

Sobolev orthogonal polynomials: the discrete-continuous case

Manuel Alfaro*, Teresa E. Pérez†,
Miguel A. Piñar† and M. Luisa Rezola*

Abstract

In this paper, we study orthogonal polynomials with respect to the bilinear form

$$\mathcal{B}_S^{(N)}(f, g) = F(c)\mathbf{A}G(c)^T + \langle u, f^{(N)}g^{(N)} \rangle,$$

where u is a quasi-definite (or regular) linear functional on the linear space \mathbb{P} of real polynomials, c is a real number, N is a positive integer number, \mathbf{A} is a symmetric $N \times N$ real matrix such that each of its principal submatrices are regular, and $F(c) = (f(c), f'(c), \dots, f^{(N-1)}(c))$, $G(c) = (g(c), g'(c), \dots, g^{(N-1)}(c))$. For these non-standard orthogonal polynomials, algebraic and differential properties are obtained, as well as their representation in terms of the standard orthogonal polynomials associated with u .

Running title: Discrete-continuous Sobolev polynomials

¹1991 *Mathematics Subject Classification:* 33C45, 42C05

²*Key words and phrases:* Sobolev orthogonal polynomials, Classical orthogonal polynomials.

1 Introduction

It is well known (see [12]) that the monic generalized Laguerre polynomials $\{L_n^{(\alpha)}\}_n$ satisfy, for any real value of α , the three-term recurrence relation

$$xL_n^{(\alpha)}(x) = L_{n+1}^{(\alpha)}(x) + \beta_n^{(\alpha)}L_n^{(\alpha)}(x) + \gamma_n^{(\alpha)}L_{n-1}^{(\alpha)}(x),$$

$$L_{-1}^{(\alpha)}(x) = 0, \quad L_0^{(\alpha)}(x) = 1,$$

where

$$\beta_n^{(\alpha)} = 2n + \alpha + 1, \quad \gamma_n^{(\alpha)} = n(n + \alpha).$$

Whenever α is not a negative integer number, we have $\gamma_n^{(\alpha)} \neq 0$ for all $n \geq 1$ and Favard's theorem (see [2], p. 21) ensures that the sequence $\{L_n^{(\alpha)}\}_n$ is orthogonal with respect to a quasi-definite linear functional. Besides, if $\alpha > -1$ the functional is definite positive and the polynomials are orthogonal with respect to the weight $x^\alpha e^{-x}$ on the interval $(0, +\infty)$. For α a negative integer number, since $\gamma_n^{(\alpha)}$ vanishes for some value of n , no orthogonality results can be deduced from Favard's theorem.

In the last few years, orthogonal polynomials with respect to an inner product involving derivatives (the so-called Sobolev orthogonal polynomials) have been the object of increasing interest and in this context, the case $\{L_n^{(\alpha)}\}_n$ with α a negative integer number has been solved. More precisely, Kwon and Littlejohn, in [5], established the orthogonality of the generalized Laguerre polynomials $\{L_n^{(-k)}\}_n$, $k \geq 1$, with respect to a Sobolev inner product of the form

$$\langle f, g \rangle = F(0)\mathbf{A}G(0)^T + \int_0^{+\infty} f^{(k)}(x)g^{(k)}(x)e^{-x}dx$$

with \mathbf{A} a symmetric $k \times k$ real matrix, $F(0) = (f(0), f'(0), \dots, f^{(k-1)}(0))$, and $G(0) = (g(0), g'(0), \dots, g^{(k-1)}(0))$. The particular case $k = 1$ had been considered by the same authors in a previous paper, (see [6]).

In [10], Pérez and Piñar gave an unified approach to the orthogonality of the generalized Laguerre polynomials, for any real value of the parameter α by proving their orthogonality with respect to a Sobolev non-diagonal inner product. So, they obtained the following result:

Theorem ([10]) *Let $(\cdot, \cdot)_S^{(N, \alpha)}$ be the Sobolev inner product defined by*

$$(f, g)_S^{(N, \alpha)} = \int_0^{+\infty} F(x)\mathbf{A}G(x)^T x^\alpha e^{-x}dx,$$

where the (i, j) -entry of \mathbf{A} is given by

$$m_{i,j}(N) = \sum_{p=0}^{\min\{i,j\}} (-1)^{i+j} \binom{N-p}{i-p} \binom{N-p}{j-p}, \quad 0 \leq i, j \leq N,$$

$F(x) = (f(x), f'(x), \dots, f^{(N)}(x))$, $G(x) = (g(x), g'(x), \dots, g^{(N)}(x))$. Then, for every $\alpha \in \mathbb{R}$, the monic generalized Laguerre polynomials $\{L_n^{(\alpha)}\}_n$ are orthogonal with respect to $(\cdot, \cdot)_S^{(N, \alpha+N)}$ with $N = \max\{0, [-\alpha]\}$, ($[\alpha]$ denotes the greatest integer less than or equal to α).

In the case when α is a negative integer, the inner product $(\cdot, \cdot)_S^{(N, \alpha+N)}$ is the same as the one considered by Kwon and Littlejohn.

The above results justify the interest to consider such a kind of inner products. In a more general setting, our aim is to study polynomials which are orthogonal with respect to a symmetric bilinear form such as

$$\mathcal{B}_S^{(N)}(f, g) = \left(f(c), f'(c), \dots, f^{(N-1)}(c) \right) \mathbf{A} \begin{pmatrix} g(c) \\ g'(c) \\ \vdots \\ g^{(N-1)}(c) \end{pmatrix} + \langle u, f^{(N)} g^{(N)} \rangle, \quad (1.1)$$

where u is a quasi-definite (or regular) linear functional on the linear space \mathbb{P} of real polynomials, c is a real number, N is a positive integer number, and \mathbf{A} is a symmetric $N \times N$ real matrix such that each of its principal submatrices is regular. By analogy with the usual terminology, we call it a discrete-continuous Sobolev bilinear form. Recently some properties of the polynomials orthogonal with respect to $\mathcal{B}_S^{(1)}(\cdot, \cdot)$ had been considered in [4].

We will emphasize some cases in which the functional u satisfies some extra conditions, namely, u is a semiclassical or a classical linear functional (see [3], [7] and [9]). A quasi-definite linear functional u is called semiclassical if there exist polynomials ϕ and ψ with $\deg\phi \geq 0$ and $\deg\psi \geq 1$ such that u satisfies the distributional differential equation $\mathcal{D}(\phi u) = \psi u$. Whenever $\deg\phi \leq 2$ and $\deg\psi = 1$, the functional u is called classical. It is well known that the only classical functionals correspond to the sequences of Hermite, Laguerre, Jacobi and Bessel polynomials.

In Section 2, we give a description of the monic polynomials $\{Q_n\}_n$ which are orthogonal with respect to $\mathcal{B}_S^{(N)}(\cdot, \cdot)$ in terms of the monic polynomials

$\{P_n\}_n$ orthogonal with respect to the functional u . In particular, for $n \geq N$, we have that $Q_n^{(N)}(x) = \frac{n!}{(n-N)!} P_{n-N}(x)$ and $Q_n^{(k)}(c) = 0$ for $k = 0, 1, \dots, N-1$, while $\{Q_n\}_{n=0}^{N-1}$ are orthogonal with respect to the discrete part of the symmetric bilinear form (1.1) and they are determined by the matrix \mathbf{A} .

By using these results, in Section 3, we give some examples of polynomials orthogonal with respect to (1.1), with an adequate choice of c , namely, Laguerre polynomials $\{L_n^{(-N)}\}_n$ with $c = 0$, Jacobi polynomials $\{P_n^{(-N, \beta)}\}_n$ with $c = 1, \beta + N$ not being a negative integer, and $\{P_n^{(\alpha, -N)}\}_n$ with $c = -1, \alpha + N$ not being a negative integer. Note that these sequences of polynomials are not orthogonal with respect to any quasi-definite linear functional.

In Section 4, we give a new characterization of classical polynomials as the only orthogonal polynomials such that, for some positive integer number N , they have a N -th primitive satisfying a three-term recurrence relation. In particular, this result is applied to discrete-continuous Sobolev polynomials which satisfy a three-term recurrence relation and then it follows that u is classical with distributional differential equation $\mathcal{D}(\phi u) = \psi u$, and the point c in (1.1) is such that $\phi(c) = 0$ and $\psi(c) = \phi'(c)$. Hence, the only monic discrete-continuous Sobolev polynomials which satisfy a three-term recurrence relation are the ones described in Section 3.

The link between Sobolev orthogonality and polynomials satisfying a second order differential equation is analyzed in Section 5. It is proved that if the sequence $\{Q_n\}_n$ satisfies the equation

$$\phi(x)Q_n''(x) + \sigma(x)Q_n'(x) = \rho_n Q_n(x),$$

where ϕ and σ are polynomials with degree less than or equal to 2 and 1, respectively, and ρ_n are real numbers, then the functional u is classical with distributional differential equation $\mathcal{D}(\phi u) = \psi u$, $\sigma(x) = \psi(x) - N\phi'(x)$ and the point c in (1.1) verifies $\phi(c) = 0$ and $\psi(c) = \phi'(c)$. Hence, the only monic discrete-continuous Sobolev polynomials which satisfy a second order differential equation are again the described in Section 3.

As a consequence of the results in Sections 4 and 5, we have that if u is not a classical linear functional then the sequence $\{Q_n\}_n$ does not satisfy neither a three-term recurrence relation nor a second order differential equation. In order to avoid this lack in our study, in Section 6, we introduce a linear differential operator $\mathcal{F}^{(N)}$ on \mathbb{P} symmetric with respect to the bilinear form (1.1). The basic property of this operator is a relationship between the Sobolev bilinear form and the bilinear form associated with the functional

u . Handling with $\mathcal{F}^{(N)}$ we can deduce explicit relations between $\{Q_n\}_n$ and $\{P_n\}_n$ as well as a differential substitute of the algebraic recurrence relations. This is done in Section 7.

2 The Sobolev discrete-continuous bilinear form

Let \mathbb{P} be the linear space of real polynomials, u a quasi-definite linear functional on \mathbb{P} (see [2]), N a positive integer number, and \mathbf{A} a quasi-definite and symmetric real matrix of order N , that is, a symmetric and real matrix such that all the principal minors are different from zero. For a given real number c , the expression

$$\mathcal{B}_S^{(N)}(f, g) = \left(f(c), f'(c), \dots, f^{(N-1)}(c) \right) \mathbf{A} \begin{pmatrix} g(c) \\ g'(c) \\ \vdots \\ g^{(N-1)}(c) \end{pmatrix} + \langle u, f^{(N)} g^{(N)} \rangle, \quad (2.1)$$

defines a symmetric bilinear form on \mathbb{P} .

Since expression (2.1) involves derivatives, this bilinear form is non-standard, and by analogy with the usual terminology we will call it a *discrete-continuous Sobolev bilinear form*.

In the linear space of real polynomials, we can consider the basis given by

$$\left\{ \frac{(x-c)^m}{m!} \right\}_{m \geq 0}. \quad (2.2)$$

For $n \leq N-1$, the associated Gram matrix \mathbf{G}_n is given by the n -th order principal submatrix of the matrix \mathbf{A} . For $n \geq N$, the associated Gram matrix is given by

$$\mathbf{G}_n = \left(\begin{array}{c|c} \mathbf{A} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{B}_{n-N} \end{array} \right),$$

where \mathbf{B}_{n-N} is the Gram matrix associated with the quasi-definite linear functional u in the basis (2.2).

In both cases, \mathbf{G}_n is quasi-definite (that is, all the principal minors are different from zero) and therefore, we will say that the discrete-continuous Sobolev bilinear form (2.1) is quasi-definite. Thus, we can assure the existence of a sequence of monic polynomials, denoted by $\{Q_n\}_n$, which are orthogonal with respect to (2.1). These polynomials will be called *Sobolev orthogonal polynomials*. Our first aim is to relate this sequence with the

monic orthogonal polynomial sequence (in short MOPS) $\{P_n\}_n$ associated with the quasi-definite linear functional u .

Theorem 2.1 *Let $\{Q_n\}_n$ be the sequence of monic orthogonal polynomials with respect to the bilinear form $\mathcal{B}_S^{(N)}$.*

i) The polynomials $\{Q_n\}_{n=0}^{N-1}$ are orthogonal with respect to the discrete bilinear form

$$\mathcal{B}_D^{(N)}(f, g) = \left(f(c), f'(c), \dots, f^{(N-1)}(c) \right) \mathbf{A} \begin{pmatrix} g(c) \\ g'(c) \\ \vdots \\ g^{(N-1)}(c) \end{pmatrix}. \quad (2.3)$$

ii) If $n \geq N$, then

$$Q_n^{(k)}(c) = 0, \quad k = 0, 1, \dots, N-1, \quad (2.4)$$

$$Q_n^{(N)}(x) = \frac{n!}{(n-N)!} P_{n-N}(x). \quad (2.5)$$

Proof. *i) If $0 \leq m, n < N$, then $Q_n^{(N)}(x) = Q_m^{(N)}(x) = 0$, and the value of the Sobolev bilinear form on (Q_n, Q_m) can be computed by means of the following expression*

$$\begin{aligned} \mathcal{B}_S^{(N)}(Q_n, Q_m) &= \mathcal{B}_D^{(N)}(Q_n, Q_m) \\ &= \left(Q_n(c), Q'_n(c), \dots, Q_n^{(N-1)}(c) \right) \mathbf{A} \begin{pmatrix} Q_m(c) \\ Q'_m(c) \\ \vdots \\ Q_m^{(N-1)}(c) \end{pmatrix}, \end{aligned}$$

and therefore they are orthogonal with respect to the discrete bilinear form (2.3).

ii) Let $n \geq N$, then from the orthogonality of the polynomial Q_n , we deduce

$$0 = \mathcal{B}_S^{(N)}(Q_n(x), \frac{1}{k!}(x-c)^k) = \left(Q_n(c), Q'_n(c), \dots, Q_n^{(N-1)}(c) \right) \mathbf{A} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad (2.6)$$

for $0 \leq k \leq N - 1$. Thus, the vector

$$(Q_n(c), Q'_n(c), \dots, Q_n^{(N-1)}(c))$$

is the only solution of a homogeneous linear system with N equations and N unknowns, whose coefficient matrix \mathbf{A} is regular. Then, we conclude $Q_n^{(k)}(c) = 0$, $k = 0, 1, \dots, N - 1$, that is, Q_n contains the factor $(x - c)^N$. In this way, if $n, m \geq N$, the discrete part of the bilinear form $\mathcal{B}_S^{(N)}(Q_n, Q_m)$ vanishes and we get

$$\mathcal{B}_S^{(N)}(Q_n, Q_m) = \langle u, Q_n^{(N)} Q_m^{(N)} \rangle = \tilde{k}_n \delta_{n,m}, \quad \tilde{k}_n \neq 0.$$

That is, the polynomials $\{Q_n^{(N)}\}_{n \geq N}$ are orthogonal with respect to the linear functional u , and equality (2.5) follows from a simple inspection of the leading coefficients. □

Reciprocally, we are going to show that a system of monic polynomials $\{Q_n\}_n$ satisfying equations (2.4) and (2.5) is orthogonal with respect to some discrete-continuous Sobolev bilinear form. This result could be considered a *Favard-type theorem*.

Theorem 2.2 *Let $\{P_n\}_n$ be the MOPS associated with a quasi-definite linear functional u , and $N \geq 1$ a given integer number. Let $\{Q_n\}_n$ be a sequence of monic polynomials satisfying*

- i) $\deg Q_n = n$, $n = 0, 1, 2, \dots$,
- ii) $Q_n^{(k)}(c) = 0$, $0 \leq k \leq N - 1$, $n \geq N$,
- iii) $Q_n^{(N)}(x) = \frac{n!}{(n - N)!} P_{n-N}(x)$, $n \geq N$.

Then, there exists a quasi-definite and symmetric real matrix \mathbf{A} , of order N , such that $\{Q_n\}_n$ is the monic orthogonal polynomial sequence associated with the Sobolev bilinear form defined by (2.1).

Proof. By using the same reasoning as above it is obvious that every polynomial Q_n , with $n \geq N$, is orthogonal to every polynomial with degree less than or equal to $n - 1$ with respect to a Sobolev bilinear form like (2.1) containing an arbitrary matrix \mathbf{A} in the discrete part and the functional u in the second part.

Next, we show that we can recover the matrix \mathbf{A} from the N first polynomials Q_k , $k = 0, 1, \dots, N - 1$.

Let us denote

$$\mathbf{Q} = \begin{pmatrix} Q_0(c) & Q'_0(c) & \dots & Q_0^{(N-1)}(c) \\ Q_1(c) & Q'_1(c) & \dots & Q_1^{(N-1)}(c) \\ \vdots & \vdots & & \vdots \\ Q_{N-1}(c) & Q'_{N-1}(c) & \dots & Q_{N-1}^{(N-1)}(c) \end{pmatrix},$$

then \mathbf{Q} is a lower triangular and invertible matrix. Let \mathbf{D} be a diagonal matrix with non zero elements in its diagonal.

Define

$$\mathbf{A} = \mathbf{Q}^{-1} \mathbf{D} (\mathbf{Q}^{-1})^T.$$

Obviously \mathbf{A} is symmetric and quasi-definite and since

$$\mathbf{Q} \mathbf{A} \mathbf{Q}^T = \mathbf{D},$$

the polynomials Q_0, \dots, Q_{N-1} are orthogonal with respect to the bilinear form (2.1), with the matrix \mathbf{A} in the discrete part. Besides, the elements in the diagonal of \mathbf{D} are the values $\mathcal{B}_S^{(N)}(Q_k, Q_k)$ for $k = 0, \dots, N-1$.

Remark. Observe that the matrix \mathbf{A} is not unique, because its construction depends on the arbitrary regular diagonal matrix \mathbf{D} .

3 Classical examples

3.1 The Laguerre case

Let $\alpha \in \mathbb{R}$, the n -th monic generalized Laguerre polynomial is defined in [12], p. 102, by means of its explicit representation

$$L_n^{(\alpha)}(x) = (-1)^n n! \sum_{j=0}^n \frac{(-1)^j}{j!} \binom{n+\alpha}{n-j} x^j, \quad n \geq 0, \quad (3.1)$$

where $\binom{a}{k}$ denotes the *generalized binomial coefficient*

$$\binom{a}{k} = \frac{(a-k+1)_k}{k!}, \quad (3.2)$$

and $(a-k+1)_k$ stands for the so-called *Pochhammer's symbol* defined by

$$(b)_0 = 1, \quad (b)_n = b(b+1)\dots(b+n-1), \quad \text{for } b \in \mathbb{R}, \quad n \geq 0. \quad (3.3)$$

In this way, we have

$$(L_n^{(\alpha)})^{(k)}(0) = (-1)^{n+k} n! \binom{n+\alpha}{n-k}, \quad n \geq k.$$

If α is a negative integer number, say $\alpha = -N$, for $n \geq N$, we have

$$(L_n^{(-N)})^{(k)}(0) = 0, \quad k = 0, 1, \dots, N-1,$$

and, for $n < N$, we get

$$(L_n^{(-N)})^{(k)}(0) = n! \binom{N-k-1}{n-k}, \quad k = 0, 1, \dots, n.$$

On the other hand, since the derivatives of Laguerre polynomials are again Laguerre polynomials, we have

$$(L_n^{(-N)})^{(N)}(x) = \frac{n!}{(n-N)!} L_{n-N}^{(0)}(x), \quad \text{for } n \geq N.$$

Therefore, from the previous Section, we conclude that Laguerre polynomials $L_n^{(-N)}$ are orthogonal with respect to the Sobolev bilinear form

$$\mathcal{B}_S^{(N)}(f, g) = F(0) \mathbf{A} G(0)^T + \int_0^{+\infty} f^{(N)}(x) g^{(N)}(x) e^{-x} dx,$$

with $F(0) = (f(0), f'(0), \dots, f^{(N-1)}(0))$, $G(0) = (g(0), g'(0), \dots, g^{(N-1)}(0))$, the matrix \mathbf{A} is given by

$$\mathbf{A} = \mathbf{Q}^{-1} \mathbf{D} (\mathbf{Q}^{-1})^T,$$

\mathbf{Q} is the matrix of the derivatives of Laguerre polynomials $L_n^{(-N)}$ evaluated at zero

$$\mathbf{Q} = \begin{pmatrix} 0! \binom{N-1}{0} & 0 & \dots & 0 \\ 1! \binom{N-1}{1} & 1! \binom{N-2}{0} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ (N-1)! \binom{N-1}{N-1} & (N-1)! \binom{N-2}{N-2} & \dots & (N-1)! \binom{0}{0} \end{pmatrix}$$

and \mathbf{D} is an arbitrary regular diagonal matrix. Similar results have been obtained with different techniques in [5] and [10]. We recover the results in [5] by using a diagonal matrix \mathbf{D} whose elements are $(0!)^2, (1!)^2, \dots, ((N-1)!)^2$.

3.2 The Jacobi case

For α and β arbitrary real numbers, the *generalized Jacobi polynomials* can be defined (see [12], p. 62) by means of their explicit representation

$$P_n^{(\alpha, \beta)}(x) = \sum_{m=0}^n \binom{n+\alpha}{m} \binom{n+\beta}{n-m} \left(\frac{x-1}{2}\right)^{n-m} \left(\frac{x+1}{2}\right)^m, \quad n \geq 0.$$

When α, β and $\alpha + \beta + 1$ are not a negative integer, Jacobi polynomials are orthogonal with respect to the quasi-definite linear functional $u^{(\alpha, \beta)}$. This linear functional is positive definite for $\alpha > -1$ and $\beta > -1$.

For $\alpha = -N$, with N a positive integer, and β being not a negative integer, the n -th *monic generalized Jacobi polynomial* is given by

$$\begin{aligned} P_n^{(-N, \beta)}(x) \\ = \binom{2n-N+\beta}{n}^{-1} \sum_{m=0}^n \binom{n-N}{m} \binom{n+\beta}{n-m} (x-1)^{n-m} (x+1)^m. \end{aligned} \quad (3.4)$$

In this case, for $n \geq N$, $x = 1$ will be a zero of multiplicity N ([12], p. 65).

On the other hand, since the derivatives of Jacobi polynomials are again Jacobi polynomials, we have

$$(P_n^{(-N, \beta)})^{(N)}(x) = \frac{n!}{(n-N)!} P_{n-N}^{(0, \beta+N)}(x), \quad \text{for } n \geq N.$$

Therefore, from the previous Section, we conclude that Jacobi polynomials $P_n^{(-N, \beta)}$, when $\beta + N$ is not a negative integer, are orthogonal with respect to the Sobolev bilinear form

$$\mathcal{B}_S^{(N)}(f, g) = F(1) \mathbf{A} G(1)^T + \langle u^{(0, \beta+N)}, f^{(N)} g^{(N)} \rangle,$$

where the matrix \mathbf{A} is given by

$$\mathbf{A} = \mathbf{Q}^{-1} \mathbf{D} (\mathbf{Q}^{-1})^T,$$

\mathbf{Q} is the matrix of the derivatives of Jacobi polynomials

$$\mathbf{Q} = \left((P_n^{(-N, \beta)})^{(k)}(1) \right)_{n,k=0,\dots,N-1}$$

which are given by

$$(P_n^{(-N, \beta)})^{(k)}(1) = 2^{n-k} \frac{n!}{(n-k)!} \frac{(-N+k+1)_{n-k}}{(n-N+\beta+k+1)_{n-k}},$$

and \mathbf{D} is an arbitrary regular diagonal matrix.

Of course, a similar result can be stated in the case when $\alpha + N$ is not a negative integer, $\beta = -N$, and $c = -1$.

4 Sobolev orthogonal polynomials and three-term recurrence relations

Laguerre and Jacobi polynomials satisfy a three-term recurrence relation even for negative integer values of their respective parameters (see [12]). In the previous Section, we have seen that Laguerre polynomials with α a negative integer and Jacobi polynomials with either α or β a negative integer are Sobolev orthogonal polynomials. In this way a natural question arises: do the Sobolev orthogonal polynomials satisfy a three-term recurrence relation? As we are going to show, the answer is very restrictive, the existence of a three-term recurrence relation for the Sobolev orthogonal polynomials implies the classical character of the linear functional u associated with the bilinear form (2.1).

Definition 4.1 *We will say that a family of polynomials $\{Q_n\}_{n \geq 0}$ is a monic polynomial system (MPS) if*

- i) $\deg(Q_n) = n, \quad n \geq 0,$
- ii) $Q_0(x) = 1, \quad Q_n(x) = x^n + \text{lower degree terms}, \quad n \geq 1.$

Obviously, every MPS is a basis of the linear space \mathbb{P} and every MOPS is a MPS.

Definition 4.2 *A monic polynomial system $\{Q_n\}_{n \geq 0}$ satisfies a three-term recurrence relation if there exist two sequences of real numbers $\{b_n\}_{n=0}^{\infty}$ and $\{g_n\}_{n=1}^{\infty}$, such that*

$$xQ_n(x) = Q_{n+1}(x) + b_n Q_n(x) + g_n Q_{n-1}(x), \quad n \geq 0,$$

$$Q_{-1}(x) = 0, \quad Q_0(x) = 1.$$

From Favard's theorem (see [2], p. 21) we can deduce the existence of monic polynomial systems satisfying a three-term recurrence relation which are not orthogonal with respect to any linear functional. This case appears when some of the coefficients g_n are zero. For instance, Laguerre polynomials with parameter α a negative integer and Jacobi polynomials with parameters either α or β or $\alpha + \beta + 1$ a negative integer.

Proposition 4.3 *Let $\{Q_n\}_{n \geq 0}$ be a monic polynomial system satisfying a three-term recurrence relation and let N be a positive integer number such that the system of monic N -th order derivatives*

$$P_n(x) := \frac{n!}{(n+N)!} Q_{n+N}^{(N)}(x), \quad n \geq 0,$$

constitutes a monic orthogonal polynomial sequence. Then, the polynomials $\{P_n\}_n$ are classical.

Proof. Since $\{P_n\}_{n \geq 0}$ is a MOPS, it satisfies a three-term recurrence relation

$$\begin{aligned} xP_n(x) &= P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n-1}(x), \quad n \geq 0, \\ P_{-1}(x) &= 0, \quad P_0(x) = 1, \end{aligned}$$

with $\gamma_n \neq 0, n \geq 0$.

In this way,

$$xQ_{n+N}^{(N)}(x) = \frac{n+1}{n+N+1} Q_{n+N+1}^{(N)}(x) + \beta_n Q_{n+N}^{(N)}(x) + \gamma_n \frac{n+N}{n} Q_{n+N-1}^{(N)}(x). \quad (4.1)$$

On the other hand, the monic polynomial sequence $\{Q_n\}_{n \geq 0}$ satisfies a three-term recurrence relation

$$xQ_{n+N}(x) = Q_{n+N+1}(x) + b_{n+N} Q_{n+N}(x) + g_{n+N} Q_{n+N-1}(x).$$

Taking N -th order derivatives in this relation, we get

$$xQ_{n+N}^{(N)}(x) + NQ_{n+N}^{(N-1)}(x) = Q_{n+N+1}^{(N)}(x) + b_{n+N} Q_{n+N}^{(N)}(x) + g_{n+N} Q_{n+N-1}^{(N)}(x). \quad (4.2)$$

By eliminating the term $xQ_{n+N}^{(N)}(x)$ between (4.1) and (4.2), we obtain

$$\begin{aligned} NQ_{n+N}^{(N-1)}(x) &= \frac{N}{n+N+1} Q_{n+N+1}^{(N)}(x) + \\ &+ (b_{n+N} - \beta_n) Q_{n+N}^{(N)}(x) + \left(g_{n+N} - \frac{n+N}{n} \gamma_n \right) Q_{n+N-1}^{(N)}(x). \quad (4.3) \end{aligned}$$

Taking again derivatives in this relation we deduce that each polynomial P_n can be expressed as a linear combination of the derivatives of three consecutive polynomials in the sequence $\{P_n\}_n$ and, therefore, we conclude that they are classical by using the characterization of classical orthogonal polynomials obtained by Marcellán et al. in [7]. □

Remark. This result characterizes the classical orthogonal polynomials as the only system of orthogonal polynomials having a N -th order primitive ($N \geq 1$) which satisfies a three-term recurrence relation.

Theorem 4.4 *Let $\{Q_n\}_n$ be the monic orthogonal polynomial sequence associated with the Sobolev bilinear form (2.1). If the polynomials $\{Q_n\}_n$ satisfy a three-term recurrence relation, then the linear functional u is classical and the point c in (2.1) satisfies*

$$\phi(c) = 0, \quad (4.4)$$

$$\psi(c) - \phi'(c) = 0, \quad (4.5)$$

where ϕ and ψ are the polynomials in the distributional differential equation $\mathcal{D}(\phi u) = \psi u$ satisfied by u .

Proof. Let $\{P_n\}_n$ be the monic orthogonal polynomial sequence associated with the linear functional u . From Theorem 2.1, we have

$$Q_n^{(k)}(c) = 0, \quad k = 0, 1, \dots, N-1, \quad (4.6)$$

$$Q_n^{(N)}(x) = \frac{n!}{(n-N)!} P_{n-N}(x), \quad (4.7)$$

for all $n \geq N$. Therefore, using Proposition 4.3, we deduce the classical character of the polynomials $\{P_n\}_n$ and then the classical linear functional u satisfies a distributional differential equation

$$\mathcal{D}(\phi u) = \psi u,$$

where ϕ and ψ are polynomials with $\deg \phi \leq 2$ and $\deg \psi = 1$. From Bochner's characterization of the classical orthogonal polynomials, (see [2]), we deduce that the polynomials $\{P_n\}_n$ satisfy the second order differential equation

$$\phi(x)P_n''(x) + \psi(x)P_n'(x) = \lambda_n P_n(x),$$

for all $n \geq 0$.

Thus the polynomials $\{Q_n\}_n$ satisfy the differential equation

$$\phi(x)Q_{n+N}^{(N+2)}(x) + \psi(x)Q_{n+N}^{(N+1)}(x) = \lambda_n Q_{n+N}^{(N)}(x),$$

for $n \geq 0$. This differential equation can be written in a more convenient way

$$\left(\phi(x)Q_{n+N}^{(N+1)}(x)\right)' + \left((\psi(x) - \phi'(x))Q_{n+N}^{(N)}(x)\right)' = \kappa_n Q_{n+N}^{(N)}(x), \quad (4.8)$$

where $\kappa_n = \lambda_n + \psi'(x) - \phi''(x)$. Integrating (4.8) we get

$$\phi(x)Q_{n+N}^{(N+1)}(x) + (\psi(x) - \phi'(x))Q_{n+N}^{(N)}(x) = \kappa_n Q_{n+N}^{(N-1)}(x) + \mu_n,$$

where μ_n is a constant.

For $n \geq 2$, let p be a polynomial with $\deg p \leq n - 2$, then

$$\begin{aligned} \langle u, p \left[\phi Q_{n+N}^{(N+1)} + (\psi - \phi') Q_{n+N}^{(N)} \right] \rangle &= \langle u, p\phi Q_{n+N}^{(N+1)} \rangle - \langle u, (\phi p Q_{n+N}^{(N)})' \rangle \\ &= -\langle u, (p\phi)' Q_{n+N}^{(N)} \rangle \\ &= -\frac{(n+N)!}{n!} \langle u, (p\phi)' P_n \rangle = 0. \end{aligned}$$

Thus, the polynomial $\phi Q_{n+N}^{(N+1)} + (\psi - \phi') Q_{n+N}^{(N)} = \kappa_n Q_{n+N}^{(N-1)} + \mu_n$ is orthogonal, with respect to u , to every polynomial of degree less than or equal to $n - 2$, and then it can be written as a linear combination of three consecutive polynomials P_n

$$\kappa_n Q_{n+N}^{(N-1)} + \mu_n = \kappa_n P_{n+1} + s_n P_n + t_n P_{n-1}.$$

From (4.3) we have that the polynomial $Q_{n+N}^{(N-1)}$ is a linear combination of the three polynomials P_{n+1} , P_n and P_{n-1} , and, since the sequence $\{P_n\}_n$ constitutes a basis of the linear space of the polynomials, we conclude that $\mu_n = 0$, for $n \geq 2$.

In this way, the polynomials $\{Q_{n+N}\}_n$ satisfy the differential equation

$$\phi(x)Q_{n+N}^{(N+1)}(x) + (\psi(x) - \phi'(x))Q_{n+N}^{(N)}(x) = \kappa_n Q_{n+N}^{(N-1)}(x), \quad (4.9)$$

for $n \geq 2$.

Replacing $x = c$ in (4.9), from (4.6) we conclude

$$\phi(c)P'_n(c) + (\psi(c) - \phi'(c))P_n(c) = 0, \quad (4.10)$$

for $n \geq 2$.

From recurrence relation

$$xP_n(x) = P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n-1}(x),$$

satisfied by $\{P_n\}_n$ and (4.10) written for $n+1$, n and $n-1$, we obtain

$$c\phi(c)P'_n(c) + [\phi(c) + c(\psi(c) - \phi'(c))] P_n(c) = 0, \quad n \geq 3, \quad (4.11)$$

and subtracting (4.10) from (4.11), we get

$$\phi(c)P_n(c) = 0, \quad n \geq 3.$$

Therefore, we conclude $\phi(c) = 0$ and using again (4.10), $\psi(c) - \phi'(c) = 0$.

Corollary 4.5 *The only sequences of monic polynomials which are orthogonal with respect to a Sobolev bilinear form (2.1) and satisfy a three-term recurrence relation are*

- a) *The generalized Laguerre polynomials $L_n^{(-N)}$,*
- b) *The generalized Jacobi polynomials $P_n^{(-N, \beta)}$, with $\beta + N$ not a negative integer,*
- c) *The generalized Jacobi polynomials $P_n^{(\alpha, -N)}$, with $\alpha + N$ not a negative integer.*

Proof. Suppose that the monic polynomials $\{Q_n\}_n$ orthogonal with respect to (2.1) satisfy a three-term recurrence relation. Theorem 4.4 assures that u is a classical linear functional. If $\mathcal{D}(\phi u) = \psi u$ is its distributional differential equation, the polynomials ϕ and ψ are given by the following table

Name	ϕ	ψ	Restrictions
Hermite	1	$-2x$	
Laguerre	x	$(\alpha + 1) - x$	$\alpha \neq -n, n \geq 1$
Jacobi	$1 - x^2$	$(\beta - \alpha) - (\alpha + \beta + 2)x$	$\alpha \neq -n, \beta \neq -n,$ $\alpha + \beta + 1 \neq -n, n \geq 1$
Bessel	x^2	$(\alpha + 2)x + 2$	$\alpha \neq -n, n \geq 2$

Then, conditions (4.4) and (4.5) exclude Hermite and Bessel cases. Moreover, in Laguerre and Jacobi cases the only possibilities are the following:

- Laguerre case with $\alpha = 0$ and $c = 0$.
- Jacobi case with $\alpha = 0, \beta \neq -m, m \geq 1$ and $c = 1$.
- Jacobi case with $\beta = 0, \alpha \neq -m, m \geq 1$ and $c = -1$.

Taking into account the results of Section 3, we conclude. □

Note that a reduction of the degree of $P_n^{(\alpha, \beta)}$ could occur when either both α and $\beta + n$ or $\alpha + \beta + 1$ are negative integers (see [12], p.64). An interesting open problem is to give some kind of orthogonality relations valid for these polynomials. For the particular case $\alpha = \beta$ negative integers, this problem has been solved in [1]: the corresponding Gegenbauer polynomials are orthogonal with respect to a discrete-continuous Sobolev bilinear form, where the discrete part is concentrated in two points, namely, 1 and -1 .

Corollary 4.6 *The monic orthogonal polynomials associated to the Sobolev bilinear form (2.1) satisfy a three term recurrence relation if and only if the linear functional u is classical and the point c in (2.1) satisfies $\phi(c) = 0$ and $\psi(c) = \phi'(c)$.*

Proof. It follows from Theorem 4.4 and Corollary 4.5 taking in mind that Laguerre and Jacobi polynomials satisfy a three-term recurrence relation for all values of their parameters. □

5 Sobolev orthogonal polynomials and second order differential equations

As it is well known (see [12]) Laguerre and Jacobi polynomials satisfy a second order differential equation for every value of their respective parameters.

In this Section, our aim is to characterize the sequences of monic Sobolev orthogonal polynomials satisfying a second order differential equation. We can observe that if, for every n , the polynomials $\{Q_n\}_n$ satisfy a second order differential equation

$$\phi(x)Q_n''(x) + \sigma(x)Q_n'(x) = \rho_n Q_n(x),$$

where ϕ and σ are fixed polynomials and $\rho_n \in \mathbb{R}$, then

$$\deg \phi \leq 2, \quad \deg \sigma \leq 1.$$

Moreover, if $\rho_1 \neq 0$ then $\deg \sigma = 1$.

Theorem 5.1 *Let $\{Q_n\}_n$ be the monic orthogonal polynomial sequence associated with the Sobolev bilinear form (2.1). If, for $n \geq N$, every polynomial Q_n satisfies a second order differential equation*

$$\phi(x)Q_n''(x) + \sigma(x)Q_n'(x) = \rho_n Q_n(x), \quad (5.1)$$

where ϕ and σ are fixed polynomials with degree less than or equal to 2 and 1 respectively, and $\rho_n \in \mathbb{R}$, then the linear functional u is classical with distributional differential equation $\mathcal{D}(\phi u) = \psi u$, $\sigma(x) = \psi(x) - N\phi'(x)$ and the point c in (2.1) satisfies

$$\phi(c) = 0, \quad (5.2)$$

$$(N-1)\phi'(c) + \sigma(c) = 0. \quad (5.3)$$

Proof. Taking k -th order derivatives in (5.1), from Leibniz rule, we get

$$\begin{aligned} & \phi(x)Q_n^{(k+2)}(x) + (k\phi'(x) + \sigma(x))Q_n^{(k+1)}(x) \\ &= \left(\rho_n - \frac{k(k-1)}{2}\phi''(x) - k\sigma'(x) \right)Q_n^{(k)}(x). \end{aligned} \quad (5.4)$$

Let $k = N$ in (5.4), then we deduce that the polynomials P_n orthogonal with respect to the linear functional u satisfy the second order differential equation

$$\phi(x)P_n''(x) + \psi(x)P_n'(x) = \lambda_n P_n(x), \quad n \geq 0,$$

where

$$\begin{aligned} \psi(x) &= N\phi'(x) + \sigma(x), \\ \lambda_n &= \rho_{n+N} - \frac{N(N-1)}{2}\phi''(x) - N\sigma'(x). \end{aligned}$$

Therefore u satisfies $\mathcal{D}(\phi u) = \psi u$ and $\deg \psi \geq 1$. Now, since $\deg \phi \leq 2$ and $\deg \sigma \leq 1$, from Bochner's characterization of the classical orthogonal polynomials, (see [2]), we deduce the classical character of the linear functional u .

Writing equation (5.4) for $n = N$ and $k = N - 1$ we get

$$\begin{aligned} & ((N-1)\phi'(x) + \sigma(x))Q_N^{(N)}(x) \\ &= \left(\rho_N - \frac{(N-1)(N-2)}{2}\phi''(x) - (N-1)\sigma'(x) \right)Q_N^{(N-1)}(x), \end{aligned}$$

and by substitution in c , since $Q_N^{(N-1)}(c) = 0$, we deduce

$$(N-1)\phi'(c) + \sigma(c) = 0.$$

Finally, if $N = 1$ writing (5.1) for $n = 2$, we get $\phi(c) = 0$ and when $N \geq 2$, writing equation (5.4) for $n = N$, $k = N - 2$, we get

$$\begin{aligned} & \phi(x)Q_N^{(N)}(x) + ((N-2)\phi'(x) + \sigma(x))Q_N^{(N-1)}(x) \\ &= \left(\rho_N - \frac{(N-2)(N-3)}{2}\phi''(x) - (N-2)\sigma'(x) \right) Q_N^{(N-2)}(x) \end{aligned}$$

and by substitution in c we deduce $\phi(c) = 0$. □

Using the same reasoning as in Corollary (4.5), we obtain

Corollary 5.2 *The only sequences of monic polynomials which are orthogonal with respect to a Sobolev bilinear form (2.1) and satisfy a second order differential equation (5.1) are*

- a) *The generalized Laguerre polynomials $L_n^{(-N)}$,*
- b) *The generalized Jacobi polynomials $P_n^{(-N, \beta)}$, with $\beta + N$ not a negative integer,*
- c) *The generalized Jacobi polynomials $P_n^{(\alpha, -N)}$, with $\alpha + N$ not a negative integer.*

Corollary 5.3 *The monic orthogonal polynomials associated to the Sobolev bilinear form (2.1) satisfy a second order differential equation like (5.1) if and only if the linear functional u is classical and the point c in (2.1) satisfies $\phi(c) = 0$ and $\psi(c) = \phi'(c)$.*

Proof. It follows from Theorem 5.1 and Corollary 5.2 taking in mind that Laguerre and Jacobi polynomials satisfy a second order differential equation for all values of their parameters. □

6 A symmetric differential operator: Properties

In order to obtain explicit relations between the sequences $\{Q_n\}_n$ and $\{P_n\}_n$ associated with $\mathcal{B}_S^{(N)}$ and u , respectively, we introduce a linear differential operator $\mathcal{F}^{(N)}$ closely related to u . To do this, u must satisfy an extra condition. This is why, from now on, the functional u in (2.1) will be a semiclassical one.

Definition 6.1 ([3], [9]) *A linear functional u on \mathbb{P} is called semiclassical, if there exist two polynomials ϕ and ψ , with $\deg \phi = p \geq 0$ and $\deg \psi = q \geq 1$, such that u satisfies the following distributional differential equation*

$$\mathcal{D}(\phi u) = \psi u, \quad (6.1)$$

or equivalently

$$\phi \mathcal{D}u = (\psi - \phi')u. \quad (6.2)$$

Equation (6.2) can be generalized in the following way:

Lemma 6.2 ([8]) *Let u be a semiclassical linear functional, then for every n we have*

$$\phi^n(x) \mathcal{D}^n u = \psi(x; n) u, \quad (6.3)$$

where the polynomials $\psi(x; n)$ are recursively defined by

$$\begin{aligned} \psi(x; 0) &= 1, \\ \psi(x; n) &= \phi(x) \psi'(x; n-1) + \psi(x; n-1) [\psi(x) - n\phi'(x)], \quad n \geq 1. \end{aligned} \quad (6.4)$$

Observe that, now, (6.2) adopts the form $\phi(x) \mathcal{D}u = \psi(x; 1)u$. Taking derivatives $(n-1)$ -times in this formula, we get

$$\phi(x) \mathcal{D}^n u = \sum_{i=0}^{n-1} \left[\binom{n-1}{i} \mathcal{D}^{n-1-i} \psi(x; 1) - \binom{n-1}{i-1} \mathcal{D}^{n-i} \phi(x) \right] \mathcal{D}^i u, \quad (6.5)$$

for $n \geq 1$, where $\binom{n}{m} = 0$ whenever $m < 0$. Multiplying by ϕ^{n-1} and using (6.3), we obtain another recursive expression for $\psi(x; n)$:

$$\begin{aligned} \psi(x; n) &= \sum_{i=0}^{n-1} \left[\binom{n-1}{i} \mathcal{D}^{n-1-i} \psi(x; 1) - \binom{n-1}{i-1} \mathcal{D}^{n-i} \phi(x) \right] \phi^{n-1-i}(x) \psi(x; i) \\ & \quad (6.6) \end{aligned}$$

valid for $n \geq 1$.

Lemma 6.3 *In the above conditions, we have*

$$\phi^{n-j}(x)\psi(x; j)\mathcal{D}^n u = \psi(x; n)\mathcal{D}^j u, \quad n \geq j, \quad (6.7)$$

and consequently

$$\phi^i(x)\psi(x; N-i)\mathcal{D}^{N-j} u = \phi^j(x)\psi(x; N-j)\mathcal{D}^{N-i} u, \quad 0 \leq i, j \leq N. \quad (6.8)$$

Proof. We will show the result by induction on n . The case $n = 1, j = 0$ comes from (6.3), while the case $n = j = 1$ is trivial. Suppose that

$$\phi^{n-1-j}(x)\psi(x; j)\mathcal{D}^{n-1} u = \psi(x; n-1)\mathcal{D}^j u,$$

holds for all j , $0 \leq j \leq n-1$. Then,

i) For $0 \leq j < n-1$, taking derivatives, multiplying by ϕ , using (6.4), and the induction hypothesis, we have

$$\begin{aligned} \phi^{n-j}(x)\psi(x; j)\mathcal{D}^n u &= \phi(x)\psi'(x, n-1)\mathcal{D}^j u + \phi(x)\psi(x; n-1)\mathcal{D}^{j+1} u - \\ &\quad - \{(n-1-j)\phi'(x)\psi(x; j) + \psi(x; j+1) - \\ &\quad - \psi(x; j)[\psi(x) - (j+1)\phi'(x)]\}\phi^{n-1-j}(x)\mathcal{D}^{n-1} u \\ &= \phi(x)\psi'(x, n-1)\mathcal{D}^j u + \phi(x)\psi(x; n-1)\mathcal{D}^{j+1} u - \\ &\quad - \{\psi(x; j+1) - \psi(x; j)[\psi(x) - n\phi'(x)]\}\phi^{n-1-j}(x)\mathcal{D}^{n-1} u \\ &= \{\phi(x)\psi'(x, n-1) + \psi(x; n-1)[\psi(x) - n\phi'(x)]\}\mathcal{D}^j u + \\ &\quad + \phi(x)\psi(x; n-1)\mathcal{D}^{j+1} u - \psi(x; j+1)\phi^{n-1-j}(x)\mathcal{D}^{n-1} u \\ &= \psi(x; n)\mathcal{D}^j u + \phi(x)\psi(x; n-1)\mathcal{D}^{j+1} u - \phi(x)\psi(x; n-1)\mathcal{D}^{j+1} u \\ &= \psi(x; n)\mathcal{D}^j u. \end{aligned}$$

ii) If $j = n-1$, multiplying (6.5) by $\psi(x; n-1)$, and using the induction hypothesis, we obtain the result taking into account (6.6).

Now, from i) and ii), we conclude, since the case $j = n$ is trivial.

We define a linear differential operator $\mathcal{F}^{(N)}$ on the linear space of real polynomials \mathbb{P} in the following way

$$\mathcal{F}^{(N)} = (-1)^N(x-c)^N \sum_{i=0}^N \binom{N}{i} \phi^i(x)\psi(x; N-i)\mathcal{D}^{N+i}, \quad (6.9)$$

where \mathcal{D} denotes the derivative operator and the polynomials $\psi(x; n)$ are defined as in Lemma 6.2.

Remark. In the particular case of a semiclassical linear functional u defined from a weight function, expression (6.9) can be written in a very compact form

$$\mathcal{F}^{(N)} = (-1)^N (x - c)^N \frac{\phi^N(x)}{\rho(x)} \left(\rho(x) \mathcal{D}^N \right)$$

where ρ denotes the weight function associated with the semiclassical linear functional u .

In the next Lemma, we recall a very useful formula involving derivatives.

Lemma 6.4 ([8]) *Let f and g be n -times and $2n$ -times differentiable functions, respectively. Then,*

$$f^{(n)} g^{(n)} = \sum_{i=0}^n (-1)^i \binom{n}{i} (f g^{(n+i)})^{(n-i)}.$$

In the following Proposition, we show how the linear operator $\mathcal{F}^{(N)}$ allows us to obtain a representation for the Sobolev bilinear form (2.1), in terms of the consecutive derivatives of the semiclassical linear functional u .

Proposition 6.5 *Let $\mathcal{B}_S^{(N)}$ be a Sobolev bilinear form with u semiclassical and f, g arbitrary polynomials. Then, for $0 \leq i \leq N$, we have*

$$\mathcal{B}_S^{(N)} \left((x - c)^N \phi^i(x) \psi(x; N - i) f, g \right) = \langle \mathcal{D}^{N-i} u, f \mathcal{F}^{(N)} g \rangle.$$

Proof. From Lemmas 6.2, 6.3 and 6.4, we get

$$\begin{aligned} & \mathcal{B}_S^{(N)} \left((x - c)^N \phi^i(x) \psi(x; N - i) f, g \right) \\ &= \langle u, \left((x - c)^N \phi^i(x) \psi(x; N - i) f \right)^{(N)} g^{(N)} \rangle \\ &= \sum_{j=0}^N (-1)^j \binom{N}{j} \langle u, \left((x - c)^N \phi^i(x) \psi(x; N - i) f g^{(N+j)} \right)^{(N-j)} \rangle \\ &= \sum_{j=0}^N (-1)^N \binom{N}{j} \langle \mathcal{D}^{N-j} u, (x - c)^N \phi^i(x) \psi(x; N - i) f g^{(N+j)} \rangle \end{aligned}$$

$$\begin{aligned}
&= \sum_{j=0}^N (-1)^N \binom{N}{j} \langle \phi^i(x) \psi(x; N-i) \mathcal{D}^{N-j} u, (x-c)^N f g^{(N+j)} \rangle \\
&= \sum_{j=0}^N (-1)^N \binom{N}{j} \langle \phi^j(x) \psi(x; N-j) \mathcal{D}^{N-i} u, (x-c)^N f g^{(N+j)} \rangle \\
&= \langle \mathcal{D}^{N-i} u, f [(-1)^N (x-c)^N \sum_{j=0}^N \binom{N}{j} \phi^j(x) \psi(x; N-j) g^{(N+j)}] \rangle \\
&= \langle \mathcal{D}^{N-i} u, f \mathcal{F}^{(N)} g \rangle. \quad \blacksquare
\end{aligned}$$

Theorem 6.6 *The linear operator $\mathcal{F}^{(N)}$ is symmetric with respect to the Sobolev bilinear form (2.1), that is*

$$\mathcal{B}_S^{(N)}(\mathcal{F}^{(N)} f, g) = \mathcal{B}_S^{(N)}(f, \mathcal{F}^{(N)} g).$$

Proof. From Proposition 6.5 and Lemma 6.4, we can deduce

$$\begin{aligned}
\mathcal{B}_S^{(N)}(\mathcal{F}^{(N)} f, g) &= \sum_{i=0}^N (-1)^N \binom{N}{i} \mathcal{B}_S^{(N)} \left((x-c)^N \phi^i(x) \psi(x; N-i) f^{(N+i)}, g \right) \\
&= \sum_{i=0}^N (-1)^N \binom{N}{i} \langle \mathcal{D}^{N-i} u, f^{(N+i)} \mathcal{F}^{(N)} g \rangle \\
&= \sum_{i=0}^N (-1)^i \binom{N}{i} \langle u, (f^{(N+i)} \mathcal{F}^{(N)} g)^{(N-i)} \rangle \\
&= \langle u, f^{(N)} (\mathcal{F}^{(N)} g)^{(N)} \rangle = \mathcal{B}_S^{(N)}(f, \mathcal{F}^{(N)} g). \quad \blacksquare
\end{aligned}$$

Now, we study the degree of the polynomial $\mathcal{F}^{(N)} x^n$ for every n . Observe that $\mathcal{F}^{(N)}$ vanishes on every polynomial with degree less than N .

Proposition 6.7 *For every $n \geq 0$, we have*

$$\deg(\mathcal{F}^{(N)} x^n) \leq n + N \max\{p-1, q\},$$

where $p = \deg \phi$ and $q = \deg \psi$.

Proof. By using the induction method it is very easy to see that $\deg \psi(x; n) \leq n + \max\{p-1, q\}$ for all $n \geq 0$. Taking into account the definition of the linear operator $\mathcal{F}^{(N)}$, the conclusion follows. \square

On the other hand, the linear operator $\mathcal{F}^{(N)}$ never reduces the degree for all polynomials.

Proposition 6.8 *There exists $n_0 \geq N$ such that*

$$\deg \mathcal{F}^{(N)}x^{n_0} \geq n_0.$$

Proof. Suppose that $\deg \mathcal{F}^{(N)}x^n < n$, for all $n \geq N$. Then, we can expand

$$\mathcal{F}^{(N)}Q_n = \sum_{i=0}^{n-1} a_{n,i}Q_i.$$

Thus, since $\mathcal{F}^{(N)}$ vanishes on every polynomial of degree less than N , using its symmetry property, we have

$$a_{n,i} = \frac{\mathcal{B}_S^{(N)}(\mathcal{F}^{(N)}Q_n, Q_i)}{\mathcal{B}_S^{(N)}(Q_i, Q_i)} = \frac{\mathcal{B}_S^{(N)}(Q_n, \mathcal{F}^{(N)}Q_i)}{\mathcal{B}_S^{(N)}(Q_i, Q_i)} = 0, \quad i = 0, 1, \dots, n-1,$$

and the result follows. \square

To study the degree of $\mathcal{F}^{(N)}x^n$, we need to know the degree of the polynomials $\psi(x; N-i)$, $i = 0, \dots, N$ in formula (6.9). The following Lemma provides us some combinatorial identities, that will be useful for our purpose.

Lemma 6.9 *Let a and b arbitrary real numbers. Then for every non negative integer n , we have*

$$i) \quad (a)_n = (-1)^n(-a-n+1)_n,$$

$$ii) \quad \sum_{i=0}^n \binom{a}{i} \binom{b}{n-i} = \binom{a+b}{n},$$

$$iii) \quad \sum_{i=0}^n (-1)^i \binom{a}{i} \binom{b-i}{n-i} = \binom{b-a}{n},$$

where $\binom{a}{k}$ and $(a)_k$ are given by (3.2) and (3.3).

Proof. *i)* It is a direct consequence of the definition of the Pochhammer's symbol.

ii) It can be derived from the power series expansion of the identity

$$(1+x)^a(1+x)^b = (1+x)^{a+b},$$

comparing the coefficients.

iii) This formula can be deduced from *i)* and *ii)*. \square

Remark. For a and b positive integer numbers, formulas *ii)* and *iii)* can be found on page 8 in [11].

Let assume that the explicit representation for the polynomials ϕ and ψ is given by

$$\phi(x) = \sum_{i=0}^p a_i x^i, \quad a_p \neq 0, \quad p \geq 0, \quad \psi(x) = \sum_{i=0}^q b_i x^i, \quad b_q \neq 0, \quad q \geq 1,$$

and without loss of generality, we can suppose that $a_p = 1$.

Next Lemma gives us the degree of the polynomial $\psi(x; n)$ and its leading coefficient in terms of p, q and b_q .

Lemma 6.10 *The following assertions are true:*

i) *If $p - 1 < q$, then*

$$\psi(x; n) = b_q^n x^{nq} + \text{lower degree terms},$$

and $\deg \psi(x; n) = nq, \quad n \geq 0$.

ii) *If $p - 1 > q$, then*

$$\psi(x; n) = (-1)^n (p)_n x^{n(p-1)} + \text{lower degree terms},$$

and $\deg \psi(x; n) = n(p-1), \quad n \geq 0$.

iii) *If $p - 1 = q$, then*

$$\psi(x; n) = (-1)^n (p - b_q)_n x^{n(p-1)} + \text{lower degree terms}.$$

Therefore,

iii.1) *If $p - b_q \neq 0, -1, \dots, -(n-1)$ then $\deg \psi(x; n) = n(p-1), \quad n \geq 0$,*

iii.2) *If $p - b_q = -k, \quad k \geq 0$, then $\deg \psi(x; n) = n(p-1), \quad 0 \leq n \leq k$, and $\deg \psi(x; n) < n(p-1), \quad n > k$.*

Proof. These results can be obtained by induction on n . □

As we are going to see, the equality in Proposition 6.7 is true for almost all n , that is, the action of $\mathcal{F}^{(N)}$ on a polynomial of degree bigger than or equal to N increases its degree exactly in Nt being $t = \max\{p - 1, q\}$. Therefore, we can write

$$\mathcal{F}^{(N)}x^n = F(n; N, t)x^{n+Nt} + \dots,$$

where $F(n; N, t)$ denotes the leading coefficient of the polynomial $\mathcal{F}^{(N)}x^n$. We want to notice that this coefficient can be zero for some specific values of n and in particular for every $n < N$.

To prove this, we decompose the operator $\mathcal{F}^{(N)}$ in $N + 1$ differential operators defined by

$$\mathcal{F}_i^{(N)} = (-1)^N(x - c)^N \binom{N}{i} \phi^i(x) \psi(x; N - i) \mathcal{D}^{N+i}, \quad i = 0, 1, \dots, N. \quad (6.10)$$

Thus,

$$\mathcal{F}^{(N)} = \sum_{i=0}^N \mathcal{F}_i^{(N)}, \quad \text{and} \quad \mathcal{F}^{(N)}x^n = \sum_{i=0}^{\min\{N, n-N\}} \mathcal{F}_i^{(N)}x^n, \quad n \geq N,$$

where, for $i = 0, \dots, \min\{N, n - N\}$,

$$\mathcal{F}_i^{(N)}x^n = (-1)^N(x - c)^N \binom{N}{i} \phi^i(x) \psi(x; N - i) \frac{n!}{(n - N - i)!} x^{n-N-i}.$$

Let us denote by $F_i(n)$ the leading coefficient of the polynomial $\mathcal{F}_i^{(N)}x^n$ and, for the sake of simplicity, we will put $F(n; N, t) = F(n)$.

Theorem 6.11 *Let $t = \max\{p - 1, q\}$. Except for finitely many values of $n \geq N$, we have*

$$\deg \mathcal{F}^{(N)}x^n = n + Nt,$$

that is,

$$\mathcal{F}^{(N)}x^n = F(n)x^{n+Nt} + \text{lower terms degree},$$

with $F(n) \neq 0$. More precisely

i) If $p - 1 < q$, then

$$F(n) = (-b_q)^N \frac{n!}{(n - N)!},$$

and $\deg \mathcal{F}^{(N)}x^n = n + Nt$, $n \geq N$.

ii) If $p - 1 > q$, then

$$F(n) = (p - n + N)_N \frac{n!}{(n - N)!},$$

and

$$\begin{aligned} \deg \mathcal{F}^{(N)}x^n &< n + Nt, \quad N + p \leq n \leq 2N - 1 + p, \\ \deg \mathcal{F}^{(N)}x^n &= n + Nt, \quad N \leq n < N + p, \quad n \geq 2N + p. \end{aligned}$$

iii) If $p - 1 = q$, then

$$F(n) = (p - b_q - n + N)_N \frac{n!}{(n - N)!},$$

and

iii.1) if $p - b_q = -k$, $k = 0, 1, \dots, N - 1$, then

$$\begin{aligned} \deg \mathcal{F}^{(N)}x^n &< n + Nt, \quad N \leq n \leq 2N - 1 - k, \\ \deg \mathcal{F}^{(N)}x^n &= n + Nt, \quad n \geq 2N - k, \end{aligned}$$

iii.2) if $p - b_q$ is a positive integer, then

$$\begin{aligned} \deg \mathcal{F}^{(N)}x^n &< n + Nt, \quad N + p - b_q \leq n \leq 2N - 1 + p - b_q, \\ \deg \mathcal{F}^{(N)}x^n &= n + Nt, \quad N \leq n < N + p - b_q, \quad n \geq 2N + p - b_q. \end{aligned}$$

iii.3) in another case,

$$\deg \mathcal{F}^{(N)}x^n = n + Nt, \quad n \geq N.$$

Proof. To prove the theorem a basic tool will be Lemma 6.10. For this reason, we distinguish three different cases.

i) Case $p - 1 < q$. In this situation, we have

$$\deg \mathcal{F}_i^{(N)}x^n = n + Nq - i(q - (p - 1)), \quad i = 0, 1, \dots, \min\{N, n - N\},$$

and then, $\deg \mathcal{F}^{(N)}x^n = \deg \mathcal{F}_0^{(N)}x^n = n + Nq$, for all $n \geq N$.

The explicit expression for $\mathcal{F}_0^{(N)} x^n$ is

$$\begin{aligned}\mathcal{F}_0^{(N)} x^n &= (-1)^N (x - c)^N \psi(x; N) \mathcal{D}^N x^n \\ &= (-b_q)^N \frac{n!}{(n - N)!} x^{n+Nq} + \text{lower terms degree},\end{aligned}$$

and the leading coefficient for $\mathcal{F}^{(N)} x^n$ is

$$F(n) = F_0(n) = (-b_q)^N \frac{n!}{(n - N)!}, \quad n \geq N.$$

ii) Case $p - 1 > q$. In this case, as $p > 2$, we get

$$\deg \mathcal{F}_i^{(N)} x^n = n + N(p - 1), \quad i = 0, \dots, \min\{N, n - N\},$$

and then $\deg \mathcal{F}_i^{(N)} x^n \leq n + N(p - 1)$, for all $n \geq N$. The leading coefficient of $\mathcal{F}_i^{(N)} x^n$ is

$$F_i(n) = (-1)^i \binom{N}{i} (p)_{N-i} \frac{n!}{(n - N - i)!}, \quad i = 0, 1, \dots, \min\{N, n - N\}.$$

Taking into account that

$$F(n) = \sum_{i=0}^{\min\{N, n - N\}} F_i(n), \quad (6.11)$$

and using Lemma 6.9 *iii*), we can show that:

If $N \leq n < 2N$, since $\min\{N, n - N\} = n - N$, we obtain

$$\begin{aligned}F(n) &= \sum_{i=0}^{n-N} F_i(n) = n! (p)_{2N-n} \sum_{i=0}^{n-N} (-1)^i \binom{N}{i} \binom{p-1+N-i}{n-N-i} \\ &= n! (p)_{2N-n} \binom{p-1}{n-N} = (p - n + N)_N \frac{n!}{(n - N)!}.\end{aligned}$$

On the other hand, if $n \geq 2N$,

$$\begin{aligned}F(n) &= \sum_{i=0}^N F_i(n) = \frac{n! N!}{(n - N)!} \sum_{i=0}^N (-1)^i \binom{n - N}{i} \binom{p - 1 + N - i}{N - i} \\ &= \frac{n! N!}{(n - N)!} \binom{p - 1 - n + 2N}{N} = (p - n + N)_N \frac{n!}{(n - N)!}.\end{aligned}$$

Observe that, since p is an integer bigger than 2, from the definition of the Pochhammer's symbol $(p - n + N)_N$, we have $F(n) = 0$ if and only if $N + p \leq n \leq 2N - 1 + p$. Then, there exist exactly N values of n such that $\deg \mathcal{F}^{(N)} x^n < n + N(p - 1)$. In another case, we have $\deg \mathcal{F}^{(N)} x^n = n + N(p - 1)$.

iii) Case $p - 1 = q$.

First, we assume that $p - b_q = -k$, $k = 0, 1, \dots, N - 1$. In this case, by Lemma 6.10, $\deg \psi(x; N - i) = (N - i)(p - 1)$, if $0 \leq N - i \leq k$ and $\deg \psi(x; N - i) < (N - i)(p - 1)$ for $k + 1 \leq N - i \leq N$.

Therefore, for $n \geq N$, we have $\deg \mathcal{F}_i^{(N)} x^n < n + N(p - 1)$ when $i = 0, 1, \dots, N - k - 1$, and $\deg \mathcal{F}_i^{(N)} x^n = n + N(p - 1)$ if $N - k \leq i \leq N$. In this way, $\deg \mathcal{F}^{(N)} x^n < n + N(p - 1)$ when $N \leq n \leq 2N - k - 1$.

For $n \geq 2N - k$, we can observe that

$$F(n) = \sum_{i=N-k}^{\min\{N, n-N\}} F_i(n),$$

where, by Lemma 6.9 i),

$$\begin{aligned} F_i(n) &= (-1)^N \binom{N}{i} (-1)^{N-i} (-k)_{N-i} \frac{n!}{(n - N - i)!} \\ &= (-1)^N \binom{N}{i} (i + 1 - (N - k))_{N-i} \frac{n!}{(n - N - i)!}. \end{aligned}$$

Now, we give an explicit expression of $F(n)$. Suppose $2N - k \leq n < 2N$, then $\min\{N, n - N\} = n - N$, and using Lemma 6.9 ii)

$$\begin{aligned} F(n) &= (-1)^N \sum_{i=N-k}^{n-N} \binom{N}{i} (i + 1 - (N - k))_{N-i} \frac{n!}{(n - N - i)!} \\ &= (-1)^N \frac{n! N!}{(n - N)!} \sum_{i=0}^{n-(2N-k)} \binom{k}{i} \binom{n - N}{n - (2N - k) - i} \\ &= (-1)^N \frac{n! N!}{(n - N)!} \binom{n + k - N}{n - (2N - k)} \\ &= (-1)^N (n + 1 - (2N - k))_N \frac{n!}{(n - N)!}. \end{aligned}$$

If $n \geq 2N$, again by Lemma 6.9 *ii*), we have

$$\begin{aligned}
F(n) &= (-1)^N \sum_{i=N-k}^N \binom{N}{i} (i+1-(N-k))_{N-i} \frac{n!}{(n-N-i)!} \\
&= (-1)^N \frac{n! k!}{(n-(2N-k))!} \sum_{i=0}^k \binom{n-(2N-k)}{i} \binom{N}{k-i} \\
&= (-1)^N \frac{n! k!}{(n-(2N-k))!} \binom{n+k-N}{k} \\
&= (-1)^N (n+1-(2N-k))_N \frac{n!}{(n-N)!}.
\end{aligned}$$

Hence, if $n \geq 2N - k$,

$$F(n) = (-1)^N (n+1-(2N-k))_N \frac{n!}{(n-N)!} = (-k-n+N)_N \frac{n!}{(n-N)!} \neq 0.$$

Now, we assume that $p-b_q \neq 0, -1, \dots, -(N-1)$ and thus, from Lemma 6.10, $\deg \psi(x; N-i) = (N-i)(p-1)$, $i = 0, 1, \dots, N$. As in the case $p-1 > q$, we have $\deg \mathcal{F}_i^{(N)} x^n = n+N(p-1)$, $i = 0, 1, \dots, \min\{N, n-N\}$, $\deg \mathcal{F}^{(N)} x^n \leq n+N(p-1)$, and also (6.11), where

$$F_i(n) = (-1)^i \binom{N}{i} (p-b_q)_{N-i} \frac{n!}{(n-N-i)!}, \quad i = 0, 1, \dots, \min\{N, n-N\}.$$

Using the same technique, we obtain

$$F(n) = (p-b_q - n + N)_N \frac{n!}{(n-N)!}, \quad n \geq N.$$

If $p-b_q$ is a positive integer, then $F(n) = 0$ if and only if $N+p-b_q \leq n \leq 2N-1+p-b_q$, that is, there exist precisely N values of n such that $\deg \mathcal{F}^{(N)} x^n < n+N(p-1)$, and for the other values of $n \geq N$, $F(n) \neq 0$ and hence $\deg \mathcal{F}^{(N)} x^n = n+N(p-1)$.

In another case, $\deg \mathcal{F}^{(N)} x^n = n+N(p-1)$, for all $n \geq N$. □

7 Recurrence relations and differential operators

As a direct consequence of Proposition 6.5, which relates the discrete-continuous Sobolev bilinear form $\mathcal{B}_S^{(N)}$ and the one defined from a semi-classical linear functional u , we can establish some relations between the

monic Sobolev orthogonal polynomials $\{Q_n\}_n$ and the monic orthogonal polynomials $\{P_n\}_n$, associated with the semiclassical linear functional u . In the sequel, for the sake of simplicity, we will denote

$$k_n = \langle u, P_n^2 \rangle \neq 0, \quad \tilde{k}_n = \mathcal{B}_S^{(N)}(Q_n, Q_n) \neq 0, \quad \forall n \geq 0.$$

Proposition 7.1 *The following formulas hold:*

$$i) \quad (x - c)^N \phi^N(x) P_n(x) = \sum_{i=r}^{n+N(p+1)} \alpha_i^{(n)} Q_i(x), \quad n \geq 0, \quad (7.1)$$

$$\text{where } r = \max\{N, n - Nt\}, \quad \alpha_{n+N(p+1)}^{(n)} = 1 \quad \text{and} \quad \alpha_r^{(n)} = \frac{\langle u, P_n \mathcal{F}^{(N)} Q_r \rangle}{\tilde{k}_r}.$$

$$ii) \quad \mathcal{F}^{(N)} Q_n(x) = \sum_{i=n-N(p+1)}^{n+Nt} \beta_i^{(n)} P_i(x), \quad n \geq N(p+1), \quad (7.2)$$

$$\text{where } \beta_{n+Nt}^{(n)} = F(n), \quad \beta_{n-N(p+1)}^{(n)} = \frac{\tilde{k}_n}{k_{n-N(p+1)}}.$$

Proof.

i) Expanding the polynomial $(x - c)^N \phi^N P_n$ in terms of the Sobolev polynomials Q_n , we have

$$(x - c)^N \phi^N(x) P_n(x) = \sum_{i=0}^{n+N(p+1)} \alpha_i^{(n)} Q_i(x),$$

where, taking into account Proposition 6.5,

$$\alpha_i^{(n)} = \frac{\mathcal{B}_S^{(N)} \left((x - c)^N \phi^N P_n, Q_i \right)}{\mathcal{B}_S^{(N)} (Q_i, Q_i)} = \frac{\langle u, P_n \mathcal{F}^{(N)} Q_i \rangle}{\tilde{k}_i}.$$

From the orthogonality of $\{P_n\}_n$ and since $\mathcal{F}^{(N)} Q_i = 0$ for $i < N$, we deduce that $\alpha_i^{(n)} = 0$ when $0 \leq i < r = \max\{N, n - Nt\}$.

ii) Because of Proposition 6.7, the expansion of the polynomial $\mathcal{F}^{(N)} Q_n$ in terms of P_n is

$$\mathcal{F}^{(N)} Q_n(x) = \sum_{i=0}^{n+Nt} \beta_i^{(n)} P_i(x).$$

The coefficients $\beta_i^{(n)}$ can be computed using again Proposition 6.5, and therefore

$$\beta_i^{(n)} = \frac{\langle u, P_i \mathcal{F}^{(N)} Q_n \rangle}{\langle u, P_i^2 \rangle} = \frac{\mathcal{B}_S^{(N)} \left((x - c)^N \phi^N P_i, Q_n \right)}{k_i}.$$

Finally, from the orthogonality of $\{Q_n\}_n$ it follows $\beta_i^{(n)} = 0$ for $0 \leq i < n - N(p+1)$. □

From the symmetry of the linear operator $\mathcal{F}^{(N)}$, we can obtain a difference-differential relation satisfied by the Sobolev orthogonal polynomials with respect to the Sobolev bilinear form (2.1), where u is a semiclassical linear functional.

Proposition 7.2 (Difference-Differential Relation) *For every $n \geq N$, the following relation holds*

$$\mathcal{F}^{(N)} Q_n(x) = \sum_{i=r}^{n+Nt} \gamma_i^{(n)} Q_i(x), \quad (7.3)$$

where $r = \max\{N, n - Nt\}$, $\gamma_{n+Nt}^{(n)} = F(n)$ and $\gamma_r^{(n)} = \frac{\mathcal{B}_S^{(N)} (Q_n, \mathcal{F}^{(N)} Q_r)}{\tilde{k}_r}$.

Proof. Consider the Fourier expansion of the polynomial $\mathcal{F}^{(N)} Q_n$ in terms of Q_n which, by Proposition 6.7, is

$$\mathcal{F}^{(N)} Q_n(x) = \sum_{i=0}^{n+Nt} \gamma_i^{(n)} Q_i(x).$$

Then

$$\gamma_i^{(n)} = \frac{\mathcal{B}_S^{(N)} (\mathcal{F}^{(N)} Q_n, Q_i)}{\mathcal{B}_S^{(N)} (Q_i, Q_i)} = \frac{\mathcal{B}_S^{(N)} (Q_n, \mathcal{F}^{(N)} Q_i)}{\tilde{k}_i},$$

where we have used Theorem 6.6. Notice that $\gamma_i^{(n)} = 0$ for $0 \leq i < N$ and that the orthogonality of the polynomials $\{Q_n\}_n$ leads to $\gamma_i^{(n)} = 0$ for $0 \leq i < n - Nt$. So the result follows. □

Remark. In formulas (7.1) and (7.3), when $r = n - Nt$, the coefficients $\alpha_r^{(n)}$ and $\gamma_r^{(n)}$ can explicitly be given by

$$\alpha_r^{(n)} = F(r) \frac{k_n}{\tilde{k}_r}, \quad \gamma_r^{(n)} = F(r) \frac{\tilde{k}_n}{\tilde{k}_r}.$$

Recall that the values of $F(n)$ had been calculated in Theorem 6.11.

Acknowledgements

First and fourth authors wish to acknowledge the financial support by DGES project PB96-0120-C03-02 and by the Universidad de La Rioja project API-98/B12. Second and third authors wish to acknowledge the financial support by Junta de Andalucía, G.I. FQM 0229, DGES PB 95-1205 and INTAS-93-0219-ext.

References

1. M. Álvarez de Morales, T.E. Pérez, M.A. Piñar, *Sobolev orthogonality for the Gegenbauer polynomials* $\{C_n^{(-N+1/2)}\}_{n \geq 0}$, *J. Comput. Appl. Math.* **100** (1998), 111-120.
2. T.S. Chihara, *An Introduction to Orthogonal Polynomials*, Gordon and Breach, New York, 1978.
3. E. Hendriksen, H. Van Rossum, *Semiclassical Orthogonal Polynomials*, in “Polynômes Orthogonaux et Applications, Bar-le-Duc 1984”, C. Brezinski et al. Eds. Lecture Notes in Math. vol. 1171, Springer-Verlag, Berlin (1985), 354-361.
4. I.H. Jung, K.H. Kwon, J.K. Lee, *Sobolev Orthogonal Polynomials relative to $\lambda p(c)q(c) + \langle \tau'(x)q'(x) \rangle$* . Preprint.
5. K.H. Kwon, L.L. Littlejohn, *The Orthogonality of the Laguerre Polynomials $\{L_n^{(-k)}(x)\}$ for positive integers k* , *Annals of Numerical Mathematics* **2** (1995), 289-304.
6. K.H. Kwon, L.L. Littlejohn, *Sobolev Orthogonal Polynomials and second order differential equations*. To appear in *Rocky Mountain J. Math.*
7. F. Marcellán, A. Branquinho, J. Petronilho, *Classical orthogonal polynomials. A functional approach*, *Acta Aplicandae Mathematicae* **34** (1994), 283-303.
8. F. Marcellán, T.E. Pérez, M.A. Piñar, A. Ronveaux, *General Sobolev Orthogonal Polynomials*, *J. Math. Anal. Appl.* **200** (1996), 614-634.

9. P. Maroni, *Une Théorie Algèbrique des Polynômes Orthogonaux. Applications aux Polynômes Orthogonaux Semiclassiques*, in “Orthogonal Polynomials and their applications”. C. Brezinski, L. Gori and A. Ronveaux Eds. IMACS Annals on Comp. and Appl. Math. Vol. 9. J. C. Baltzer. AG Pub. Basel. (1991), 98-130.
10. T.E. Pérez, M.A. Piñar, *On Sobolev Orthogonality for the Generalized Laguerre Polynomials*, J. Approx. Theory **86** (1996), 278–285.
11. J. Riordan, *Combinatorial Identities*, Wiley, New York, 1968.
12. G. Szegő, *Orthogonal Polynomials*, Amer. Math. Soc. Colloq. Pub. 23, Amer. Math. Soc., Providence, RI, 1975 (4th edition).

* Departamento de Matemáticas. Universidad de Zaragoza. 50009 Zaragoza (Spain).

E-mail: alfaro@posta.unizar.es, rezola@posta.unizar.es

† Departamento de Matemática Aplicada. Instituto Carlos I de Física Teórica y Computacional. Universidad de Granada. 18071 Granada (Spain).

E-mail: tperez@goliat.ugr.es, mpinar@goliat.ugr.es