e ———

SIAM J. MATH. ANAL. © 1992 Society for Industrial and Applied Mathematics
Vol. 23, No. 3, pp. 737-757, May 1992 010

ON ORTHOGONAL POLYNOMIALS OF SOBOLEV TYPE:
ALGEBRAIC PROPERTIES AND ZEROS*

M. ALFAROt, F. MARCELLAN#, M L. REZOLAY, AND A. RONVEAUX$

Abstract. In this paperthe inner product {f, g)=] 1 Jg du+ Mf(c)g(c)+Nf'(c)g'(c)is considered, where
 is a positive measure on the interval I, ce R and M, N = 0. General algebraic properties of the orthogonal
polynomials associated with (-, -) as well as the zeros and their location are studied. In particular, the case
of a symmetric measure y is analyzed. Finally, a second-order linear differential equation and two'applications
are given.
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1. Introduction. Problems concerning the approximation of C* functions by
polynomials, using the method of least squares, had been considered by Lewis [16],
Grobner [8], and Lesky [15]. In these papers, orthogonal polynomials assomated to
inner products involving derivatives appear in a natural way.

On the other hand, the study of the families of orthogonal polynomials related
to inner products defined by

f, g>=JIfgdu+A Lf’g’ dp

and the properties of their zeros was begun by Althammer [1], Cohen [6], and Schifke
[22] in the case of Lebesgue measure with [=(-1,1), by Brenner [4] in the case
dp = e™* dx with I=(0, +0), and by Schifke and Wolf [23] for the classwal weights
in the corresponding intervals I.

More recently, a group of Dutch mathematicians have considered similar problems
for inner products

o= ant 3 1@ 05 0)

when I'=(0, +0) and u is the Laguerre measure [11] or a g-discrete measure [12], as
well as when u is the Gegenbauer measure and (-, -) is given by

(L= J_lfg du+M[f(-1)g(-=1)+f(1)g()]+ N[f'(-1)g'(-=1)+f"(1)g'(1)]

with I =(-1,1), (see [2], [3]).
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Besides, Marcelldn and Ronveaux [17] have studied the most general situation
when the inner product is

(&= L Sedu+Af(c)g(e),

where A€ R and ceR.

Finally, results relative to zeros have been the: object of a very recent work by
Meijer [20] and asymptotic properties have been obtained by Marcelldn and van Assche
[18]. '

The aim of this paper is to present the most general possible treatment of the
families of orthogonal polynomials associated to an inner product of type

(fg)= Lfg du+Mf(c)g(c)+ Nf'(c)g'(c)

with ceR and M, N =0.

In § 2, we study the algebraic properties of these orthogonal polynomials. An
explicit representation in terms of the orthogonal polynomials associated to W is given,
as well as a five term recurrence relation, which is based on the self-adjoint character
of a certain multiplication operator in the space of the polynomials. Moreover, a
relation between the corresponding kernels and an analog of the Christoffel-Darboux
formula is presented.

In §3, we obtain results related to the distribution of the zeros, showing the
dependence of this distribution from the position of the point ¢ with respect to the
support of the measure . Estimations about the position of the greatest zero are given.

In §4, we consider a particularly simple situation corresponding to symmetric
measures. In this case we can improve the results related to the zeros.

In § 5, we expose an application for semiclassical measures, deriving a second-
order linear differential equation satisfied by the new orthogonal polynomials. Finally,
two particularly interesting cases are considered: one of them deals with the case of
Poisson’s distribution, as an example of a discrete measure, and the other one corres-
ponds to the case of Gegenbauer measure with ¢ =0. In the latter, the mass is placed
in an interior point of the support, unlike the usual location of masses in the ends of
the support. This simplifies the calculations very much.

2. Algebraic properties.

2.1. Representation formulas. Let u be a positive Borel measure on an interval
(finite or infinite) I = R with infinite support such that all the moments f; x™ du exist.
We define the following real inner product in the linear space of real polynomials %:

(&)= Lfg du+ Mf(c)g(c)+ Nf'(c)g'(c),

where ceR and M, N=0. This inner product cannot be associated to any positive
measure on I in the standard sense [7], whenever N > 0.

Let (P.(x))=(P,) and (Q,(x))=(Q,) be the sequences of monic orthogonal
polynomials (SMOP) with respect to u and with the inner product (-, -), respectively.
If we consider the representation of Q, in terms of P,

Q) =P.(x)+ T anB(3)
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from the orthogonality of Q, with respect to P,j=0,1,--+ ,n—-1 it follows that

o L QP du_ MO.(0)P(c)+ NQ}(e)P)(e)
Y i Prdu BB

Osj=n-1.

Then
(2.1) Qn(x) = Po(x) = MQ,(¢)K_i(x, ¢) — NQ,(e) KOV (x, ¢),

where (K, (x, y)) is the sequence of kernels associated to (P,), and K9 (x, ¥) denotes
the generalized kernel

n P& (x) P
K9 y)= § ZLOE0)
AT

If we derive in (2.1) with respect to x and evaluating at x = ¢, the values Q,(c)
and Q(c) can be expressed as the solutions of the system,

) Po(€) = Qu(e)[1+ MK, (¢, €)1+ Qi(c) NK¥(c, o),
P(e) = Qu(e)MK 3 (c, ¢)+ Qp(e)[1+ NK (¢, o)1,
whose determinant: '
D=1+MK,_,(c, ¢)+ NK&Y(c, ¢)
+MNIK,_ (¢, ) KV (e, ¢) —K%D(¢e, ¢)?] -
is positive from the Cauchy-Schwartz inequality. Therefore,
P.()[1+ NKY(e, ¢)]— PL(c) NKOY(c, ¢)

Qn(©) ~ :
(2.3)
() = PalME (6, ) + P()[1+ MK, (¢, )]
Qi) = = :

Then (2.1) becomes’

Qu(x)=P,(x)—M

P.()[1+ NK7-9(¢, ¢)] - Pu(c) NK (¢, )
Kn-—l(xa C)

D
_P,,(c)MKglO;I;)(c, c) +J;’;(c)[1 +MK, _,(c, ¢)] KO0 (x ¢). |

(2.4)

-N

We need establish some auxiliary results. \
LEMMA 2.1. Let (Py(x)) and (P2°(x)) bf: the SMOP with respect to the measures
(x—c)* du and (x—c)* du, respectively. Then:

(25) (=P =R 0~k (x0) |
26) Pin(e)= PO~ KON e o),
@7) (v Pi00) = Pica() L k(3 0) |
(8) (=€) (y = VK5 a3 1) = Ko (5, y) ~ T2 VKl 7) i

K.(¢c,e) 7
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K(e, ¢)

(29) (x— c)Kf,_l(x, C) = KE;O’I)(x: C) - Kn(C, C) K, (x’ C),
‘ c _ gang, o KV (e oF
(2'9 ) Kn—l(ca C) - Kn (C: C)\ Kn(C, C) H

where (K ;(x,y)) denotes the sequence of kernels associated to (P).
Proof. Let us consider the representation of (x = ¢)P;_i(x) in terms of Pi(x):

(=P 1) =Po(x)+ T ey B ().

By using the orthogonality of the sequence (Py-1) with respect to the measure (x — ¢)? du
we get: '
o P o(¢)
n—1,0
[ Pol*

f (x=c)Pr_i(x) du
I
and

1 [4
an-—l,j=WJ; (xTC)Pn—1(x)Pj(x) du

- 2U P,‘M(x)ﬁm(x—c)2 dM+P,-(C)J (x—c)PS_,(x) d#]
B LJ; x—c 1
_B(e) ape
_”2“2 J; (x ¢)Pr_i(x) du
ifj=1,--+,n-1.

Then
(x—¢)Py_1(x) = Py(x)+ K, _1(x, c) J (t—c)Pr_y(2) du(t).

Evaluating at x = ¢, it follows the value of the last integral and, therefore, (2.5).
In order to prove (2.7) it suffices to consider the representation of (x — ¢) PS%,(x)
in terms of Pj(x) and to repeat the above argument.
If we derive (2.5) with respect to x and evaluating at x = ¢, we deduce (2.6). .
Formula (2.8) can be obtained from the representation

(=)= K5 (5)= 3 fres, (1)B )

By using the reproducing property of the kernels and the 6rthogona1ity of P, we have:

Br-1,0(y) =M Py(c) L (x=c)K7_1(x, ). du(x)

2R
and
Bos () =(”y—,f”%) f (x =€) K-y )P, (x) du(x)

- (y—c) ’:J‘ K5 i(x, ) PJ(%?(C) (x—c)? du(x)

+F(c) J (x=c)K7oa(x, ») du(x):l

I
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| =”—;F [P;(y) —P(c)+(y~c)P(c) f (= VK (x, ) d,u,(x)]

foreveryj=1,---,n.
Then,

(x =)= ) Kims(%, 1) = Kn(x, )~ Ko (3, ©)
| + (7= 0Ky (x, <) J (t= ) Ksoy(x, 1) du(t).

Now, formula (2.8) can be derived directly from the last one.

By derivation in (2:8) with respect to y and evaluating at y = ¢ we get (2.9). Ina
similar way, we deduce (2.9") from (2.9). 0

The above lemma allows us to represent the kernels K, _,(x, ¢) and K%¥(x, ¢) in
terms of the polynomials P,(x), P;_,(x), and P%,(x). By substitution of these values
in (2.4) we obtain the folIQWing.

PROPOSITION 2.2. Let ¢ be such that the condition P,(c)P;_i(c) #0 is satisfied for
every n€ N. Then, the formula

Qn(x) = (1= @) Pu(x) +(atn = B) (x — €) P _y(x)

(2.10) ,
+ﬁn(x_c) P;C{iz(x)s .
where
| o =1-2() [+ NK(g 0)]P.(c) = NKPV(c, ¢)Py(c) |
" R0 DP,(c) ’ |
g, = NQWOK: o(c, ©) ij
| T P | |
holds. |

y Remarks. (1) Since all the zeros of the polynomials P,(x) and P;,_,(x) are in the
“ interior of the interval I, we conclude that if ¢ is not an interior point of I, then the 1
formula (2.10) is true. i

(2) The polynomials P; have been identified by Kautsky and Golub (see [10]). |
By using methods of linear algebra they prove the fact that, if J is the Jacobi matrix
associated with (P,), a single step of the QR algorithm with the (Wilkinson) shift ¢ i
corresponds to finding the Jacobi matrix associated with (P¢). A proof of this result |
by an analytic technique can be found in [5].

Let us consider the Christoffel-Darboux formula for the kernel K._(x,y) (7, )
Thm. 4.5, p. 23] or [24, Thm. 3.2.2, p. 43]). For the first consequence below we evaluate
at y =, and for the second we derive with respect to y and evaluate at y=c

(x=)Ky1(x, <) =ﬁ [P,(%)P-s() = Poy(x) P, (0)],

(2.11)  (x—c)’K2V(x, ¢) = ﬁ [Pa(X){Paos(e) + (x =€) P_y(c)}

=P (x){P.(c) +(x =) Pr(c)}1.
Multiplying the formula (2.4) by (x—c¢)? and substituting (2.11) we obtain
(2.12) (x = €)?Qu(x) = gx(x, n) P (x) + gy (x, n) P,_y(x),
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where

aa, ) = (5= ¢ =220 5 pleny )
1P 2o

NQ,(c) L k
TR z Pﬁ—)l(C)(x/—C)k,

k=0

=MQn(C) L k-1 RN
a5 m) =T T PO 0)

NQ(c) & (k) x
T 2 2 Pr(e)(x—o)"
[1Pasll® =0
(We denote P{V(c)=0.)
From (2.12), it follows that the sequence (Q,) is strictly quasi orthogonal of order
2 with respect to the measure (x —¢)* du [19] and, therefore,

!

n+1
(2.13) (x=¢)’Qu(x) = Prsa(x)+ % . 4P (x),
. e

where the numbers a,; can be expressed in terms of the coefficients of the polynomials
42(x, n), q:(x, n), and the coefficients of the three term recurrence relation satisfied by
the SMOP (P,).

Now, we can obtain a recurrence relation for the orthogonal polynomials Q,.

PROPOSITION 2.3. The polynomials Q, satisfy a five term recurrence relation:

n+1
(2.14) (x=€)*Qu(x) = Quua(x)+ ¥ . YwQi(x)  n=0,
j=n—
where v, ,_,>0 (n=2) and the convention Q_, = Q-,=0.
Proof. Let

n+2

(x - C)an(X) ='.§0 7anj(x)

be the expansion of the polynomial (x — ¢)?Q,(x) with respect to the sequence (Q,).
Obviously, ¥,,+2=1 because Q, is monic. On the other hand, if 0=j<n-2,
¥n; =0 from the orthogonality of the sequence (Q,).
The remaining coefficients y,; can be found as follows: from the definition of
the inner product, if n—2=j=n+1

S (=), Q)
& Q. Q)

1 2
_(Qj, Qj> J; (x—c) Qn(x)QJ(X) du(x).
But from (2.13),
(2.15) (x—¢)*Qi(x)= hii; a; P, (x)

with a;;,,=1, and from (2.1)

Q)= 3 BuPu(x),
h=0
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? | where B, =1, and if h<n
; _ Bon =T LMQA(€)Pu(e) + NQL(e)Pi(c)],
. then,
f f (=€) Qu(x)Q(x) duu(x)
| =aulP+ S BuaalBl
N
| =@l BT aulMO(0)Py(e)+ NQL(E)PA(O]
Also, from (2.15)
2 eR©= 5 apie=o,
and hence
219 3=(Q. 0 anl B M0, E aumi(e)+ Ny T apio)] ‘
holds. Finally, from the definition of the inner product (, ) | ‘
o (Qu Q=PI+ MQ.(6),(6) + NOYEIPL), | ‘
f So, if j=n—2 we get |
. |
e O 0 \

Remark. In the above proposition we have pointed out that
(Qi> Q) =|P[*+ MQ,(c) P(c) + NQ.,(c) PL(c).

An explicit expression of (Qn, Qn) in terms of M, N, and the polynomials P, can be
derived by using (2.3). We find, by straightforward calculations,

i p 12 Yem1An F Yahnoy = 2MNKPD(c, ) KO)(c, ¢)— D \
(217)  (Qn, Q) =||R,] D s | |
where y, =1+ MK, (c, c) and A, =1+ NKIV(¢, o).

2.2. Kernels. We are going to derive a formula relating the kernel associated to
the new polynomials Q,, with the kernels K,(x, ¢) and K D(x, ).
Let

_ o Qu(x)Qu(y) ' \
Llxy)= X = ooy

If we consider its expansion in terms of the polynomials P;(x),

L,(53)= 3 ay()B(0),
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we have:

j(x) _]() 1,0 P’(C)
=<L"(x’y)’HP-II2> Lo Fytk-nao ) {1

”P”z[P(y) ML, (c, y)P,(c) = NLI(c, y) P} ()]

This proves that the kernels L,(x, y) and K, (x, y) satisfy the following formula:
Ln(x: }’) = K,,(x, y) *ML,,(C, y)Kn(x> C)
= NLZ(¢, y)KP(x, c).

Explicit expressions for L,(c, y) and L{"*(c, y) can be obtained as solutions of
the system \

K. (6 )= La(c, y)[1+ MK, (¢, )]+ LI (e, y) NK 3¢, ¢),
(219) K¢ y)=La(c y) MK$(c, c)
+ L (¢, y)[1+ NK (g, o)].

Now, we obtain an analog of the Christoffel-Darboux formula for the new

polynomials.
PropPosITION 2.4. The relation

(x+y—26)(x—y)L (%, )

[Qn+2(x) Qn(y) Qn+2(y)Qn (x)]

(2.18)

<Qn9 Qn>

yn n+1
(2.20) 0, 0 [Ques(%) Qn(3) = Qs () Qu ()]

1
+m [Qu+1() Quas () = Qura (1) Qua ()]

and its confluent form

2(x~c)Ly(x, x) = [Qr+2(x) Qn (%) = Qua(x) Q1(x)]

<Qn: Qn)

_Ynn+1 _ '
(221) <Qn, Qn> [Qn-i-l(x)Qn(x) Qn+1(x)Qn(x)]

1 , _ ,
o 0 (@) Qun(3) = Qi (1) Qha(0)]
hold.

Proof. Multiplying in the relation (2.14) by Q,(y) and multiplying the same relation
evaluated at x =y by Q,(x), we obtain after subtraction:

(2.22) (x+y—=2¢)(x =) Qu(x)Qu(y) = i .7n,n+k[Qn+k(x)Qn(y)_Qn+k(y)Qn(x)]’

O k=-2

where ¥, 0= 1.
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On the other hand, the inner product (,) is such that
((x=¢)*Qu(x), Qu(x)) =(Qu(x), (x = €)*Qu(x))

for all n,' m & N. Hence, as

(=0 = T i sQuoal)

=7

we get
(2'23) 7n—i,rz—k<Qn—k9 Qn—k>= yn—k,n—i(Qn—i’ Qn—i>a k—2§ l§k+2' ‘

From (2.22) and (2.23), by straightforward calculations, we get (2.20).
The result in (2.21) follows immediately from (2.20). 0

3. Zeros of Q,. In this section, we always consider N > 0. It is well known that
the zeros of P, are real, simple, and belong to I (f denotes the interior of the true
interval of orthogonality I). But this result may be false for polynomials Q,. In fact,
the general result we can prove is the following.

ProrosiTiON 3.1. If n=3, the polynomial Q, has at least n —?2 different zeros with
odd multiplicity in I

Proof. Let &,1,- -, &x denote all the distinct zeros of Q. of odd multiplicity
which are in [ Define P(x)=(x—&,) -+ (x—§&u). The polynomial (x—¢)*p(x) Q.(x)
does not change sign in the interval I; hence,

((x=e)’p(x)Qu(x), )= L (x = ¢)’p(x) Qu(x) du(x) #0.

Since (Q,) is a quasi-orthogonal sequence of order 2 with respect to (x—c)* du, it
follows that deg p(x)=n —2. ]

PrROPOSITION 3.2. The zeros of the polynomial Q, are real, simple, and at least n —1
of them belong to f, whenever either ¢ =inf I or ¢ =sup I. '

Proof. Suppose c=sup L Let &,,, - -, £, denote all the zeros of Q, in I From
Proposition 3.1, it follows that k=n—2. Set p(x)=(x—&,) -+ (x—&x); then, thg

polynomials p(x)Q,(x) and (x—c)p(x)Q,(x) have constant but opposite signs in I
If Q,(c)=0, we have

{(x=e)p(x), Qu(x))= L (x=¢)p(x) Qu(x) du(x) 0,

and hence, deg p(x)=n—1.
Let Q,(c)#0. If we suppose k=n—2, the following formulas hold:

0=((x—c)p(x), Q.(x))= L (x—¢)p(x) Qu(x) du+ Np(c)(Ql(c)

0={(p(x), Qu(x))= L P(x)Qu(x) du+Mp(c)Q.(c)+ Np'(c) Qi(c).

Hence, p(c)Q,(c) and p'(c)Q.4(c) have opposite signs, which is a contradiction. Thus
k=n-1. As a consequence, all the zeros of Q. (x) are real and simple.

If ¢c=inf I, the proof is similar. O

Remark. We want to note that if we consider the inner product

(f.8)= Lﬂx)g(x) du(x)+ Mf()g(c) + NF (c)g(c)
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with re N, by using the above arguments, we can deduce that the polynomial Q,
associated to the new inner product has atleast n — (r+1) different zeros in I Whenever
either ¢ =sup I or ¢ =inf I, then Q, has at least n —1 zeros in I and, therefore, all the
zeros are real and simple (see [11]).

Note that if ¢=sup I and all the roots of Q,(x) are located in the interior of I,
then both conditions

(3.1) Q.(c)>0 and Q4(c)>0

hold. In the similar way, if ¢ =inf I and all the roots of Q,(x) belong to I, then
(3.2) sgn Qu(¢c)=(-1)" and sgn Q;(c)=(-1)""

hold.

This remark allows us to easily deduce sufficient conditions to assure a zero of
Q. (x) is not in I and besides we can give some results about its location.

From now on, if c=sup I or ¢=inf I, we shall denote the zeros of Q,(x) being
ordered by increasing size: &,,<' - <§&,,.

ProrosITION 3.3. The following statements hold:

(a) Let c=sup L If the property (3.1) is not true then the greatest zero of Q,(x)
satisfies

gn 1

c<§nn<c+ and Ifnn_c'<|§n,n—1_cl'

Moreover, if M #0, &,,—c<3VN/M.
(b) Letc=inf I If the property (3.2) is not true then the lowest zero of Q,(x) satisfies

c-fn S<gusc and |ga—cl<|ga—cl

Moreover, if M #0, ¢ —&,,<3vVN/M

Proof. It suffices to prove (a). It is easy to deduce that if (3.1) is not true, we have
c = fnn

Assume ¢ <§,,, then Q,(c)=(c—£&,) * + * (¢~ &.n) <0. In this situation,

"<t Pu(e) Ph(c)

K@Y ¢)= hZ=jo AR

>0,
from (2.2) it follows Q,(c)> 0. Since

Quie) "' 1 1
Qn(c) j=1 c_fnj gnn_c

we get

1 n1 ] n—1
>3 > .
Eimn—C o1 c—&y Cc—én

Hence,

gnl

Enn <c+c_— and [&,,—c|<|éun-1—c].
n—1 .

Now, let us set Q,(x)=(&,, —x)¢(x). Then,

(Qu, 0)= L Qup du+ MQ,(c)p(c)+ NQr(c)e'(c)=0.
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As Q,(x)e(x)>0 in I, in the above formula the integral is positive and so
MQ.(c)¢(c)+ NQu(c)'(¢) = (£ — c)[ Mo (c)*+ No'(c)?]
—Ne(c)p'(c) <0.

Whenever M >0, taking into account that ¢(c)<0 and ¢'(¢)<0 and by using the
Cauchy-Schwarz inequality, we obtain

¢ —c<lﬂﬁ 0
nn 2 M' .

Remark. The same results for ¢ =0 and the Laguerre weight have been obtained
in [13], and for some generalizations of the Laguerre weight see [20].

4. Analysis of the symmetric case. If I is a symmetric interval and the measure
is symmetric on I (i.e., u(A) = u(—A) for every A< I measurable), it is well known
[7, Thm. 4.3] that the SMOP (P,) associated to w satisfies P,(—x)=(—1)"P,(x) for
all ne N. As examples of this situation we have Hermite polynomials and Gegenbauer
polynomials. We want to emphasize that the condition P,(=x)=(-1)"P,(x) for all
ne N is equivalent to K%(0,0)=0 for all ne N.

Let us consider the condition

(4.1) K®(c,c)=0 forevery ne N
is satisfied. Let us remark that

(i) P.(c)P,(c)=0 for every ne N;

(i) P.(c)P,_1(c)=0and P,(c)P,_,(c)=0 for every ne N .
are separately equivalent to (4.1). From (i) or (ii), it follows that ¢ must belong to L

Furthermore there exists at most one ¢, which is determined by P;(¢)=0. Then, in
general, we have :

P,,,(c)=0 and Pj,(c)=0 for every ne N.
We point out that no number c satisfies (4.1) for Jacobi polynomials with a # 8 or for
Laguerre polynomials.
Now, it is not difficult to prove the polynomials P, are symmetric with respect to

the point ¢ is equivalent to the condition (4.1). Since translation of the centre of

symmetry is trivial, in the sequel, we assume (with absolutely no loss of generality)
that ¢=0.

Since the determinant D is
D =[1+MK,_,(0,0)][1+ NK&Y(0,0)],
we achieve '
P.(0)
1+ MK, _,(0,0)’

P} (0)
1+ NK&5(0,0)°

Q.(0)=
(4.2)

Q:(0)=

Then (2.4) becomes

MP2n(O)

Qan ()= Pan(x) =g o

Kzn—l(x: 0):
(4.3)

NP£n+1<O)
1+ NKLY(0, 0)

Q2n+1(x) = P2n+1(x) - Kg?;l)(xa 0)




|
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\ _ ,
" Some properties about the quantities Q.(0) and Q(0) can be derived directly
‘ from (4.1) and (4.2). For instance:
“‘i" (a) Q24(0)#0 and Q,,-,(0)=0 for every ne N;
‘M (b) Q3.(0)=0 and Q},-,(0)#0 for every ne N; -
(c) sign Q,(0)=sign P,(0) and sign Q.,(0)= sign P,(0) for every ne N.
“ In order to obtain Proposition 2.2 we might impose P, (0) P,,(0) # 0 for every n e N.
i This restriction is not necessary now. Indeed, from’ (2.5)

| Pon(0) Koo +(35,0) = Ky -4(0, 0)[ Por () = x5y 4(3)]
‘H and from (2.9), (2.6), (2.7), (2.5), and (2.9")
Phos (K (x,0) = KE0(0, 0 Pyrin(x) ~ xP5Sy(x)].

H By substituting these values in (4.3) we obtain the following.
ProPOSITION 4.1. The decomposition:

"‘ (4.4) Qn (x) = (1= an) Py(x)+ (an ~ Ba)xP5_1(x) + Bx> PSS 5(x)
! where

| MK,,_,(0,0)

i\ % =11 MK, 0,00 Pr=0

i o _NK£D(0,0) By .ma

H ‘ 2n+1 " 1+NK§1,,’1)(0, O) 2n+1 2n+1

|

holds.
‘\“ Remark. It is interesting to point out that a, and B, are nonnegative and bounded
by 1. Consequently, all the coefficients in (4.4) are nonnegative and bounded.
By substituting the values of Q,(0) and Q/(0) (see (4.2)) in (2.12) and simplifying,
‘ we obtain:
M (4.5) x*Qu (%) = [x* = a,]P,(x) + b,xP,_(x), |
“H where '
L1 NPW0)P,,(0)
" [Pay)? 1+ NKED(0, 0)°

1 [ MP,(0)* NP0 }

[Py |?L1+MK,_,(0,0) 1+ NKEY(0,0) |
Note that from the above formula it follows that the polynomials Q, are also symmetric.

To deduce the recurrence relation we shall employ the expansion of x*Q,(x) in
terms of the polynomials P,. Using the three term recurrence formula verified by the

b,

SMOP (P,),

xP,(x)= Po1(x)+ By i1 P_y(x)
and

s n+1

X Qn(x)=Pn+2(x)+ Z an,j'Pj(x)a
j=n-2
we find:
an,n+1 = 09
an,n = Bn+2+ Bn+1 —ay + bn:

(46) an,n-—l =0:

an,n—2 = Bn (Bn+1 + bn)
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Substituting these values (2.16) we obtain the coefficients of the five term recurrence
relation verified by the SMOP (Q,). To do this, it suffices to note that if |m—n|is odd,
P,.(0)P,(0) = P,(0)P,(0)=0

holds. Thus, by using the notations v, =1+ MXK,(0,0) and A, =1+ NK®(0,0) we
can give the following.

PrOPOSITION 4.2. The SMOP (Q,) satisfies the formula

n+1
szn (x) = Qn+2(x) + X Z N yn,ij(x):
j=n-—
where
7n,n+1 = O:
1 MP,(0)P,+2(0) = NP (0)P}.,(0)
Ynn = Qun + + (1,1) 4
\\<Qn: Qn) 1+MKn—l(09 O) 1+NK71—1 (Oz 0)
(47) \ ‘le,n—l = O:

(Qn, Q)
<Qn—2, Qn—z) ’
=P || Y A
(Qn’ Qn>_ ”Pn “ [’}’n_1+/\n_1 1:'

Note that, in the symmetric case, the recurrence formula satisfied by the poly-
nomials Q, is /|

(48) XZQn (x) = Qn+2(-x) + yn,nQn (X) + 7n,n—2Qn—2(x)' “1

Moreover, the explicit expression concerning the kernels L, (0, y) and L&%(0, ¥) i
is very simple. Then (2.18) becomes

7n,n—2 -

MK, (0, y)
1+ MK,,(0, 0)
__NK(0,y)

1+ NK-2(0,0)

PROPOSITION 4.3. The kernel L,(x, y) associated to the the polynomials Q, can be
expressed, in terms of the kernels associated to the polynomials P,, P¢, and P%°:

(4.10) L. (% ) = rKa(% ¥) + 5,00K Sy (%, ) + 027K 55(x, 3),

where

_ Ln(x:y)=Kn(x:y)_ Kn(X,O)

(4.9)
K&Y(x, 0).

1
"1+ MK,(0,0)°
__MK,(0,00  NK®P(0,0)
T 1+ MK,(0,0) 1+NK®D(0,0)°
__NK((0,0)

"1+ NK®P(0,0) "

Proof. Using the formulas (2.9), the analog of (2.8) for K5%,(x, ), and (2.9") we
obtain

n

KPP(x, 0)K (0, y) = KE(0, 0)[xyK i oi(x, ) — 2K 555 (x, ).
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Then the decomposition (4.10) holds and the explicit expression of coefficients 7,, s,,
t, is obtained. 0

Remarks.

(a) The coefficients in (4.10) are bounded and besides T, S, are nonnegative.

(b) If N =0 there is always a decomposition as (4.10). But, if N #0 there is such
a decomposition if and only if K"(0,0)=0 for all ne N,

Next, we shall work in the symmetric case to obtain' some strong results about zeros.

ProrosiTION 4.4. All the zeros of Q, are real, simple and belong to I

Proof. By Proposition 3.1, Q, has at least n—2 different zeros in I, and all of
them have odd multiplicity. As, Q,(—x) = (=1)"Q.(x) for every xe I and Q5._1(0)#0
for every ne N, all the zeros of Q, are simple. Suppose ¢ is a complex zero of Qs
then £ is also a zero of Q, and hence —¢&=£ Thus ¢£=ir with reR. Let us denote &
Jj=1,- -, n—2, the remaining zeros of Q,. Setting p(x)=(x—¢&,,) - - (x =&, n2) We
can write Q,(x)=p(x)(x*+r?). Then

(. Q)= f P*(x)(x"+r?) du(x)+ Mr’p(0)*+ Nrp'(0)>> 0,
I

which is a contradiction; hence all the zeros are real. .
Finally, we are going to show that ¢ and —¢ belong to I Indeed, as Q,(x)=
p(x)(x*—£%), it follows that (p, Q,)=0. But if we suppose £ £ I, then

(p, Q)= L PP(x)(x* =€) du(x) — Mp(0)*£*~ N[ p'(0)]2£* < 0.

Therefore, ¢ < I holds. 0

It is possible as well to deduce a separation property of the zeros. In order to
prove it we will use the following. ‘

LEMMA 4.5. Between two consecutive zeros of P,(x) there is exactly one zero of
Py _i(x). (see [20, Lemma 6.1] or [9, Prop. 1.4.9]).

Since P, and Q, have symmetric zeros it suffices to consider the positive zeros.
Let M, N be positive, real numbers.

ProPOSITION 4.6. The positive zeros of P, and Q, mutually separate each other and
the greatest positive zero of Q, is less than the greatest positive zero of P,. Moreover, the
positive zeros of Q,, alternate with the positive zeros of P5,._, and the positive zeros of
Q2+ alternate with the positive zeros of PSS_,.

Proof. Let us consider n=2m. As in (4.4) B,,, =0, we may write

- (411) Qe = (1= @2) Papn(%) + @axPis ().

i - We denote (Xom—1,)7"", (X2m )T, (€2my) " the systems of the positive zeros of poly-
P nomials P3,,_y, P,,,, and Q,,,, respectively, each system arranged by increasing order. 1
‘ From (4.11) and Lemma 4.5 it follows that whenever X = Xomm, Qam(x)>0, and
! SO &3mm < Xamm- On the other hand, as by Lemma 4.5 Py (X3m-1,m-1) =0, we have
7 ‘ Q2m(X3m—1,m-1) =0 and 50 X5p_y oy = Eam,m- Since the roots of P,, and P%,,_, are real .‘
b and simple using, once more, Lemma 4.5 we have that the.sign of P5, _,(x) changes
in every X, ; (j=1,-+-,m) and by (4.11) the sign of Q,.(x) changes in Xom,j-
Therefore, in each interval (X2m,j—1, X2m ;) there exists only one root of Qap-

In a similar way, the sign of P,,(x) changes in the roots of P3n—1(x), and,
consequently, the sign of Q,,,(x). Hence the positive roots of Q2 and PS5, are B
interlaced.

|
i
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If we suppose n=2m+1, then Bap+; = Qzpsy and Poypy(x) = xP3,.(x). Thus
Qam+1(X) = (1= @zps1) XP3(x) + a2m+1x2P§’:1—1(x)-

Using the above argument and taking into account that the positive zeros of Ps,,;
coincide with the positive zeros of P5,,, the result follows. 0
Remark. Note thatif M =0, Q,,,(x) = P, (x), and if N =0, Qupn1(x) = Py (x).

5. Differential properties.

5.1. Differential equation. Let us consider the case of (P,) being a sequence of
semiclassical orthogonal polynomials (see [19]). This means that the linear functional
& defined by

(5.1) J Pdu=(%, P), Pec?
I
is characterized by polynomials ¢ and ¢ such that a functional equation for &£
(5.2) D(¢L)+yL=0
holds with

(Y2, P)=(Z, yP),

53) (D(62), P)= (6%, P)

for every Pe 2.

It is easy to construct a second-order linear differential equation for the SMOP
(Q.) using the representation (2.12), where the polynomials g, and g; are known
explicitly in terms of P,.

Let us use the structure relation (see [19]) for semiclassical orthogonal polynomials
P, of class 5 (s =max {(deg ) —1, (deg ¢) —2}).

n+t
(54) ¢P;1+1 = k_z enkPk,
where t=deg ¢ and 6, are constants. This relation can be writen
(55) ¢P:1+1=CnPn+DnPn—1a

where the polynomials C,= C(x, n) and D, = D(x, n) are computed from the three
term recurrence relation for the SMOP (P,).
The usual 3 step procedure (see [21]) now give the relations

(5.6) (x—c)zQ,,=q2P,,+q1P,,_1,
" dl(x—¢)*Qu] = ¢(q2P.+ g1 Pt) + 4(CoP, + D,P,_y)
+4:(Coe1Puy+ Dy Pyy)
=21 Pyt q1,1 Py,
(5.8) ‘ ¢[¢[(x_c)%Qn],],=q2,2Pn+q1,2Pn—1'

In the computation of the polynomials g;; (i,j=1,2), we need again the recurrence
relation of the P, in order to eliminate P,_, in terms of P, and P,_,.
The following determinant gives the expected differential equation for the sequence

(Qn):

(5.7)

(x_c)an 92 J q1
(5.9) ¢[(x_c)2Qn]/ %3 411|=0.
¢{¢[(x—c)2Qn]’}’ Q2 12
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This differential equation becomes particularly simple in the symmetric case with
¢=0. The Hermite case was already treated in [17], so we study here the Gegenbauer
case. Bavinck and Meijer also analyze this situation (Gegenbauer case), but with two
mass points located at the endpoints of the interval (see [2]).

S.2. Applications. As afirst example, we consider the inner product of Sobolev type
1 .
(5.10) (fg)= J’ F(x)g(x)(1=x*)*""2 dx+ Mf(0)g(0)+ Nf'(0)g'(0)

with A > —3. In this case, the point ¢ (¢ =0) is in the support of the measure, and the

symmetric character is preserved.
It is well known that the monic Gegenbauer polynomials verify a three term

recurrence relation. .
(n—1)(n+2X)

M) (x) = PA)._(x)+
xPn+l(x) Pn+2(x) 4(n+/\)(n+/\+1)

PM(x)=1  PPM(x)=x

PM(x) nz0,

and

(-1)" 2n)! T(n+A)
2" n! T(2n+A)’

PGY(0) = PS(0)=0,
(2/;)—!-1(0) = P%)-;,-l(o) =0,

PE(0) =

Ay _(2n+1)(n+/\) o
PELL(0) =2 pOx(),
PS)'(0) = —4n(n+ A1) P$(0),
4n(2n+1)(n+/\)(n+/\+1)
(/\) ()\)
PEYL(0)= p—— 2(0),
_ T (n+2A)
PW|2 = g1-20+m) n )
127 T+ ML (n+ )P
Moreover, they satisfy a structure relation
' , +
(511 (P=DPE0) = (n+ Dxp () - BRI b
2(n+2A)
(see [24, formula 4.7.27, p. 83]). Thus (4.3) becomes
9) 1(x)
(5.12) Qn (%) = P5)(x) + M, ==
P
e (4]
PO ()~ PG )
(5.13) an+1(x) P2n+1(x) - N, 2 >
where
(A) 2
Mn = M = [PZn (O)]

”PZn 1”2[1 +MK271—1(0> 0)] ’
(/\) (O)P('\)(O)

Nn =N 2n+1
IPSIP[1+ NK$:2(0,0)1°
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but,
A 2
PEY(x)=8,(x%);  PHh(x)=xS%(x?)
and

P, (0) n(2n~1+21)

(01)
(x,0)= npgy”z 2n+ A

xS** (x?)
(see [7, Chap. 1, § 8]). Then
QZn (x) = Sn (x2) + MnS;l:—l(xz)y

e =x[5’f(x2>+zv,,M s:*:ia<x2>].
: 2n+A .
The following proposition can easily be derived from the above comments and
from (4.7) and (4.8).
ProrosiTION 5.1. For the SMOP (Q,) corresponding to the inner product defined
by (5.10), Qu(=x) = (=1)"Qu(x). If

Q2 (x)=U,(x*) and Qanr(x) =xV, (xz)

then
(5.14) Un(x) =8, (x)+ M,S¥_,(x),
(515) Vo) = 5360+ N, B g

and U,, V, satisfy a three term recurrence relation in the standard sense.

Remark. In general, for a symmetric SMOP associated to a Sobolev type inner
product, we can define two SMOP in the standard sense. They satisfy a decomposition
in terms of (5.14) and (5.15).

ProrosiTiON 5.2. The SMOP (Q,) verifies a second-order linear differential equation
A(x; 1) Qn(x)+ B(x; n)Qn(x)+ C(x; n) Q,(x) =0,
where A, B, C are polynomials of degree independent of n. More precisely, deg B(x; n)=
deg A(x; n)—1; deg C(x; n)=deg A(x; n)—2; deg A(x;2n)=6 and deg A(x;2n+
1)=8.
) Proof. From (5.11) and (5.12)
| 2n—1+A
"(2n—1+2\)n
- [20xP§)(x) = (x* - 1) P (x)]
<1+2M M) (/\)( )
1+2A
2n—1+A
"n@n—-1+22)
On the other hand, from (5.11) and (5.13)

xQ,,(x) =xP$)(x) + M,

(x*=1)PE) (x).

¥ Qa3 = (7~ N PG ()~ N, [P(—)(O()O) “)(x)]

_(x _N )P2n+l(x)_Nn
: [x(x _I)Pg)t)ﬂ(x)_(2n+1)x2P§:);z)+1(x)]
= ([1+(2n+ I)Nn]xz_Nn)P(Z);t)+1(x) _Nnx(xz_ 1)Pg>l)-;-1(x)
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Then
(5.16) Qa(x) = M, (x) P (x) + N, (x) PP (x),
where
~ 2n 1+ /\
+ ———
N,

M2n+1(x) =1+ (27’! + I)Nn —_22 s

2n—1+A 1-x°
n(2n—1+2A) x °

NZn(x) M

1-x°
N7n+1(x) N,

Using derlvatlves in (5.16),
Qi(x) = M, (x) PP (x) +[ M, (x) + N, (x)]P» (x)
(5.17)
+ K, (%) PO ().

But, from the second-order linear differential equation satisfied by Gegenbauer poly-
nomials (see [24, formula 4.7.5, p. 80]),

(x*=1) P} (x)+ 2A+ 1)xPY (x) = n(n+21) PP (x) =0

formula (5.17) becomes

(5.18) Qu(x) = M, (x) PP (x) + N, (x) PY (),
where
M,(x)=M.(x )+ "( )n(n+2/\)
R (x) = M, (x)+ Ni(x)— (2 +1)x N, (xl)

From (5.16) and (5.18)

Qu(x) N,(x)
Qux) Fux)

: PP(x)=
(5.19) (x) A
My(x) Qu(x)
5.20 PM(x)=
(520 | (x) T
where A, = Mn(x)ﬁn (x)— Mn (x)Nn(x) is a rational function.
From derivation in (5.19) and taking into account (5.20), the result follows. 0

Remark. The above result should be compared with Proposition 6.1 in [14].
We consider, as a second example, an inner product of Sobolev type when u is
a discrete positive measure. More precisely, u is a step function whose jumps are

-a

d,u(x)=e atx=0,1,2,--- and acR™.

x!
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This corresponds to Poisson distribution in Probability Theory. The corresponding
sequence (C®) of monic orthogonal polynomials is called Charlier polynomials in
the literature (see [7, p. 170]).

They can be expressed in terms of Laguerre polynomials as C{(x) = n!LF ™ (a)
and satisfy a three term recurrence relation

C#h(x)=(x—n-a)CP(x)—anC?(x) = n=0,
CAx)=0 CP(x)=1.

Moreover, Charlier polynomials can be characterized as the only SMOP belonging to
A-Appell class, i.e., ‘ ’

AC®(x)=nC@, (x) nzl,
where
Ap(x)=p(x+1) - p(x).

In this case, (2.12) becomes
(5.21) X*Qu(x) = qa(x; n) CS(x) + g1 (x; m) CS2y (),
where

g2(x; 1) = x>~ a,x — by,
qi(x; n)=c,x+d,
and
_MQ,(0)Ci2,(0) + NQ,(0) C21(0)
i s ’
_NQL(0)CE(0)
[z
_ MQ,(0)Ci(0)+ NQ,(0)CS(0)
" [CSP ’
L _NQLOCL(0) _
" ICe)?

If in (5.21) we apply the A-operator and the recurrence relation for C4, we get
(x+1)°AQ.(x) +(2x+1)Qu(x)

=gy(x+1; n)nCﬁ”-)l(X)'*'qu(x; n)Ci,“)(x) ‘

+‘I1(x+1_; n)(n—l)CE,‘?z(x)+Aql(x; n)Cgffl(x) g

b,

—ab,.

- [qu(x; -2 gt m e ,

+[nq2(x+1; n)+Aqy(x; n)+% (x+1-n—a)gq,(x+1; n)}Cff_?l(x).

Thus,
(5.22) (x+1)*AQ,(x)+(2x+1)Q,(x) = A(x; n)C®(x) + B(x; n)C{®,(x)
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with
Cn 1
A(x; n)= 2—— x+1_an—_(cn+dn)=
a a
Cn 5
B(x;n)= n+; (x+1)

+[%{dn—(n+a)c,,}—na,,:|(x+1)+c,,—d,,.

Then, from (5.21) and (5.22), Cramer’s rule gives

Ci0) = 2 0, (x)+ 7 5 A0 ),
| =28 0,0+ 40, (),

where
| E\(x)=2B(x; )~ 2x+1)g,(x; m),
F,(x)=—(x+1’q:(x; n),
Sa(x) = ga(x; n) B(x; n) — qi(x; n)A(x; n),
G, (x) = (2x+1)gs(x; n) —x*A(x; n),
H,(x)=(x+1)*gs(x; n).
Finally, using AC$(x) = nC2,(x)

E, (x+1) E,(x)
S A +(s S ))Q,.( )
F(x+1) , F,(x)
S.(x +1)A Qn(x )+< S, (x )>AQn( )
(G (x) L Hx (x)
Therefore,
Fo(x+1)S,(x)A%Qa(x)

+([Eu(x+1)+ F(x +1)]8,(x) = [nH, (x) + F (x)18, (x +1))AQ. (x)
+(En(x+1)S,(x) = [En(x) + nGn(x)]8,(x +1)) Qu(x) =0.

In conclusion, we present the following.
PROPOSITION 5.3. The SMOP (Q, ) satisfies a second-order linear difference equation

U (x; n)A?Qy(x) + V, (x5 m)AQ,(x) + W, (x; 1) Qn =0,

where U, Vand W are polynomials with degree independent of n. More precisely, deg U =7,
deg V=8 and deg W=T.
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