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SOBOLEV ORTHOGONAL POLYNOMIALS:
BALANCE AND ASYMPTOTICS

MANUEL ALFARO, JUAN JOSE MORENO-BALCAZAR, ANA PENA,
AND M. LUISA REZOLA

ABSTRACT. Let o and w1 be measures supported on an unbounded interval
and Sy, »,, the extremal varying Sobolev polynomial which minimizes

(P, P)x, =/P2duo+)\n/P’2du1, A >0,

in the class of all monic polynomials of degree n. The goal of this paper is
twofold. On the one hand, we discuss how to balance both terms of this inner
product, that is, how to choose a sequence (A,) such that both measures uo
and w1 play a role in the asymptotics of (Sn,kn) . On the other hand, we apply
such ideas to the case when both po and w1 are Freud weights. Asymptotics
for the corresponding S, x, are computed, illustrating the accuracy of the
choice of A\, .

1. INTRODUCTION

One of the central problems in the analytic theory of orthogonal polynomials
is the study of their asymptotic behavior. In this paper we are concerned with
the asymptotic properties of Sobolev orthogonal polynomials, that is, polynomials
orthogonal with respect to an inner product involving derivatives. In this sense,
given pg and py finite Borel measures supported on an interval I C R and A > 0,
we consider the Sobolev inner product

(1) <P7Q>A=/PQduo+>\/P’Q’du1

in the space of all polynomials with real coefficients.
We denote by P, ,,, Pn,, and Sy x the corresponding monic polynomials or-
thogonal with respect to pg, p1 and (-, ), respectively.
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Let po and pq be measures compactly supported on R. Whether (uo, 1) is a
coherent pair, which means that there exist nonzero constants o, such that the

corresponding monic polynomials satisfy for each n,
/

/

P _ PnJFLHO + Pn’#«o

M, T On
n+1 n

or, if pp and gy fulfill much milder conditions, i.e., they belong to the well-known
Szegé class, then it has been established (see [9] and [§]) that the ratio asymptotics
lim Sna(2) = 2
n—oo Py (2) - ¢'(2)
holds uniformly on compact subsets of C \ [~1, 1], where (2) = z + /22 — 1 with
V22 — 1> 0 when z > 1. In other words, the measure ug does not appear explicitly
within the asymptotic expression.

Nevertheless, a closer look at the inner product () explains the “dominance”
of the measure p; in the asymptotics: the derivative makes the leading coefficient
of the polynomials in the second integral of () be multiplied by the degree of the
polynomial. Thus, if we want both measures to have an impact on the behavior of
the polynomials for n — oo, it seems natural to “balance” the inner product, that
is, to compensate both integrals by introducing a varying parameter \,.

In a general framework, we consider the varying Sobolev inner product (P, Q)», .
We denote by S, ., the monic polynomial which minimizes the expression
(Qn,Qn)x, in the class of all monic polynomials @Q,, of degree n.

Concerning the choice of the varying parameter \,, it is interesting to write the
expression of the Sobolev inner product in terms of monic polynomials, that is,

@) @, = [@Pdno [ (%) i

In this expression each integral on the right hand side is bounded from below by
i Pf, 4o Ao and Ik Pﬁfl) 42 dp1, Tespectively, as long as @, is a monic polynomial of
degree n.

If the measures pg and pq are supported on the same bounded interval where
they satisfy the Szegd condition, then [ P2 , dpuo behaves as [ P dyi1, when
/P iuo dpio
fPf%*Llu d/lq

to balance both terms in (@) it is natural to keep A\, n? bounded.
In fact, it was proved in [I] that if (\,,) is a decreasing sequence of positive real
numbers such that lim,, A, n? € (0, +00), then

-1,

n — oo. More precisely, the ratio has a limit. Therefore, in order

lim 27—
ntoe Rp(2)

locally uniformly in C \ [~1, 1], where (R,,) is the sequence of monic polynomials
orthogonal with respect to a measure constructed as a certain combination of the
measures po and pq.

Let us consider now that the measures py and p; are supported on an unbounded
interval. There are many asymptotic results (strong asymptotics) for the monic
polynomials S,, x orthogonal with respect to the inner product () for a fixed A,
see for instance [2] and [II] for coherent pairs, [3] and [4] for Freud weights and,
more recently, the survey [7]. But as far as we know, nothing has been said about
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SOBOLEV ORTHOGONAL POLYNOMIALS: BALANCE AND ASYMPTOTICS 549

asymptotics in the balanced case. In this sense, the first question that should be
answered is: what is the appropriate choice for the sequence (\,,)? We understand
by this a sequence of parameters for which the polynomials S, », exhibit a nontrivial
asymptotic behavior, depending on both measures po and pp. One of the goals of
this paper is to raise the point that A, = n~2 is not, in general, the right choice
when the support of gy and pp is unbounded.

The structure of the paper is as follows. In Section 2, we use heuristic arguments,
based on potential theory, pertaining to the “size” of A, in order to achieve an
appropriate “balancing”. In this sense, the Mhaskar—-Rakhmanov—Saff numbers
turn out to be a powerful tool. On account of the above results, in Section 3 we
obtain asymptotics for Sobolev polynomials and their norms for a particular case
of Freud weights, which illustrates that the choice of A, is accurate.

2. SELECTION OF THE PARAMETERS

We point out some heuristic reasoning concerning the asymptotic behavior of the
parameters )\, in order to balance both terms in the varying Sobolev inner product
<Pa Q>kn :

Firstly, we recall some basic tools from classical potential theory with an external
field which will be used later on.

Let u be a probability measure with support in a closed set ¥ of the complex
plane. Recall that, the logarithmic potential V# associated with u is defined by
VH(z) = — [log|z — | du(t). Let us assume that w(z) = e~ 9 is an admissible
and continuous weight function in X. It is well known that there exists a unique
probability measure p,,, called the extremal or equilibrium measure associated with
w, minimizing the weighted energy:

L(y) = / (VH(2) +2Q(2)) du(2)

for all probability measures with support in 3. This measure pu,, is compactly
supported and there exists a constant F, (the modified Robin constant of ¥) such
that V#v(2) + Q(z) = F,, quasi-everywhere on supp(p); see [I4, Theorem 1.3, p.
27]. Moreover, if @ is an even function with some additional properties, then it can
be deduced that
[0 QnllLo ) = 0" @nll e (supp(pa))

for every polynomial @, of degree < n; see [I4, p. 203]. As a straightforward
application of these results, we can obtain for weighted polynomials a symmetric
compact interval on which its supremum norm lives; more precisely, we have

[|lw QnHLm(Z) = [lw Qn”Lw([fan,an])

for every polynomial @,, of degree < n. The number a,, (n > 1) is the so-called nth
Mhaskar-Rakhmanov—Saff number for ), that is, the positive root of the equation

2 (ta,tQ (ant)
™ Jo Vv1—t¢2

The link between the equilibrium measure and the asymptotics of orthogonal
polynomials is given by the following observation: for a polynomial @, (z) =
(z —c1)(z — e2)... (2 — ¢y) we can write log |Qn(2)] = —nV*"(z), where v, is
the normalized counting measure on the zeros of @Q,, that is, v, = %Z?:l e, -
Then |w"(2) Qn(2)|V/™ = e~ (V" ()+R(2),

dt.
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If we denote by 715, ., the nth weighted monic Chebyshev polynomial correspond-
ing to w, that is, the solution of the extremal problem
inf{{|w" QullL(2); Qn(2) = 2"+ ...},
then
lim |Jw™ Tn,le/n = e Fu,
n—oo

Loo(3) ™
see [14, Theorem 3.1, p. 163].
Keeping in mind our balance problem, we are interested in the asymptotic be-
havior of the Ly-norm in [—1, 1] with varying weights. Since

n 1/n
lim (||w Q7L|LW([171])> _
[ @nll Lo(-1.11)

for every polynomial of degree n (see [I5, Theorem 3.2.1, p. 65]), the asymp-

n—oo

totic extremality of ||w" QnHlL/2 ?[71 1) can be thought as the corresponding one
of |Jw™ Qn”lL/oZ([q - In fact, if we denote by P, ,» the solution of the extremal
problem

inf{||w" QTLHLz([*Ll]); Qn(z) =2"+... },
then it can be deduced (see [15, Theorem 3.3.3, p. 78]) that there exists

o "
(3) A [l Pron | 1,y

From now on, f,(x) ~ g,(x) in a domain D will denote that there are positive
constants C1, Cy such that Cy g, (z) < fn(z) < Cy gn(x), for all x € D and n large
enough.

In relation with our problem, we consider the varying Sobolev inner product
(-,)x, where dpu; = W?(z)dx, i = 0,1. Here, we assume that W(z) = e~9®) is
a weight function where Q : I = (—c¢,¢) — [0, +00) is a convex, smooth, and even
function with Q(¢™) = 400 = Q((—¢)™) and Q(x) = 0 only for z = 0 (we take
@ an even function for simplicity). For these weights W, see [5l Theorem 4.1, p.
95], the Lo-norm on I for weighted polynomials is asymptotically equivalent to the
Lo-norm on a compact interval. More precisely,

(4) |‘WQTIHL2([—an+1,an,+1]) < ”WQTLHLQ(I) < \/§||WQ71HL2([—an+1,an+1])

holds for every n and every polynomial @, with degree < n, where a, are the
Mhaskar-Rakhmanov—Saff numbers associated with Q.
From (@), we deduce that for every polynomial @, (z) = 2™ + ...,

(5)  (QurQuir, ~ /

—Qn+1

An 41 An41

Q2 () W(x) di + A, / (Q(@))’ W2(x) du

—Qn41

1 1 )
= Qn+1 [/1 Q%(an+1t)W2(an+1t)dt + An [1 (Q;L(anJrlt)) W2(an+1t)dt]

P

2
an+1

1 1
_ [ [ wow e+ 255 [ vz 0w e dt} |

where U,, and V,,_; are monic polynomials of degree n and n — 1, respectively.

Observe that (B remains true if we take du; = L; W?(x)dw, i = 0,1, where Ly
and L are any positive constants. At first sight, the presence of the constants L;
could seem irrelevant, but in the next section it will allow us to give an alternative
reading to explain why our selection of A, is accurate.
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Therefore, in order to balance both terms in (H), it is reasonable to require the
following:
i) Apn? ~ afLH ;
ii) the asymptotic extremality of the La(W?(a,1t), [~1,1])-norm for monic
polynomials of degree n behaves as the corresponding one of degree n — 1.
The previous results about potential theory lead us to think that a sufficient
condition to get ii) is

(6) WY (apit) ~w(t), Vte (—1,1),

where w is an admissible and continuous weight function.

Concerning the choice of the parameters A, observe that, when the support of
the measures po and pq is unbounded, the size of A, as n~? is not the right one,
in general. If the weight satisfies (@), the choice of the parameters depends on
the distribution of the measure W?2(t)dt, that is, on the corresponding Mhaskar—
Rakhmanov—Saff numbers.

We would like to point out that these ideas can also be applied in a more general
framework. Indeed, consider a Sobolev inner product with two different weights,
W¢ and W2, which are linked in such a way so that (-,-),, can be expressed in
terms of only one weight (either W& or W?) satisfying condition (@). Actually,
important examples in this situation are the Hermite coherent pairs. Notice that if
the pair of measures (W2, W) constitutes a Hermite symmetrically coherent pair
(see [2] and [11]), then either

L Wi(z) = (2* +a?) e and Wi(z) = e, ac€R, or

2 6_:82
I Wg(zr)=e* and Wi(z)= w2 e R\ {0}.
In both cases we have
(@@, = [ [QA@)a® +a2)] WEw)do+ A, [ (@) WEa) da,
and it is not difficult to check that
1
(@ @l / U2 (W2 (anyt) b+ / V2 (1) W2 (ansot) dt,
n+2 —1 n+2

where in each case, the a,, are the Mhaskar-Rakhmanov—Saff numbers for the cor-
responding weight W7, and U,,4+1 and V,,_; are monic polynomials of degree n + 1
and n — 1, respectively.
Since Gn V2, observe that
vn

lim Wll/”(an+2t) = Vte (-1,1)

n—oo
and therefore, according to the theory stated above, the adequate choice of A,
should be A\, ~ aiw n~2. In other words, A\, ~ constant. Hence, it can be said
that the Hermite—Sobolev coherent inner products are self-balanced.

3. FREUD-SOBOLEV ORTHOGONAL POLYNOMIALS

We are going to test the arguments developed in the previous section for the case

of a Sobolev inner product related to Freud weights. The simplest example corre-
2

sponds to Wg(z) = Wi(z) = =%, but this is a trivial case since for any choice of
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An, the Sobolev orthogonal polynomial S,, », is the nth monic Hermite polynomial.
In this section, we show asymptotics for the Sobolev orthogonal polynomials with
W2(x) = Wa(x) = Wi(x) = exp(—a?).

Throughout the section, (P,)n,>0 denotes the sequence of monic polynomials
orthogonal with respect to the weight W?2, | - || stands for the L?(W?)-norm, and
Sn,x, is the monic polynomial which minimizes

Qs Qu), = / Q2 () W(x) di + A, / (@) () W2(a) da

in the class of all monic polynomials of degree n.

The Mhaskar-Rakhmanov-Saff numbers for W (z) = exp(—z?/2) satisfy a, ~
n'/4, and therefore condition (B)) holds for W. As we have explained in Section 2,
to balance this Sobolev inner product we must take A\, n* ~ a2, that is, A, like
n~3/? when n — oo.

Sn,)\n

Next, we study the asymptotic behavior of the ratio showing that the

n
choice of A\, provides the reasonable one in a sense we will explain later. For
technical reasons some additional constraints should be imposed on the parameters
An, 80 we deal with a decreasing sequence (\,,) of positive real numbers such that

(7) lim n%/2X, = L € [0, +00)

and

(8) lim n/*(\p_y — A) =0 = lim nlﬂ'<A"2-—1),
n—00 n— 00 An

Notice that the sequence ), = n~3/? satisfies (@) and (8.

Proposition 1. Let (A,) be a decreasing sequence of positive real numbers which
satisfies /\)\—;2 — 1 and n®/2\, > L € [0, 400]. Then

S S 1 if L=0,
(9)  k(L):= nlLII;O W = \2/—% @(W) if 0 <L < 400,
+00 if L =400,

where p(x) =z + Va2 — 1.

Proof. We consider the Fourier expansion of the polynomial P, in terms of the

basis (Sy,, Jm>0- Because the weight e~ is a symmetric function, we have

Pa(2) = Surn(2) + 3 a5 (M) (2)
=0

where
P, S; An o PL(2)Sh\ (z e dz
OCJ(An) — < ns ]7)\n>)\n — f]R ( ) ]7)\71,( ) ’ OSJ Sn—2
(S5m0 S50 ) A (55205 5520020
Since the orthogonal polynomials P, satisfy the following structure relation (see

[12)),
4| P, ||?

(10) Pl (2)=nP,_1(2) + ﬁpn,;;(z),
[ Pr—s?
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the coefficients o (\,,) vanish for 0 < j <n—2. For j =n — 2 we get

4(n—2) Ay ||Pn||2
<Sn72,)\n7 Sn72;)\'n, >/\n

(11) ap—2(A\p) =

)

and therefore
(12) Po(2) = Spa, (2) + an—2(An)Sn—2.a,(2), n>3.

From now on, we will write £, (An) = (Sm.a, Smodn ) Ans 1M > 0.
Now, observe that ({I2]) leads to

lin()\n) = <Pn - an72()\n>5n727/\na Pn - anf2()\n)‘5’n72,)\”>)\"

= /]R [(Pn - an72()\n>5n727,\n)2 + A\ (PTIL — O‘n72()\n) ;72))\")2} e—:c4 dx.

Then, using ([I0) and the orthogonality of P, with respect to the weight function

—T

e~ * , we have:

Kn(An) = ||Pn||2 +n’ An ”PnleZ —8(n —2) A ap—2(An) HPn||2
|| PaI* 2

-+ 16 )\n W -+ Otn_z()\n) Iﬂ}n_g()\n) .

Taking into account the value of «,,_o(\,) given by (1)), we get

2
(13) () = [ Pall? (Bnun) - Anw)%) n>3,

where

o Fn—2(Mn—2) [ Pal®
’43n—2(>\n) ||Pn—2H27
I1Pal

([ Pr—3][?

An(Mn) = 16),% (n — 2)

_ 2 | Pu-all”
Ba(An) =14 Ann AR

Next, we study lim,, B, (\,) and lim,, A,,(A\,). First, recall that the polynomials
P, satisfy (see [12])

2
(14) lim YUPa 2V/3.

n—oo |||

On the other hand, lim w
n—00 ’43n—2(>\n)

and using the extremal property of the norms of monic orthogonal polynomials, we

= 1. Indeed, from the assumptions on A,

have
kn—2(An) < fn—2(An—2) < (Sn-2.x,: Sn—2,0.) 7,2
B /\;;2 )\iiz 1525, 11" +)\n||S;L—2,,\nH2 < )\;;2 Fn—2(An)
An

Since =5=% — 1, it follows that

n

(15) i fn2(An=2)

=1.
n—00 Hn—2()\n)
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Firstly, let us suppose that 0 < L < +o0o. Then from (I3 and (I4]) we deduce

that
. 20 . 4,
(16) lim B,(\,) =1+ 5\/§L and  lim A,(An) = S L%
To obtain (@), observe that, denoting s, = K, (An)/||Pnl|?, (13 becomes
1
(17) Sn = Bn(An) - An()\n):-

Writing () for even indices and introducing a new sequence (g,) by means of
Qn+1 = S2n(n, the above difference equation becomes

dn+1 — B2n()\2n)Qn + A2n()\2n)Qn—1 =0,

whose characteristic equation
20 4
(18) q - <1+§\/§L>q+§L2:O

has two simple and real roots with distinct moduli. Thus, Poincaré’s Theorem

Qn+1

(see, e.g., [10]) assures that = $9, converges to a root of (I8)). The extremal

n

property of the norms yields
Kn(An) = Hpn||2 + A n2||Pn—1||27
and therefore, using (I4)),

P 2
[= lim S9, > 1+ lim )\Qn(Qn)Zw =1+2V3L.

n—oo n—oo HP2n||2

So, it follows easily that | = L [9 +20V3 L + /76812 + 360v/3L + 81] . Notice
that, if L € (0, +0c), then | = 2& o( 20433V3),

In a similar way, we also prove that so, 11 converges to [. As a conclusion, there
exists lim,, s, = = k(L), and so for L € [0, +00), the proposition follows.

To finish the proof, let us now assume that L = +o0o. From ([3) and () we
have

An(An) :é and lim Bn(An) = @

n—00 ()\n n3/2)2 3 n—oo A\, n3/2 o 9 d.

Upon applying the same technique as in the case L < 4oo and replacing s, by
$n/(An n3/?), we obtain

. Sp L. Kn(An)
@) LS v S A e

Kn(An)
([ P2

Clearly, — 400 when n tends to infinity and we conclude our statement. [

The main result of this section is the following:

Theorem 1. Let (\,) be a decreasing sequence of positive real numbers such that
limy, n7/4(Ap_z — M) = 0 = limy, n'/4 (A;—— - 1) If

n

lim n*2\, = L € [0, +o0],

n— oo
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then
1 if L=0,

1
lim Sn.x, (2) (2) = . -1
3/2 if L =400

if 0< L < +oo,

holds uniformly on compact subsets of C\ R.

Remarks. 1. The choice \,, = constant, which corresponds to a nonbalanced inner
product, is a particular case of L = +o00, and then Theorem [ recovers the result
already obtained in [3].

2. When L € (0, +00) the above result also has the following reading. Write

(P,Q)r, = /P WW)M+A/P’(N@MW%MM

If A\, = n=3/2(1+0(1)), then lim % depends on L, that is, on the ratio of the

n—oo n

weights.

However, for any other choice of \,’s, the dependence on L disappears, in par-
ticular for \,, = n~2 (the right choice in the bounded case) and for ), = constant
(the nonbalanced case). This shows that our selection of A, is accurate since the
asymptotic behavior of Sobolev orthogonal polynomials S, , depends on both
measures.

To prove Theorem [I] we will use the following result on the strong asymptotics
of P,, which appears in [6, Section 3]:

(20) lim P,(2) D, (z) _ 1

n—oo [Pyl @12 (z/an) V2w
uniformly on compact subsets of C \ R. Here, a,, are the Mhaskar-Rakhmanov—
Saff numbers associated with the weight function W, ¢(2) = z + V22 — 1 is the
conformal mapping from C \ [—1, 1] onto the exterior of the unit circle, and

W

z € C\ [—an, ay).

(21) Dn(Z) = exp < . det) 5

We would like to remark that, for z € C\ [—ap, ay],

where W2 is the weight function on the unit circle T defined by
W2(e'%) = W?(a, cosb), 6 ¢ |—m n,

and

1 2 el 4
D 2y — i _ 1 1.
(w,W?) = exp (27r/0 p — oan(G)dH) . Jw| <

It is well known that D(., W?2) is holomorphic in the open unit disk D, belongs
to the Hardy space H?(ID), and satisfies:

(1) D(w,W2)#0, forweD,
(2) D(0, W) >0,
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(3) for almost every ¢ in the unit circle, D(., W;?) has nontangential boundary
values D(¢, W?2) such that |D(¢, W2)|? = W2(()

(see, for instance, [13]).
Next, we prove a technical result that will also be used in the proof of Theorem

M
Lemma 1. Assume that the sequence (\y,) satisfies the same conditions as in The-
orem [l Then

lim Snan_2(2) = Sna, (2)

uniformly on compact subsets of C\ R.
Proof. On account of (20)), it suffices to prove that

lim Snan_2(2) = Sna, (2)
n—oo ||Py|l@"t1/2(z/ay)

D,(2)=0

uniformly on compact subsets of C\ R. To see this we will prove:
i) for every compact set K in C\R, there exists a constant Mg, not depending

on n, such that for n large enough,

Sn7)\71—2 (Z) - S7L7)\n (Z)D (Z) ?

sup
ek | | Pall o™ t1/2(2/an)

@[Sz (@) = Su, (@)
SMKan \/7(1 2 HPnH2 W2(fﬂ) dl’v

and

ii)

i [ [Sn2ecs8) S, 0P
im a,

W2(z)dx = 0.
AL (=)

—Qn

The key idea for proving 7) is to use the conformal mapping ¢(z/a,,) which applies
C\ [~an,an]) onto Q@ = {z € C;|z| > 1}, and the Cauchy integral representation
for functions in H?(Q). Here, H?(Q) denotes the space of analytic functions f in
Q, with limit at oo and such that f(1) belongs to the Hardy space H?(D). From
the Cauchy integral representation for functions in H?(D), see [13], we have that if
f € H*(Q), then

1 Q) w
211 [¢]=1 C—U} C

(22) flw) = ¢, weQ,

where f*(¢) = lim,~1 f(r ¢) and the unit circle is positively oriented.
In order to prove i), given a compact set K in C\ R, there exists an absolute
constant C'xr > 0 such that

V22 —a2| > Ck, VzeK, VYn>0.
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Therefore, if z € K,

Sndns(2) = S, (2) ( 1 2)
An Aal2) o w2
‘ [Pl *1/2(2/ an) p(z/an)

2

2

1 | Sna, o (2) = Sux, (2) ( 1 2)
< — yA\n—2 sA\n D ’Wn Z2_a%
Or ‘ 1Pulle™ 720 an) © \ (e an) | |
1
= = Fn )
oo | Futw)
where
(Snrns = Surn)(an e (w)) (1 ’
Falw) = { [Py [ 172 D(Wa)| anv/le7Hw))? ~ 1,

with w = ¢(z/ay).
It is easy to check that F,, € H?(Q) and its boundary values are

- Sp — Snx, )2 (ay cos®
Fr(e?) = (S A, ) (@ o8 )W2(an cos 0)a,\/cos? 6 — 1.

|| P, [|2eiCnt1)o

Moreover, if we denote by K, = {p(z/an);z € K}, straightforward computa-
tions yield that there exists an absolute constant Ax > 0 such that the distance
between K, and the unit circle satisfies d(K,,,T) > Ag/a, for n large enough.
Then, from the integral formula [22)) applied to F;, we have for w € K,

|Fo(w)] < Bx an / F5(Q)] <]

I<l=1
T (Sy — S, ) (an 0
= Bk an/ (Snros ||P’/\|"2) (an cos )WQ(an cos ) ay|sin 6| do
“n (Span_s — S, )2 (z
=2 [ S ) 0

where By is an absolute positive constant depending only on K. So ) is proved.
In order to deduce i7), observe that

[ 18000 a(0) = S @PWHa) do < (Sunsa = SunisSnnaa = Sun
= (Snrn_2s Sndn_2)an = (Snans Snoan A,

= (o) + O = Aa2) [ 1800, @) W2 do = s (0n)

Kn(An—2) — kn(An).

Therefore, for every n we get

a / Snru s () = Snr (@)
", [Pl

1/4

IA

Kn()\nf2) - Kn(An)

W2(z)dx < ay,
1P ]2

1/4 En(An—2) — Kn(An)

tends
| P |I?

Finally, since a,, ~ n'/* it is enough to prove that n

to 0 when n tends to infinity. Indeed, since

An
0< Hn(>‘n—2) - "in(/\n) < (1 - b\ > KTL()\TL—Q)a
n—2
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we have
’I’L1/4 ”in(/\n—Z) _2’43n()\n) < n1/4 <1 o An > Kfn()\n2) ”in(/\n—Z) )
| Pl An—2/) 1Pall? Kn(An)
Now, taking into account that lim,, “;i’?;j) = 1, it suffices to keep in mind Propo-

sition [l ), and (3] to conclude 4i) and therefore the proof of the lemma. O

Proof of Theorem [l The algebraic relation between the polynomials P, and the
Sobolev polynomials given by (IZ) can be rewritten for \,_s as

Pn(z) = Sn,)\n_z(z) + an72()\n72) Sn72,)\n_2 (Z)
= S, (2) + Snn, 2 (2) = Sp, (2) + an2(An—2) Sn—2.x, ., (2).
Then, dividing both sides of the above expression by P, (z), we obtain

(23) fn(z) = bn(z)fn72(z) + Cn(Z), ze€C \ R,
where
) = B2 ) =~ a () T2

Snan-2(2) = Snaa (2)
P (2)
Firstly, we study the limits of the sequences (b,(z)) and (c¢,(z)). As a conse-
quence of Lemma 1 we know that

cn(z)=1-

lim ¢,(z) =1

uniformly on compact subsets of C\ R.
With regard to (b,(2)), if L € [0,400), from Proposition [l and (14,
n—2(An—2) 3/2 [ Pr—2]l” [P ]2 - L )
Vn =2 fin—2(An—2) (n = 2) [|P2[*  3x(L)
Moreover, for the monic polynomials P, it is known (see [6]) that
Jn=3P,_
lim Y1 2Pn2(®) _ 5
n— o0 Pn(z)

uniformly on compact subsets of C\ R. Both results lead to

= 4)\71,2(711 — 2)

97, 0 if L=0,
lim b,(z) = ——— = 1 .
el (2) \/§/<;(L) 7¢(20L1;2¢§) if 0 < L < 400

uniformly on compact subsets of C\ R. In the case L = 400, using formula (I9)
we get lim,, b, (z) = 1/3, uniformly on compact subsets of C\ R.

Finally, observe that the functions f,, b, and ¢, are analytic in C\ R. Since for
L € [0, +o0] we have lim,, b, (z) = by, with |br| < 1, and lim,, ¢,(2) = 1 uniformly
on compact subsets of C \ R, we can deduce that

. 1
2 =1,

uniformly on compact subsets of C\ R. Indeed, for a fixed compact set K C C\R,
there exist constants r € (0,1), R > 1 and a positive integer number ng such that

|bn(2)] <7, |en(2)] <R, for n>mng, z€K.
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Thus
|fa(2)] < 7|fa—2(2)|+ R, for n=>ng, z€K,
and therefore we deduce that the sequence (f,) is uniformly bounded on compact
subsets of C\ R.
From (23), we can write

fn(2) = !

1-b;

=bg fn72(2)_ﬁ +en(2),

with

en(2) = (bn(2) —br) fn—2(2) + cn(2) — 1.
Notice that lim,, ,(z) = 0, uniformly on compact subsets of C \ R. From the fact
|br| < 1, it is easy to deduce that

. 1
7}1—>Ir<>lofn(Z) o 1—bL’
uniformly on compact subsets of C \ R. Taking into account the value of by, with
L € [0, 4+o¢], the theorem is proved. O
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