sn,λn
the monic polynomial which minimizes the expression

〈Qn, Qn〉λn
in the class of all monic polynomials Qn of degree n.

Concerning the choice of the varying parameter λn, it is interesting to write the
expression of the Sobolev inner product in terms of monic polynomials, that is,

(2) 〈Qn, Qn〉λn
=

∫
(Qn)2 dµ0 + λn n2

∫ (
Q′

n

n

)2

dµ1.

In this expression each integral on the right hand side is bounded from below by∫
P 2

n,µ0
dµ0 and

∫
P 2

n−1,µ1
dµ1, respectively, as long as Qn is a monic polynomial of

degree n.
If the measures µ0 and µ1 are supported on the same bounded interval where

they satisfy the Szegő condition, then
∫

P 2
n,µ0

dµ0 behaves as
∫

P 2
n−1,µ1

dµ1, when

n → ∞. More precisely, the ratio

∫
P 2

n,µ0
dµ0∫

P 2
n−1,µ1

dµ1
has a limit. Therefore, in order

to balance both terms in (2) it is natural to keep λn n2 bounded.
In fact, it was proved in [1] that if (λn) is a decreasing sequence of positive real

numbers such that limn λn n2 ∈ (0, +∞), then

lim
n→∞

Sn,λn
(z)

Rn(z)
= 1

locally uniformly in C \ [−1, 1], where (Rn) is the sequence of monic polynomials
orthogonal with respect to a measure constructed as a certain combination of the
measures µ0 and µ1.

Let us consider now that the measures µ0 and µ1 are supported on an unbounded
interval. There are many asymptotic results (strong asymptotics) for the monic
polynomials Sn,λ orthogonal with respect to the inner product (1) for a fixed λ;
see for instance [2] and [11] for coherent pairs, [3] and [4] for Freud weights and,
more recently, the survey [7]. But as far as we know, nothing has been said about
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asymptotics in the balanced case. In this sense, the first question that should be
answered is: what is the appropriate choice for the sequence (λn)? We understand
by this a sequence of parameters for which the polynomials Sn,λn

exhibit a nontrivial
asymptotic behavior, depending on both measures µ0 and µ1. One of the goals of
this paper is to raise the point that λn = n−2 is not, in general, the right choice
when the support of µ0 and µ1 is unbounded.

The structure of the paper is as follows. In Section 2, we use heuristic arguments,
based on potential theory, pertaining to the “size” of λn in order to achieve an
appropriate “balancing”. In this sense, the Mhaskar–Rakhmanov–Saff numbers
turn out to be a powerful tool. On account of the above results, in Section 3 we
obtain asymptotics for Sobolev polynomials and their norms for a particular case
of Freud weights, which illustrates that the choice of λn is accurate.

2. Selection of the parameters

We point out some heuristic reasoning concerning the asymptotic behavior of the
parameters λn in order to balance both terms in the varying Sobolev inner product
〈P, Q〉λn

.
Firstly, we recall some basic tools from classical potential theory with an external

field which will be used later on.
Let µ be a probability measure with support in a closed set Σ of the complex

plane. Recall that, the logarithmic potential V µ associated with µ is defined by
V µ(z) = −

∫
log |z − t| dµ(t). Let us assume that w(z) = e−Q(z) is an admissible

and continuous weight function in Σ. It is well known that there exists a unique
probability measure µw, called the extremal or equilibrium measure associated with
w, minimizing the weighted energy:

Iw(µ) =
∫

Σ

(V µ(z) + 2Q(z)) dµ(z)

for all probability measures with support in Σ. This measure µw is compactly
supported and there exists a constant Fw (the modified Robin constant of Σ) such
that V µw(z) + Q(z) = Fw quasi-everywhere on supp(µw); see [14, Theorem 1.3, p.
27]. Moreover, if Q is an even function with some additional properties, then it can
be deduced that

‖wn Qn‖L∞(Σ) = ‖wn Qn‖L∞(supp(µw))

for every polynomial Qn of degree ≤ n; see [14, p. 203]. As a straightforward
application of these results, we can obtain for weighted polynomials a symmetric
compact interval on which its supremum norm lives; more precisely, we have

‖w Qn‖L∞(Σ) = ‖w Qn‖L∞([−an,an])

for every polynomial Qn of degree ≤ n. The number an (n ≥ 1) is the so-called nth
Mhaskar–Rakhmanov–Saff number for Q, that is, the positive root of the equation

n =
2
π

∫ 1

0

an t Q′(an t)√
1 − t2

dt.

The link between the equilibrium measure and the asymptotics of orthogonal
polynomials is given by the following observation: for a polynomial Qn(z) =
(z − c1)(z − c2) . . . (z − cn) we can write log |Qn(z)| = −n V νn(z), where νn is
the normalized counting measure on the zeros of Qn, that is, νn = 1

n

∑n
i=1 δci

.
Then |wn(z) Qn(z)|1/n = e−(V νn (z)+Q(z)).
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If we denote by Tn,w the nth weighted monic Chebyshev polynomial correspond-
ing to w, that is, the solution of the extremal problem

inf{‖wn Qn‖L∞(Σ); Qn(z) = zn + . . . },
then

lim
n→∞

‖wn Tn,w‖1/n
L∞(Σ) = e−Fw ;

see [14, Theorem 3.1, p. 163].
Keeping in mind our balance problem, we are interested in the asymptotic be-

havior of the L2-norm in [−1, 1] with varying weights. Since

lim
n→∞

(‖wn Qn‖L∞([−1,1])

‖wn Qn‖L2([−1,1])

)1/n

= 1

for every polynomial of degree n (see [15, Theorem 3.2.1, p. 65]), the asymp-
totic extremality of ‖wn Qn‖1/n

L2([−1,1]) can be thought as the corresponding one

of ‖wn Qn‖1/n
L∞([−1,1]). In fact, if we denote by Pn,wn the solution of the extremal

problem
inf{‖wn Qn‖L2([−1,1]); Qn(z) = zn + . . . },

then it can be deduced (see [15, Theorem 3.3.3, p. 78]) that there exists

(3) lim
n→∞

‖wn Pn,wn‖1/n
L2([−1,1]).

From now on, fn(x) ∼ gn(x) in a domain D will denote that there are positive
constants C1, C2 such that C1 gn(x) ≤ fn(x) ≤ C2 gn(x), for all x ∈ D and n large
enough.

In relation with our problem, we consider the varying Sobolev inner product
〈·, ·〉λn

where dµi = W 2(x) dx, i = 0, 1. Here, we assume that W (x) = e−Q(x) is
a weight function where Q : I = (−c, c) → [0, +∞) is a convex, smooth, and even
function with Q(c−) = +∞ = Q((−c)+) and Q(x) = 0 only for x = 0 (we take
Q an even function for simplicity). For these weights W , see [5, Theorem 4.1, p.
95], the L2-norm on I for weighted polynomials is asymptotically equivalent to the
L2-norm on a compact interval. More precisely,

(4) ‖W Qn‖L2([−an+1,an+1]) ≤ ‖W Qn‖L2(I) ≤
√

2 ‖W Qn‖L2([−an+1,an+1])

holds for every n and every polynomial Qn with degree ≤ n, where an are the
Mhaskar–Rakhmanov–Saff numbers associated with Q.

From (4), we deduce that for every polynomial Qn(x) = xn + . . . ,

〈Qn, Qn〉λn
∼

∫ an+1

−an+1

Q2
n(x) W 2(x) dx + λn

∫ an+1

−an+1

(Q′
n(x))2 W 2(x) dx(5)

= an+1

[∫ 1

−1

Q2
n(an+1t)W 2(an+1t)dt + λn

∫ 1

−1

(Q′
n(an+1t))

2
W 2(an+1t)dt

]

= a2n+1
n+1

[∫ 1

−1

U2
n(t) W 2(an+1t) dt +

λn n2

a2
n+1

∫ 1

−1

V 2
n−1(t) W 2(an+1t) dt

]
,

where Un and Vn−1 are monic polynomials of degree n and n − 1, respectively.
Observe that (5) remains true if we take dµi = Li W 2(x) dx, i = 0, 1, where L0

and L1 are any positive constants. At first sight, the presence of the constants Li

could seem irrelevant, but in the next section it will allow us to give an alternative
reading to explain why our selection of λn is accurate.
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Therefore, in order to balance both terms in (5), it is reasonable to require the
following:

i) λn n2 ∼ a2
n+1 ;

ii) the asymptotic extremality of the L2(W 2(an+1t), [−1, 1])–norm for monic
polynomials of degree n behaves as the corresponding one of degree n − 1.

The previous results about potential theory lead us to think that a sufficient
condition to get ii) is

(6) W 1/n(an+1t) ∼ w(t), ∀t ∈ (−1, 1),

where w is an admissible and continuous weight function.
Concerning the choice of the parameters λn observe that, when the support of

the measures µ0 and µ1 is unbounded, the size of λn as n−2 is not the right one,
in general. If the weight satisfies (6), the choice of the parameters depends on
the distribution of the measure W 2(t) dt , that is, on the corresponding Mhaskar–
Rakhmanov–Saff numbers.

We would like to point out that these ideas can also be applied in a more general
framework. Indeed, consider a Sobolev inner product with two different weights,
W 2

0 and W 2
1 , which are linked in such a way so that 〈·, ·〉λn

can be expressed in
terms of only one weight (either W 2

0 or W 2
1 ) satisfying condition (6). Actually,

important examples in this situation are the Hermite coherent pairs. Notice that if
the pair of measures (W 2

0 , W 2
1 ) constitutes a Hermite symmetrically coherent pair

(see [2] and [11]), then either

I: W 2
0 (x) = (x2 + a2) e−x2

and W 2
1 (x) = e−x2

, a ∈ R , or

II: W 2
0 (x) = e−x2

and W 2
1 (x) =

e−x2

x2 + a2
, a ∈ R \ {0}.

In both cases we have

〈Qn, Qn〉λn
=

∫
R

[
Q2

n(x)(x2 + a2)
]

W 2
1 (x) dx + λn

∫
R

(Q′
n(x))2 W 2

1 (x) dx,

and it is not difficult to check that
〈Qn, Qn〉λn

a2n+3
n+2

∼
∫ 1

−1

U2
n+1(t)W

2
1 (an+2t) dt +

λnn2

a4
n+2

∫ 1

−1

V 2
n−1(t) W 2

1 (an+2t) dt,

where in each case, the an are the Mhaskar–Rakhmanov–Saff numbers for the cor-
responding weight W1, and Un+1 and Vn−1 are monic polynomials of degree n + 1
and n − 1, respectively.

Since
an√
n
→

√
2, observe that

lim
n→∞

W
1/n
1 (an+2t) = e−t2 , ∀t ∈ (−1, 1)

and therefore, according to the theory stated above, the adequate choice of λn

should be λn ∼ a4
n+2 n−2. In other words, λn ∼ constant. Hence, it can be said

that the Hermite–Sobolev coherent inner products are self-balanced.

3. Freud–Sobolev orthogonal polynomials

We are going to test the arguments developed in the previous section for the case
of a Sobolev inner product related to Freud weights. The simplest example corre-
sponds to W 2

0 (x) = W 2
1 (x) = e−x2

, but this is a trivial case since for any choice of
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λn, the Sobolev orthogonal polynomial Sn,λn
is the nth monic Hermite polynomial.

In this section, we show asymptotics for the Sobolev orthogonal polynomials with
W 2(x) = W 2

0 (x) = W 2
1 (x) = exp(−x4).

Throughout the section, (Pn)n≥0 denotes the sequence of monic polynomials
orthogonal with respect to the weight W 2, ‖ · ‖ stands for the L2(W 2)-norm, and
Sn,λn

is the monic polynomial which minimizes

〈Qn , Qn〉λn
=

∫
R

Q2
n(x) W 2(x) dx + λn

∫
R

(Q′
n)2(x) W 2(x) dx

in the class of all monic polynomials of degree n.
The Mhaskar–Rakhmanov–Saff numbers for W (x) = exp(−x4/2) satisfy an ∼

n1/4, and therefore condition (6) holds for W . As we have explained in Section 2,
to balance this Sobolev inner product we must take λn n2 ∼ a2

n+1, that is, λn like
n−3/2 when n → ∞.

Next, we study the asymptotic behavior of the ratio
Sn,λn

Pn
showing that the

choice of λn provides the reasonable one in a sense we will explain later. For
technical reasons some additional constraints should be imposed on the parameters
λn, so we deal with a decreasing sequence (λn) of positive real numbers such that

(7) lim
n→∞

n3/2λn = L ∈ [0, +∞]

and

(8) lim
n→∞

n7/4(λn−2 − λn) = 0 = lim
n→∞

n1/4

(
λn−2

λn
− 1

)
.

Notice that the sequence λn = n−3/2 satisfies (7) and (8).

Proposition 1. Let (λn) be a decreasing sequence of positive real numbers which
satisfies λn−2

λn
→ 1 and n3/2λn → L ∈ [0, +∞]. Then

κ(L) := lim
n→∞

〈Sn,λn
, Sn,λn

〉λn

‖Pn‖2
=

⎧⎪⎪⎨
⎪⎪⎩

1 if L = 0,
2L√

3
ϕ
(

20 L +3
√

3
12 L

)
if 0 < L < +∞,

+∞ if L = +∞ ,

(9)

where ϕ(x) = x +
√

x2 − 1.

Proof. We consider the Fourier expansion of the polynomial Pn in terms of the
basis (Sm,λn

)m≥0. Because the weight e−x4
is a symmetric function, we have

Pn(z) = Sn,λn
(z) +

n−2∑
j=0

αj(λn)Sj,λn
(z) ,

where

αj(λn) =
〈Pn, Sj,λn

〉λn

〈Sj,λn
, Sj,λn

〉λn

=
λn

∫
R

P ′
n(x)S′

j,λn
(x)e−x4

dx

〈Sj,λn
, Sj,λn

〉λn

, 0 ≤ j ≤ n − 2.

Since the orthogonal polynomials Pn satisfy the following structure relation (see
[12]),

(10) P ′
n(z) = nPn−1(z) +

4‖Pn‖2

‖Pn−3‖2
Pn−3(z),
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the coefficients αj(λn) vanish for 0 ≤ j < n − 2 . For j = n − 2 we get

(11) αn−2(λn) =
4 (n − 2) λn ‖Pn‖2

〈Sn−2,λn
, Sn−2,λn

〉λn

,

and therefore

(12) Pn(z) = Sn,λn
(z) + αn−2(λn)Sn−2,λn

(z), n ≥ 3.

From now on, we will write κm(λn) = 〈Sm,λn
, Sm,λn

〉λn
, n, m ≥ 0.

Now, observe that (12) leads to

κn(λn) = 〈Pn − αn−2(λn)Sn−2,λn
, Pn − αn−2(λn)Sn−2,λn

〉λn

=
∫

R

[
(Pn − αn−2(λn)Sn−2,λn

)2 + λn

(
P ′

n − αn−2(λn)S′
n−2,λn

)2
]
e−x4

dx.

Then, using (10) and the orthogonality of Pn with respect to the weight function
e−x4

, we have:

κn(λn) = ‖Pn‖2 + n2 λn ‖Pn−1‖2 − 8(n − 2) λn αn−2(λn) ‖Pn‖2

+ 16 λn
‖Pn‖4

‖Pn−3‖2
+ α2

n−2(λn) κn−2(λn) .

Taking into account the value of αn−2(λn) given by (11), we get

(13) κn(λn) = ‖Pn‖2

(
Bn(λn) − An(λn)

‖Pn−2‖2

κn−2(λn−2)

)
, n ≥ 3,

where

An(λn) = 16λn
2 (n − 2)2

κn−2(λn−2)
κn−2(λn)

‖Pn‖2

‖Pn−2‖2
,

Bn(λn) = 1 + λn n2 ‖Pn−1‖2

‖Pn‖2
+ 16λn

‖Pn‖2

‖Pn−3‖2
.

Next, we study limn Bn(λn) and limn An(λn). First, recall that the polynomials
Pn satisfy (see [12])

(14) lim
n→∞

√
n‖Pn−1‖2

‖Pn‖2
= 2

√
3.

On the other hand, lim
n→∞

κn−2(λn−2)
κn−2(λn)

= 1. Indeed, from the assumptions on λn

and using the extremal property of the norms of monic orthogonal polynomials, we
have

κn−2(λn) ≤ κn−2(λn−2) ≤ 〈Sn−2,λn
, Sn−2,λn

〉λn−2

=
λn−2

λn

[
λn

λn−2
‖Sn−2,λn

‖2 + λn‖S′
n−2,λn

‖2

]
≤ λn−2

λn
κn−2(λn).

Since λn−2
λn

→ 1, it follows that

(15) lim
n→∞

κn−2(λn−2)
κn−2(λn)

= 1.
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Firstly, let us suppose that 0 ≤ L < +∞. Then from (15) and (14) we deduce
that

(16) lim
n→∞

Bn(λn) = 1 +
20
9

√
3L and lim

n→∞
An(λn) =

4
3
L2.

To obtain (9), observe that, denoting sn = κn(λn)/‖Pn‖2, (13) becomes

(17) sn = Bn(λn) − An(λn)
1

sn−2
.

Writing (17) for even indices and introducing a new sequence (qn) by means of
qn+1 = s2nqn, the above difference equation becomes

qn+1 − B2n(λ2n)qn + A2n(λ2n)qn−1 = 0,

whose characteristic equation

(18) q2 −
(

1 +
20
9

√
3L

)
q +

4
3
L2 = 0

has two simple and real roots with distinct moduli. Thus, Poincaré’s Theorem
(see, e.g., [10]) assures that

qn+1

qn
= s2n converges to a root of (18). The extremal

property of the norms yields

κn(λn) ≥ ‖Pn‖2 + λn n2‖Pn−1‖2,

and therefore, using (14),

l = lim
n→∞

s2n ≥ 1 + lim
n→∞

λ2n(2n)2
‖P2n−1‖2

‖P2n‖2
= 1 + 2

√
3L.

So, it follows easily that l = 1
18

[
9 + 20

√
3 L +

√
768L2 + 360

√
3L + 81

]
. Notice

that, if L ∈ (0, +∞), then l = 2L√
3

ϕ
(

20L+3
√

3
12L

)
.

In a similar way, we also prove that s2n+1 converges to l. As a conclusion, there
exists limn sn = l = κ(L), and so for L ∈ [0, +∞), the proposition follows.

To finish the proof, let us now assume that L = +∞. From (15) and (14) we
have

lim
n→∞

An(λn)(
λn n3/2

)2 =
4
3

and lim
n→∞

Bn(λn)
λn n3/2

=
20
9

√
3.

Upon applying the same technique as in the case L < +∞ and replacing sn by
sn/(λn n3/2), we obtain

(19) lim
n→∞

sn

λn n3/2
= lim

n→∞

κn(λn)
λn n3/2‖Pn‖2

= 2
√

3.

Clearly,
κn(λn)
‖Pn‖2

→ +∞ when n tends to infinity and we conclude our statement. �

The main result of this section is the following:

Theorem 1. Let (λn) be a decreasing sequence of positive real numbers such that
limn n7/4(λn−2 − λn) = 0 = limn n1/4

(
λn−2
λn

− 1
)

. If

lim
n→∞

n3/2λn = L ∈ [0, +∞],
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then

lim
n→∞

Sn,λn
(z)

Pn(z)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if L = 0,
1

1 −
[
ϕ

(
20 L +3

√
3

12 L

)]−1 if 0 < L < +∞,

3/2 if L = +∞
holds uniformly on compact subsets of C \ R.

Remarks. 1. The choice λn ≡ constant, which corresponds to a nonbalanced inner
product, is a particular case of L = +∞, and then Theorem 1 recovers the result
already obtained in [3].

2. When L ∈ (0, +∞) the above result also has the following reading. Write

〈P, Q〉λn
=

∫
R

P (x) Q(x) W 2(x) dx + λn

∫
R

P ′(x) Q′(x) [L W 2(x)] dx.

If λn = n−3/2(1 + o(1)), then lim
n→∞

Sn,λn

Pn
depends on L, that is, on the ratio of the

weights.

However, for any other choice of λn’s, the dependence on L disappears, in par-
ticular for λn = n−2 (the right choice in the bounded case) and for λn ≡ constant
(the nonbalanced case). This shows that our selection of λn is accurate since the
asymptotic behavior of Sobolev orthogonal polynomials Sn,λn

depends on both
measures.

To prove Theorem 1 we will use the following result on the strong asymptotics
of Pn which appears in [6, Section 3]:

(20) lim
n→∞

Pn(z)
‖Pn‖

Dn(z)
ϕn+1/2(z/an)

=
1√
2π

uniformly on compact subsets of C \ R. Here, an are the Mhaskar–Rakhmanov–
Saff numbers associated with the weight function W , ϕ(z) = z +

√
z2 − 1 is the

conformal mapping from C \ [−1, 1] onto the exterior of the unit circle, and

(21) Dn(z) = exp

(√
z2 − a2

n

2π

∫ an

−an

−t4

(z − t)
√

a2
n − t2

dt

)
, z ∈ C \ [−an, an].

We would like to remark that, for z ∈ C \ [−an, an],

Dn(z) = D

(
1

ϕ(z/an)
, W 2

n

)
,

where W 2
n is the weight function on the unit circle T defined by

W 2
n(eiθ) = W 2(an cos θ), θ ∈ [−π, π],

and

D(w, W 2
n) = exp

(
1
2π

∫ 2π

0

eiθ + w

eiθ − w
log Wn(θ)dθ

)
, |w| < 1.

It is well known that D(., W 2
n) is holomorphic in the open unit disk D, belongs

to the Hardy space H2(D), and satisfies:
(1) D(w, W 2

n) �= 0, for w ∈ D,
(2) D(0, W 2

n) > 0,
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(3) for almost every ζ in the unit circle, D(., W 2
n) has nontangential boundary

values D(ζ, W 2
n) such that |D(ζ, W 2

n)|2 = W 2
n(ζ)

(see, for instance, [13]).
Next, we prove a technical result that will also be used in the proof of Theorem

1.

Lemma 1. Assume that the sequence (λn) satisfies the same conditions as in The-
orem 1. Then

lim
n→∞

Sn,λn−2(z) − Sn,λn
(z)

Pn(z)
= 0,

uniformly on compact subsets of C \ R.

Proof. On account of (20), it suffices to prove that

lim
n→∞

Sn,λn−2(z) − Sn,λn
(z)

‖Pn‖ϕn+1/2(z/an)
Dn(z) = 0

uniformly on compact subsets of C \ R. To see this we will prove:

i) for every compact set K in C\R, there exists a constant MK , not depending
on n, such that for n large enough,

sup
z∈K

∣∣∣∣Sn,λn−2(z) − Sn,λn
(z)

‖Pn‖ϕn+1/2(z/an)
Dn(z)

∣∣∣∣
2

≤ MK an

∫ an

−an

|Sn,λn−2(x) − Sn,λn
(x)|2

‖Pn‖2
W 2(x) dx,

and

ii)

lim
n→∞

an

∫ an

−an

|Sn,λn−2(x) − Sn,λn
(x)|2

‖Pn‖2
W 2(x) dx = 0.

The key idea for proving i) is to use the conformal mapping ϕ(z/an) which applies
C \ [−an, an] onto Ω = {z ∈ C; |z| > 1}, and the Cauchy integral representation
for functions in H2(Ω). Here, H2(Ω) denotes the space of analytic functions f in
Ω, with limit at ∞ and such that f( 1

z ) belongs to the Hardy space H2(D). From
the Cauchy integral representation for functions in H2(D), see [13], we have that if
f ∈ H2(Ω), then

(22) f(w) = − 1
2πi

∫
|ζ|=1

f∗(ζ)
ζ − w

w

ζ
dζ, w ∈ Ω,

where f∗(ζ) = limr↘1 f(r ζ) and the unit circle is positively oriented.
In order to prove i), given a compact set K in C \ R, there exists an absolute

constant CK > 0 such that

|
√

z2 − a2
n| ≥ CK , ∀z ∈ K, ∀n ≥ 0.
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Therefore, if z ∈ K,∣∣∣∣Sn,λn−2(z) − Sn,λn
(z)

‖Pn‖ϕn+1/2(z/an)
D

(
1

ϕ(z/an)
, W 2

n

)∣∣∣∣
2

≤ 1
CK

∣∣∣∣Sn,λn−2(z) − Sn,λn
(z)

‖Pn‖ϕn+1/2(z/an)
D

(
1

ϕ(z/an)
, W 2

n

)∣∣∣∣
2

|
√

z2 − a2
n|

=
1

CK
|Fn(w)|,

where

Fn(w) =
[
(Sn,λn−2 − Sn,λn

)(an ϕ−1(w))
‖Pn‖wn+1/2

D

(
1
w

, W 2
n

)]2

an

√
(ϕ−1(w))2 − 1,

with w = ϕ(z/an).
It is easy to check that Fn ∈ H2(Ω) and its boundary values are

F ∗
n(eiθ) =

(Sn,λn−2 − Sn,λn
)2(an cos θ)

‖Pn‖2ei(2n+1)θ
W 2(an cos θ)an

√
cos2 θ − 1.

Moreover, if we denote by Kn = {ϕ(z/an); z ∈ K}, straightforward computa-
tions yield that there exists an absolute constant AK > 0 such that the distance
between Kn and the unit circle satisfies d(Kn, T) ≥ AK/an for n large enough.
Then, from the integral formula (22) applied to Fn we have for w ∈ Kn,

|Fn(w)| ≤ BK an

∫
|ζ|=1

|F ∗
n(ζ)| |d ζ|

= BK an

∫ π

−π

(Sn,λn−2 − Sn,λn
)2(an cos θ)

‖Pn‖2
W 2(an cos θ) an| sin θ| dθ

= 2 BK an

∫ an

−an

(Sn,λn−2 − Sn,λn
)2(x)

‖Pn‖2
W 2(x) dx,

where BK is an absolute positive constant depending only on K. So i) is proved.
In order to deduce ii), observe that∫

R

|Sn,λn−2(x) − Sn,λn
(x)|2W 2(x) dx ≤ 〈Sn,λn−2 − Sn,λn

, Sn,λn−2 − Sn,λn
〉λn

= 〈Sn,λn−2 , Sn,λn−2〉λn
− 〈Sn,λn

, Sn,λn
〉λn

= κn(λn−2) + (λn − λn−2)
∫

R

|S′
n,λn−2

(x)|2 W 2(x) dx − κn(λn)

≤ κn(λn−2) − κn(λn).

Therefore, for every n we get

an

∫ an

−an

|Sn,λn−2(x) − Sn,λn
(x)|2

‖Pn‖2
W 2(x)dx ≤ an

κn(λn−2) − κn(λn)
‖Pn‖2

.

Finally, since an ∼ n1/4 it is enough to prove that n1/4 κn(λn−2) − κn(λn)
‖Pn‖2

tends

to 0 when n tends to infinity. Indeed, since

0 ≤ κn(λn−2) − κn(λn) ≤
(

1 − λn

λn−2

)
κn(λn−2),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



558 M. ALFARO, J. J. MORENO–BALCÁZAR, A. PEÑA, AND M. L. REZOLA

we have

n1/4 κn(λn−2) − κn(λn)
‖Pn‖2

≤ n1/4

(
1 − λn

λn−2

)
κn(λn)
‖Pn‖2

κn(λn−2)
κn(λn)

.

Now, taking into account that limn
κn(λn−2)
κn(λn) = 1, it suffices to keep in mind Propo-

sition 1, (8), and (19) to conclude ii) and therefore the proof of the lemma. �

Proof of Theorem 1. The algebraic relation between the polynomials Pn and the
Sobolev polynomials given by (12) can be rewritten for λn−2 as

Pn(z) = Sn,λn−2(z) + αn−2(λn−2) Sn−2,λn−2(z)

= Sn,λn
(z) + Sn,λn−2(z) − Sn,λn

(z) + αn−2(λn−2) Sn−2,λn−2(z).

Then, dividing both sides of the above expression by Pn(z), we obtain

(23) fn(z) = bn(z)fn−2(z) + cn(z), z ∈ C \ R,

where

fn(z) =
Sn,λn

(z)
Pn(z)

, bn(z) = −αn−2(λn−2)
Pn−2(z)
Pn(z)

,

cn(z) = 1 −
Sn,λn−2(z) − Sn,λn

(z)
Pn(z)

.

Firstly, we study the limits of the sequences (bn(z)) and (cn(z)). As a conse-
quence of Lemma 1 we know that

lim
n→∞

cn(z) = 1

uniformly on compact subsets of C \ R.
With regard to (bn(z)), if L ∈ [0, +∞), from Proposition 1 and (14),

αn−2(λn−2)√
n − 2

= 4λn−2(n − 2)3/2 ‖Pn−2‖2

κn−2(λn−2)
‖Pn‖2

(n − 2) ‖Pn−2‖2
→ L

3κ(L)
.

Moreover, for the monic polynomials Pn it is known (see [6]) that

lim
n→∞

√
n − 2Pn−2(z)

Pn(z)
= −2

√
3,

uniformly on compact subsets of C \ R. Both results lead to

lim
n→∞

bn(z) =
2L√

3κ(L)
=

⎧⎨
⎩

0 if L = 0,
1

ϕ
(

20 L +3
√

3
12 L

) if 0 < L < +∞

uniformly on compact subsets of C \ R. In the case L = +∞, using formula (19)
we get limn bn(z) = 1/3, uniformly on compact subsets of C \ R.

Finally, observe that the functions fn, bn and cn are analytic in C \R. Since for
L ∈ [0, +∞] we have limn bn(z) = bL, with |bL| < 1, and limn cn(z) = 1 uniformly
on compact subsets of C \ R, we can deduce that

lim
n→∞

fn(z) =
1

1 − bL

uniformly on compact subsets of C \R. Indeed, for a fixed compact set K ⊂ C \R,
there exist constants r ∈ (0, 1), R > 1 and a positive integer number n0 such that

|bn(z)| ≤ r, |cn(z)| ≤ R, for n ≥ n0, z ∈ K.
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Thus
|fn(z)| ≤ r|fn−2(z)| + R, for n ≥ n0, z ∈ K,

and therefore we deduce that the sequence (fn) is uniformly bounded on compact
subsets of C \ R.

From (23), we can write

fn(z) − 1
1 − bL

= bL

[
fn−2(z) − 1

1 − bL

]
+ εn(z),

with
εn(z) = (bn(z) − bL)fn−2(z) + cn(z) − 1.

Notice that limn εn(z) = 0, uniformly on compact subsets of C \ R. From the fact
|bL| < 1, it is easy to deduce that

lim
n→∞

fn(z) =
1

1 − bL
,

uniformly on compact subsets of C \ R. Taking into account the value of bL with
L ∈ [0, +∞], the theorem is proved. �
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