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Abstract

In this paper, we study orthogonal polynomials with respect to the
bilinear form

B(N)
S (f, g) = F (c)AG(c)T + ⟨u, f (N)g(N)⟩,

where u is a quasi-definite (or regular) linear functional on the linear
space P of real polynomials, c is a real number, N is a positive integer
number, A is a symmetric N×N real matrix such that each of its prin-
cipal submatrices are regular, and F (c) = (f(c), f ′(c), . . . , f (N−1)(c)),
G(c) = (g(c), g′(c), . . . , g(N−1)(c)). For these non–standard orthogonal
polynomials, algebraic and differential properties are obtained, as well
as their representation in terms of the standard orthogonal polynomials
associated with u.
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1 Introduction

It is well known (see [12]) that the monic generalized Laguerre polynomials

{L(α)
n }n satisfy, for any real value of α, the three-term recurrence relation

xL(α)
n (x) = L

(α)
n+1(x) + β(α)n L(α)

n (x) + γ(α)n L
(α)
n−1(x),

L
(α)
−1 (x) = 0, L

(α)
0 (x) = 1,

where
β(α)n = 2n+ α+ 1, γ(α)n = n(n+ α).

Whenever α is not a negative integer number, we have γ
(α)
n ̸= 0 for all n ≥

1 and Favard’s theorem (see [2], p. 21) ensures that the sequence {L(α)
n }n

is orthogonal with respect to a quasi–definite linear functional. Besides, if
α > −1 the functional is definite positive and the polynomials are orthogonal
with respect to the weight xαe−x on the interval (0,+∞). For α a negative

integer number, since γ
(α)
n vanishes for some value of n, no orthogonality

results can be deduced from Favard’s theorem.
In the last few years, orthogonal polynomials with respect to an inner

product involving derivatives (the so–called Sobolev orthogonal polynomi-
als) have been the object of increasing interest and in this context, the case

{L(α)
n }n with α a negative integer number has been solved. More precisely,

Kwon and Littlejohn, in [5], established the orthogonality of the generalized

Laguerre polynomials {L(−k)
n }n, k ≥ 1, with respect to a Sobolev inner

product of the form

⟨f, g⟩ = F (0)AG(0)T +

∫ +∞

0
f (k)(x)g(k)(x)e−xdx

with A a symmetric k × k real matrix, F (0) = (f(0), f ′(0), . . . , f (k−1)(0)),
and G(0) = (g(0), g′(0), . . . , g(k−1)(0)). The particular case k = 1 had been
considered by the same authors in a previous paper, (see [6]).

In [10], Pérez and Piñar gave an unified approach to the orthogonality of
the generalized Laguerre polynomials, for any real value of the parameter α
by proving their orthogonality with respect to a Sobolev non–diagonal inner
product. So, they obtained the following result:

Theorem ([10]) Let (., .)
(N,α)
S be the Sobolev inner product defined by

(f, g)
(N,α)
S =

∫ +∞

0
F (x)AG(x)Txαe−xdx,
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where the (i, j)-entry of A is given by

mi,j(N) =

min{i,j}∑
p=0

(−1)i+j

(
N − p

i− p

)(
N − p

j − p

)
, 0 ≤ i, j ≤ N,

F (x) = (f(x), f ′(x), . . . , f (N)(x)), G(x) = (g(x), g′(x), . . . , g(N)(x)). Then,

for every α ∈ R, the monic generalized Laguerre polynomials {L(α)
n }n are

orthogonal with respect to (., .)
(N,α+N)
S with N = max{0, [−α]}, ( [α] denotes

the greatest integer less than or equal to α).

In the case when α is a negative integer, the inner product (., .)
(N,α+N)
S

is the same as the one considered by Kwon and Littlejohn.

The above results justify the interest to consider such a kind of inner
products. In a more general setting, our aim is to study polynomials which
are orthogonal with respect to a symmetric bilinear form such as

B(N)
S (f, g) =

(
f(c), f ′(c), . . . , f (N−1)(c)

)
A


g(c)
g′(c)
...

g(N−1)(c)

+ ⟨u, f (N)g(N)⟩,

(1.1)
where u is a quasi–definite (or regular) linear functional on the linear space
P of real polynomials, c is a real number, N is a positive integer number,
and A is a symmetric N × N real matrix such that each of its principal
submatrices is regular. By analogy with the usual terminology, we call it a
discrete–continuous Sobolev bilinear form. Recently some properties of the

polynomials orthogonal with respect to B(1)
S (., .) had been considered in [4].

We will emphasize some cases in which the functional u satisfies some
extra conditions, namely, u is a semiclassical or a classical linear functional
(see [3], [7] and [9]). A quasi–definite linear functional u is called semiclassi-
cal if there exist polynomials ϕ and ψ with degϕ ≥ 0 and degψ ≥ 1 such that
u satisfies the distributional differential equation D(ϕu) = ψu. Whenever
degϕ ≤ 2 and degψ = 1, the functional u is called classical. It is well known
that the only classical functionals correspond to the sequences of Hermite,
Laguerre, Jacobi and Bessel polynomials.

In Section 2, we give a description of the monic polynomials {Qn}n which

are orthogonal with respect to B(N)
S (., .) in terms of the monic polynomials
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{Pn}n orthogonal with respect to the functional u. In particular, for n ≥ N ,

we have that Q
(N)
n (x) = n!

(n−N)!Pn−N (x) and Q
(k)
n (c) = 0 for k = 0, 1, ..., N−

1, while {Qn}N−1
n=0 are orthogonal with respect to the discrete part of the

symmetric bilinear form (1.1) and they are determined by the matrix A.
By using these results, in Section 3, we give some examples of polynomi-

als orthogonal with respect to (1.1), with an adequate choice of c, namely,

Laguerre polynomials {L(−N)
n }n with c = 0, Jacobi polynomials {P (−N,β)

n }n
with c = 1, β+N not being a negative integer, and {P (α,−N)

n }n with c = −1,
α+N not being a negative integer. Note that these sequences of polynomials
are not orthogonal with respect to any quasi–definite linear functional.

In Section 4, we give a new characterization of classical polynomials as
the only orthogonal polynomials such that, for some positive integer number
N , they have a N–th primitive satisfying a three–term recurrence relation.
In particular, this result is applied to discrete–continuous Sobolev polyno-
mials which satisfy a three–term recurrence relation and then it follows that
u is classical with distributional differential equation D(ϕu) = ψu, and the
point c in (1.1) is such that ϕ(c) = 0 and ψ(c) = ϕ′(c). Hence, the only
monic discrete–continuous Sobolev polynomials which satisfy a three–term
recurrence relation are the ones described in Section 3.

The link between Sobolev orthogonality and polynomials satisfying a
second order differential equation is analyzed in Section 5. It is proved that
if the sequence {Qn}n satisfies the equation

ϕ(x)Q′′
n(x) + σ(x)Q′

n(x) = ρnQn(x),

where ϕ and σ are polynomials with degree less than or equal to 2 and
1, respectively, and ρn are real numbers, then the functional u is classical
with distributional differential equation D(ϕu) = ψu, σ(x) = ψ(x)−Nϕ′(x)
and the point c in (1.1) verifies ϕ(c) = 0 and ψ(c) = ϕ′(c). Hence, the only
monic discrete–continuous Sobolev polynomials which satisfy a second order
differential equation are again the described in Section 3.

As a consequence of the results in Sections 4 and 5, we have that if u is not
a classical linear functional then the sequence {Qn}n does not satisfy neither
a three–term recurrence relation nor a second order differential equation. In
order to avoid this lack in our study, in Section 6, we introduce a linear
differential operator F (N) on P symmetric with respect to the bilinear form
(1.1). The basic property of this operator is a relationship between the
Sobolev bilinear form and the bilinear form associated with the functional
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u. Handling with F (N) we can deduce explicit relations between {Qn}n
and {Pn}n as well as a differential substitute of the algebraic recurrence
relations. This is done in Section 7.

2 The Sobolev discrete-continuous bilinear form

Let P be the linear space of real polynomials, u a quasi–definite linear func-
tional on P (see [2]), N a positive integer number, and A a quasi–definite
and symmetric real matrix of order N , that is, a symmetric and real matrix
such that all the principal minors are different from zero. For a given real
number c, the expression

B(N)
S (f, g) =

(
f(c), f ′(c), . . . , f (N−1)(c)

)
A


g(c)
g′(c)
...

g(N−1)(c)

+ ⟨u, f (N)g(N)⟩,

(2.1)
defines a symmetric bilinear form on P.

Since expression (2.1) involves derivatives, this bilinear form is non–
standard, and by analogy with the usual terminology we will call it a
discrete–continuous Sobolev bilinear form.

In the linear space of real polynomials, we can consider the basis given
by {

(x− c)m

m!

}
m≥0

. (2.2)

For n ≤ N − 1, the associated Gram matrix Gn is given by the n–th order
principal submatrix of the matrix A. For n ≥ N , the associated Gram
matrix is given by

Gn =

(
A 0

0 Bn−N

)
,

where Bn−N is the Gram matrix associated with the quasi–definite linear
functional u in the basis (2.2).

In both cases, Gn is quasi–definite (that is, all the principal minors are
different from zero) and therefore, we will say that the discrete–continuous
Sobolev bilinear form (2.1) is quasi–definite. Thus, we can assure the ex-
istence of a sequence of monic polynomials, denoted by {Qn}n, which are
orthogonal with respect to (2.1). These polynomials will be called Sobolev
orthogonal polynomials. Our first aim is to relate this sequence with the
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monic orthogonal polynomial sequence (in short MOPS) {Pn}n associated
with the quasi–definite linear functional u.

Theorem 2.1 Let {Qn}n be the sequence of monic orthogonal polynomials

with respect to the bilinear form B(N)
S .

i) The polynomials {Qn}N−1
n=0 are orthogonal with respect to the discrete bi-

linear form

B(N)
D (f, g) =

(
f(c), f ′(c), . . . , f (N−1)(c)

)
A


g(c)
g′(c)
...

g(N−1)(c)

 . (2.3)

ii) If n ≥ N , then

Q(k)
n (c) = 0, k = 0, 1, . . . , N − 1, (2.4)

Q(N)
n (x) =

n!

(n−N)!
Pn−N (x). (2.5)

Proof. i) If 0 ≤ m,n < N , then Q
(N)
n (x) = Q

(N)
m (x) = 0, and the value

of the Sobolev bilinear form on (Qn, Qm) can be computed by means of the
following expression

B(N)
S (Qn, Qm) = B(N)

D (Qn, Qm)

=
(
Qn(c), Q

′
n(c), . . . , Q

(N−1)
n (c)

)
A


Qm(c)
Q′

m(c)
...

Q
(N−1)
m (c)

 ,
and therefore they are orthogonal with respect to the discrete bilinear form
(2.3).
ii) Let n ≥ N , then from the orthogonality of the polynomial Qn, we deduce

0 = B(N)
S (Qn(x),

1

k!
(x− c)k) =

(
Qn(c), Q

′
n(c), . . . , Q

(N−1)
n (c)

)
A


0
...
1
...
0

 ,
(2.6)
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for 0 ≤ k ≤ N − 1. Thus, the vector(
Qn(c), Q

′
n(c), . . . , Q

(N−1)
n (c)

)
is the only solution of a homogeneous linear system with N equations and
N unknowns, whose coefficient matrix A is regular. Then, we conclude

Q
(k)
n (c) = 0, k = 0, 1, . . . , N − 1, that is, Qn contains the factor (x− c)N .

In this way, if n,m ≥ N , the discrete part of the bilinear form B(N)
S (Qn, Qm)

vanishes and we get

B(N)
S (Qn, Qm) = ⟨u,Q(N)

n Q(N)
m ⟩ = k̃nδn,m, k̃n ̸= 0.

That is, the polynomials {Q(N)
n }n≥N are orthogonal with respect to the lin-

ear functional u, and equality (2.5) follows from a simple inspection of the
leading coefficients.

Reciprocally, we are going to show that a system of monic polynomials
{Qn}n satisfying equations (2.4) and (2.5) is orthogonal with respect to some
discrete–continuous Sobolev bilinear form. This result could be considered
a Favard–type theorem.

Theorem 2.2 Let {Pn}n be the MOPS associated with a quasi–definite lin-
ear functional u, and N ≥ 1 a given integer number. Let {Qn}n be a se-
quence of monic polynomials satisfying
i) degQn = n, n = 0, 1, 2, . . . ,

ii) Q
(k)
n (c) = 0, 0 ≤ k ≤ N − 1, n ≥ N,

iii) Q
(N)
n (x) =

n!

(n−N)!
Pn−N (x), n ≥ N.

Then, there exists a quasi–definite and symmetric real matrix A, of order
N , such that {Qn}n is the monic orthogonal polynomial sequence associated
with the Sobolev bilinear form defined by (2.1).

Proof. By using the same reasoning as above it is obvious that every
polynomial Qn, with n ≥ N , is orthogonal to every polynomial with degree
less than or equal to n− 1 with respect to a Sobolev bilinear form like (2.1)
containing an arbitrary matrix A in the discrete part and the functional u
in the second part.

Next, we show that we can recover the matrix A from the N first poly-
nomials Qk, k = 0, 1, . . . , N − 1.
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Let us denote

Q =


Q0(c) Q′

0(c) . . . Q
(N−1)
0 (c)

Q1(c) Q′
1(c) . . . Q

(N−1)
1 (c)

...
...

...
QN−1(c) Q′

N−1(c) . . . Q
(N−1)
N−1 (c)

 ,
then Q is a lower triangular and invertible matrix. Let D be a diagonal
matrix with non zero elements in its diagonal.

Define
A = Q−1D(Q−1)T .

Obviously A is symmetric and quasi–definite and since

QAQT = D,

the polynomials Q0, . . . , QN−1 are orthogonal with respect to the bilinear
form (2.1), with the matrix A in the discrete part. Besides, the elements

in the diagonal of D are the values B(N)
S (Qk, Qk) for k = 0, . . . , N − 1.

Remark. Observe that the matrixA is not unique, because its construction
depends on the arbitrary regular diagonal matrix D.

3 Classical examples

3.1 The Laguerre case

Let α ∈ R, the n–th monic generalized Laguerre polynomial is defined in
[12], p. 102, by means of its explicit representation

L(α)
n (x) = (−1)nn!

n∑
j=0

(−1)j

j!

(
n+ α
n− j

)
xj , n ≥ 0, (3.1)

where

(
a
k

)
denotes the generalized binomial coefficient

(
a
k

)
=

(a− k + 1)k
k!

, (3.2)

and (a− k + 1)k stands for the so-called Pochhammer’s symbol defined by

(b)0 = 1, (b)n = b(b+ 1) . . . (b+ n− 1), for b ∈ R, n ≥ 0. (3.3)
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In this way, we have

(L(α)
n )(k)(0) = (−1)n+kn!

(
n+ α
n− k

)
, n ≥ k.

If α is a negative integer number, say α = −N , for n ≥ N , we have

(L(−N)
n )(k)(0) = 0, k = 0, 1, . . . , N − 1,

and, for n < N , we get

(L(−N)
n )(k)(0) = n!

(
N − k − 1
n− k

)
, k = 0, 1, . . . , n.

On the other hand, since the derivatives of Laguerre polynomials are again
Laguerre polynomials, we have

(L(−N)
n )(N)(x) =

n!

(n−N)!
L
(0)
n−N (x), for n ≥ N.

Therefore, from the previous Section, we conclude that Laguerre polynomials

L
(−N)
n are orthogonal with respect to the Sobolev bilinear form

B(N)
S (f, g) = F (0)AG(0)T +

∫ +∞

0
f (N)(x)g(N)(x)e−xdx,

with F (0) = (f(0), f ′(0), . . . , f (N−1)(0)), G(0) = (g(0), g′(0), . . . , g(N−1)(0)),
the matrix A is given by

A = Q−1D(Q−1)T ,

Q is the matrix of the derivatives of Laguerre polynomials L
(−N)
n evaluated

at zero

Q =



0!

(
N − 1

0

)
0 . . . 0

1!

(
N − 1

1

)
1!

(
N − 2

0

)
. . . 0

...
...

...

(N − 1)!

(
N − 1
N − 1

)
(N − 1)!

(
N − 2
N − 2

)
. . . (N − 1)!

(
0
0

)


and D is an arbitrary regular diagonal matrix. Similar results have been
obtained with different techniques in [5] and [10]. We recover the results
in [5] by using a diagonal matrix D whose elements are (0!)2, (1!)2, . . . ,
((N − 1)!)2.
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3.2 The Jacobi case

For α and β arbitrary real numbers, the generalized Jacobi polynomials can
be defined (see [12], p. 62) by means of their explicit representation

P(α,β)
n (x) =

n∑
m=0

(
n+ α
m

)(
n+ β
n−m

)(
x− 1

2

)n−m (x+ 1

2

)m

, n ≥ 0.

When α, β and α+ β+1 are not a negative integer, Jacobi polynomials are
orthogonal with respect to the quasi–definite linear functional u(α,β). This
linear functional is positive definite for α > −1 and β > −1.

For α = −N , with N a positive integer, and β being not a negative
integer, the n–th monic generalized Jacobi polynomial is given by

P (−N,β)
n (x)

=

(
2n−N + β

n

)−1 n∑
m=0

(
n−N
m

)(
n+ β
n−m

)
(x− 1)n−m(x+ 1)m. (3.4)

In this case, for n ≥ N , x = 1 will be a zero of multiplicity N ([12], p. 65).
On the other hand, since the derivatives of Jacobi polynomials are again

Jacobi polynomials, we have

(P (−N,β)
n )(N)(x) =

n!

(n−N)!
P

(0,β+N)
n−N (x), for n ≥ N.

Therefore, from the previous Section, we conclude that Jacobi polynomials

P
(−N,β)
n , when β +N is not a negative integer, are orthogonal with respect

to the Sobolev bilinear form

B(N)
S (f, g) = F (1)AG(1)T + ⟨u(0,β+N), f (N)g(N)⟩,

where the matrix A is given by

A = Q−1D(Q−1)T ,

Q is the matrix of the derivatives of Jacobi polynomials

Q =
(
(P (−N,β)

n )(k)(1)
)
n,k=0,...,N−1

which are given by

(P (−N,β)
n )(k)(1) = 2n−k n!

(n− k)!

(−N + k + 1)n−k

(n−N + β + k + 1)n−k
,

and D is an arbitrary regular diagonal matrix.
Of course, a similar result can be stated in the case when α +N is not

a negative integer, β = −N , and c = −1.
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4 Sobolev orthogonal polynomials and three-term
recurrence relations

Laguerre and Jacobi polynomials satisfy a three–term recurrence relation
even for negative integer values of their respective parameters (see [12]). In
the previous Section, we have seen that Laguerre polynomials with α a neg-
ative integer and Jacobi polynomials with either α or β a negative integer
are Sobolev orthogonal polynomials. In this way a natural question arises:
do the Sobolev orthogonal polynomials satisfy a three–term recurrence rela-
tion? As we are going to show, the answer is very restrictive, the existence
of a three–term recurrence relation for the Sobolev orthogonal polynomials
implies the classical character of the linear functional u associated with the
bilinear form (2.1).

Definition 4.1 We will say that a family of polynomials {Qn}n≥0 is a
monic polynomial system (MPS) if

i) deg(Qn) = n, n ≥ 0,

ii) Q0(x) = 1, Qn(x) = xn + lower degree terms, n ≥ 1.

Obviously, every MPS is a basis of the linear space P and every MOPS
is a MPS.

Definition 4.2 A monic polynomial system {Qn}n≥0 satisfies a three–term
recurrence relation if there exist two sequences of real numbers {bn}∞n=0 and
{gn}∞n=1, such that

xQn(x) = Qn+1(x) + bnQn(x) + gnQn−1(x), n ≥ 0,

Q−1(x) = 0, Q0(x) = 1.

From Favard’s theorem (see [2], p. 21) we can deduce the existence of
monic polynomial systems satisfying a three–term recurrence relation which
are not orthogonal with respect to any linear functional. This case appears
when some of the coefficients gn are zero. For instance, Laguerre polynomials
with parameter α a negative integer and Jacobi polynomials with parameters
either α or β or α+ β + 1 a negative integer.
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Proposition 4.3 Let {Qn}n≥0 be a monic polynomial system satisfying a
three–term recurrence relation and let N be a positive integer number such
that the system of monic N–th order derivatives

Pn(x) :=
n!

(n+N)!
Q

(N)
n+N (x), n ≥ 0,

constitutes a monic orthogonal polynomial sequence. Then, the polynomials
{Pn}n are classical.

Proof. Since {Pn}n≥0 is a MOPS, it satisfies a three–term recurrence rela-
tion

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), n ≥ 0,

P−1(x) = 0, P0(x) = 1,

with γn ̸= 0, n ≥ 0.
In this way,

xQ
(N)
n+N (x) =

n+ 1

n+N + 1
Q

(N)
n+N+1(x) + βnQ

(N)
n+N (x) + γn

n+N

n
Q

(N)
n+N−1(x).

(4.1)
On the other hand, the monic polynomial sequence {Qn}n≥0 satisfies a

three–term recurrence relation

xQn+N (x) = Qn+N+1(x) + bn+NQn+N (x) + gn+NQn+N−1(x).

Taking N–th order derivatives in this relation, we get

xQ
(N)
n+N (x)+NQ

(N−1)
n+N (x) = Q

(N)
n+N+1(x)+bn+NQ

(N)
n+N (x)+gn+NQ

(N)
n+N−1(x).

(4.2)

By eliminating the term xQ
(N)
n+N (x) between (4.1) and (4.2), we obtain

NQ
(N−1)
n+N (x) =

N

n+N + 1
Q

(N)
n+N+1(x)+

+ (bn+N − βn)Q
(N)
n+N (x) +

(
gn+N − n+N

n
γn

)
Q

(N)
n+N−1(x). (4.3)

Taking again derivatives in this relation we deduce that each polynomial Pn

can be expressed as a linear combination of the derivatives of three consecu-
tive polynomials in the sequence {Pn}n and, therefore, we conclude that they
are classical by using the characterization of classical orthogonal polynomials
obtained by Marcellán et al. in [7].

12



Remark. This result characterizes the classical orthogonal polynomials as
the only system of orthogonal polynomials having a N–th order primitive
(N ≥ 1) which satisfies a three–term recurrence relation.

Theorem 4.4 Let {Qn}n be the monic orthogonal polynomial sequence as-
sociated with the Sobolev bilinear form (2.1). If the polynomials {Qn}n sat-
isfy a three-term recurrence relation, then the linear functional u is classical
and the point c in (2.1) satisfies

ϕ(c) = 0, (4.4)

ψ(c)− ϕ′(c) = 0, (4.5)

where ϕ and ψ are the polynomials in the distributional differential equation
D(ϕu) = ψu satisfied by u.

Proof. Let {Pn}n be the monic orthogonal polynomial sequence associated
with the linear functional u. From Theorem 2.1, we have

Q(k)
n (c) = 0, k = 0, 1, . . . , N − 1, (4.6)

Q(N)
n (x) =

n!

(n−N)!
Pn−N (x), (4.7)

for all n ≥ N . Therefore, using Proposition 4.3, we deduce the classical
character of the polynomials {Pn}n and then the classical linear functional
u satisfies a distributional differential equation

D(ϕu) = ψu,

where ϕ and ψ are polynomials with deg ϕ ≤ 2 and degψ = 1. From
Bochner’s characterization of the classical orthogonal polynomials, (see [2]),
we deduce that the polynomials {Pn}n satisfy the second order differential
equation

ϕ(x)P ′′
n (x) + ψ(x)P ′

n(x) = λnPn(x),

for all n ≥ 0.
Thus the polynomials {Qn}n satisfy the differential equation

ϕ(x)Q
(N+2)
n+N (x) + ψ(x)Q

(N+1)
n+N (x) = λnQ

(N)
n+N (x),
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for n ≥ 0. This differential equation can be written in a more convenient
way(

ϕ(x)Q
(N+1)
n+N (x)

)′
+
(
(ψ(x)− ϕ′(x))Q

(N)
n+N (x)

)′
= κnQ

(N)
n+N (x), (4.8)

where κn = λn + ψ′(x)− ϕ′′(x). Integrating (4.8) we get

ϕ(x)Q
(N+1)
n+N (x) + (ψ(x)− ϕ′(x))Q

(N)
n+N (x) = κnQ

(N−1)
n+N (x) + µn,

where µn is a constant.
For n ≥ 2, let p be a polynomial with deg p ≤ n− 2, then

⟨u, p
[
ϕQ

(N+1)
n+N + (ψ − ϕ′)Q

(N)
n+N

]
⟩ = ⟨u, pϕQ(N+1)

n+N ⟩ − ⟨u, (ϕpQ(N)
n+N )′⟩

= −⟨u, (pϕ)′Q(N)
n+N ⟩

= −(n+N)!

n!
⟨u, (pϕ)′Pn⟩ = 0.

Thus, the polynomial ϕQ
(N+1)
n+N + (ψ− ϕ′)Q

(N)
n+N = κnQ

(N−1)
n+N + µn is orthog-

onal, with respect to u, to every polynomial of degree less than or equal to
n−2, and then it can be written as a linear combination of three consecutive
polynomials Pn

κnQ
(N−1)
n+N + µn = κnPn+1 + snPn + tnPn−1.

¿From (4.3) we have that the polynomial Q
(N−1)
n+N is a linear combination of

the three polynomials Pn+1, Pn and Pn−1, and, since the sequence {Pn}n
constitutes a basis of the linear space of the polynomials, we conclude that
µn = 0, for n ≥ 2.

In this way, the polynomials {Qn+N}n satisfy the differential equation

ϕ(x)Q
(N+1)
n+N (x) + (ψ(x)− ϕ′(x))Q

(N)
n+N (x) = κnQ

(N−1)
n+N (x), (4.9)

for n ≥ 2.
Replacing x = c in (4.9), from (4.6) we conclude

ϕ(c)P ′
n(c) + (ψ(c)− ϕ′(c))Pn(c) = 0, (4.10)

for n ≥ 2.
¿From recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x),
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satisfied by {Pn}n and (4.10) written for n+ 1, n and n− 1, we obtain

cϕ(c)P ′
n(c) +

[
ϕ(c) + c(ψ(c)− ϕ′(c))

]
Pn(c) = 0, n ≥ 3, (4.11)

and subtracting (4.10) from (4.11), we get

ϕ(c)Pn(c) = 0, n ≥ 3.

Therefore, we conclude ϕ(c) = 0 and using again (4.10), ψ(c) − ϕ′(c) = 0.

Corollary 4.5 The only sequences of monic polynomials which are orthog-
onal with respect to a Sobolev bilinear form (2.1) and satisfy a three–term
recurrence relation are

a) The generalized Laguerre polynomials L
(−N)
n ,

b) The generalized Jacobi polynomials P
(−N,β)
n , with β+N not a negative

integer,

c) The generalized Jacobi polynomials P
(α,−N)
n , with α+N not a negative

integer.

Proof. Suppose that the monic polynomials {Qn}n orthogonal with respect
to (2.1) satisfy a three–term recurrence relation. Theorem 4.4 assures that u
is a classical linear functional. If D(ϕu) = ψu is its distributional differential
equation, the polynomials ϕ and ψ are given by the following table

Name ϕ ψ Restrictions

Hermite 1 −2x

Laguerre x (α+ 1)− x α ̸= −n, n ≥ 1

Jacobi 1− x2 (β − α)− (α+ β + 2)x α ̸= −n, β ̸= −n,
α+ β + 1 ̸= −n, n ≥ 1

Bessel x2 (α+ 2)x+ 2 α ̸= −n, n ≥ 2

Then, conditions (4.4) and (4.5) exclude Hermite and Bessel cases. More-
over, in Laguerre and Jacobi cases the only possibilities are the following:
- Laguerre case with α = 0 and c = 0.
- Jacobi case with α = 0, β ̸= −m, m ≥ 1 and c = 1.
- Jacobi case with β = 0, α ̸= −m, m ≥ 1 and c = −1.

Taking into account the results of Section 3, we conclude.
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Note that a reduction of the degree of P
(α,β)
n could occur when either

both α and β + n or α + β + 1 are negative integers (see [12], p.64). An
interesting open problem is to give some kind of orthogonality relations valid
for these polynomials. For the particular case α = β negative integers, this
problem has been solved in [1]: the corresponding Gegenbauer polynomials
are orthogonal with respect to a discrete-continuous Sobolev bilinear form,
where the discrete part is concentrated in two points, namely, 1 and −1.

Corollary 4.6 The monic orthogonal polynomials associated to the Sobolev
bilinear form (2.1) satisfy a three term recurrence relation if and only if the
linear functional u is classical and the point c in (2.1) satisfies ϕ(c) = 0 and
ψ(c) = ϕ′(c).

Proof. It follows from Theorem 4.4 and Corollary 4.5 taking in mind that
Laguerre and Jacobi polynomials satisfy a three–term recurrence relation for
all values of their parameters.

5 Sobolev orthogonal polynomials and second or-
der differential equations

As it is well known (see [12]) Laguerre and Jacobi polynomials satisfy a
second order differential equation for every value of their respective param-
eters.

In this Section, our aim is to characterize the sequences of monic Sobolev
orthogonal polynomials satisfying a second order differential equation. We
can observe that if, for every n, the polynomials {Qn}n satisfy a second
order differential equation

ϕ(x)Q′′
n(x) + σ(x)Q′

n(x) = ρnQn(x),

where ϕ and σ are fixed polynomials and ρn ∈ R, then

deg ϕ ≤ 2, deg σ ≤ 1.

Moreover, if ρ1 ̸= 0 then deg σ = 1.
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Theorem 5.1 Let {Qn}n be the monic orthogonal polynomial sequence as-
sociated with the Sobolev bilinear form (2.1). If, for n ≥ N , every polynomial
Qn satisfies a second order differential equation

ϕ(x)Q′′
n(x) + σ(x)Q′

n(x) = ρnQn(x), (5.1)

where ϕ and σ are fixed polynomials with degree less than or equal to 2 and
1 respectively, and ρn ∈ R, then the linear functional u is classical with
distributional differential equation D(ϕu) = ψu, σ(x) = ψ(x)−Nϕ′(x) and
the point c in (2.1) satisfies

ϕ(c) = 0, (5.2)

(N − 1)ϕ′(c) + σ(c) = 0. (5.3)

Proof. Taking k–th order derivatives in (5.1), from Leibniz rule, we get

ϕ(x)Q(k+2)
n (x) +

(
kϕ′(x) + σ(x)

)
Q(k+1)

n (x)

=

(
ρn − k(k − 1)

2
ϕ′′(x)− kσ′(x)

)
Q(k)

n (x). (5.4)

Let k = N in (5.4), then we deduce that the polynomials Pn orthogonal
with respect to the linear functional u satisfy the second order differential
equation

ϕ(x)P ′′
n (x) + ψ(x)P ′

n(x) = λnPn(x), n ≥ 0,

where

ψ(x) = Nϕ′(x) + σ(x),

λn = ρn+N − N(N − 1)

2
ϕ′′(x)−Nσ′(x).

Therefore u satisfies D(ϕu) = ψu and degψ ≥ 1. Now, since deg ϕ ≤ 2 and
deg σ ≤ 1, from Bochner’s characterization of the classical orthogonal poly-
nomials, (see [2]), we deduce the classical character of the linear functional
u.

Writing equation (5.4) for n = N and k = N − 1 we get(
(N − 1)ϕ′(x) + σ(x)

)
Q

(N)
N (x)

=

(
ρN − (N − 1)(N − 2)

2
ϕ′′(x)− (N − 1)σ′(x)

)
Q

(N−1)
N (x),
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and by substitution in c, since Q
(N−1)
N (c) = 0, we deduce

(N − 1)ϕ′(c) + σ(c) = 0.

Finally, if N = 1 writing (5.1) for n = 2, we get ϕ(c) = 0 and when N ≥ 2,
writing equation (5.4) for n = N , k = N − 2, we get

ϕ(x)Q
(N)
N (x) + ((N − 2)ϕ′(x) + σ(x))Q

(N−1)
N (x)

=

(
ρN − (N − 2)(N − 3)

2
ϕ′′(x)− (N − 2)σ′(x)

)
Q

(N−2)
N (x)

and by substitution in c we deduce ϕ(c) = 0.

Using the same reasoning as in Corollary (4.5), we obtain

Corollary 5.2 The only sequences of monic polynomials which are orthog-
onal with respect to a Sobolev bilinear form (2.1) and satisfy a second order
differential equation (5.1) are

a) The generalized Laguerre polynomials L
(−N)
n ,

b) The generalized Jacobi polynomials P
(−N,β)
n , with β+N not a negative

integer,

c) The generalized Jacobi polynomials P
(α,−N)
n , with α+N not a negative

integer.

Corollary 5.3 The monic orthogonal polynomials associated to the Sobolev
bilinear form (2.1) satisfy a second order differential equation like (5.1) if
and only if the linear functional u is classical and the point c in (2.1) satisfies
ϕ(c) = 0 and ψ(c) = ϕ′(c).

Proof. It follows from Theorem 5.1 and Corollary 5.2 taking in mind that
Laguerre and Jacobi polynomials satisfy a second order differential equation
for all values of their parameters.
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6 A symmetric differential operator: Properties

In order to obtain explicit relations between the sequences {Qn}n and {Pn}n
associated with B(N)

S and u, respectively, we introduce a linear differential
operator F (N) closely related to u. To do this, u must satisfy an extra
condition. This is why, from now on, the functional u in (2.1) will be a
semiclassical one.

Definition 6.1 ([3], [9]) A linear functional u on P is called semiclassical,
if there exist two polynomials ϕ and ψ, with deg ϕ = p ≥ 0 and degψ = q ≥
1, such that u satisfies the following distributional differential equation

D(ϕu) = ψu, (6.1)

or equivalently
ϕDu = (ψ − ϕ′)u. (6.2)

Equation (6.2) can be generalized in the following way:

Lemma 6.2 ([8]) Let u be a semiclassical linear functional, then for every
n we have

ϕn(x)Dnu = ψ(x;n)u, (6.3)

where the polynomials ψ(x;n) are recursively defined by

ψ(x; 0) = 1,

ψ(x;n) = ϕ(x)ψ′(x;n− 1) + ψ(x;n− 1)[ψ(x)− nϕ′(x)], n ≥ 1. (6.4)

Observe that, now, (6.2) adopts the form ϕ(x)Du = ψ(x; 1)u. Taking
derivatives (n− 1)–times in this formula, we get

ϕ(x)Dnu =
n−1∑
i=0

[(
n− 1
i

)
Dn−1−iψ(x; 1)−

(
n− 1
i− 1

)
Dn−iϕ(x)

]
Diu, (6.5)

for n ≥ 1, where

(
n
m

)
= 0 whenever m < 0. Multiplying by ϕn−1 and

using (6.3), we obtain another recursive expression for ψ(x;n):

ψ(x;n)

=
n−1∑
i=0

[(
n− 1
i

)
Dn−1−iψ(x; 1)−

(
n− 1
i− 1

)
Dn−iϕ(x)

]
ϕn−1−i(x)ψ(x; i)

(6.6)
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valid for n ≥ 1.

Lemma 6.3 In the above conditions, we have

ϕn−j(x)ψ(x; j)Dnu = ψ(x;n)Dju, n ≥ j, (6.7)

and consequently

ϕi(x)ψ(x;N − i)DN−ju = ϕj(x)ψ(x;N − j)DN−iu, 0 ≤ i, j ≤ N. (6.8)

Proof. We will show the result by induction on n. The case n = 1, j = 0
comes from (6.3), while the case n = j = 1 is trivial. Suppose that

ϕn−1−j(x)ψ(x; j)Dn−1u = ψ(x;n− 1)Dju,

holds for all j, 0 ≤ j ≤ n− 1. Then,
i) For 0 ≤ j < n− 1, taking derivatives, multiplying by ϕ, using (6.4), and
the induction hypothesis, we have

ϕn−j(x)ψ(x; j)Dnu = ϕ(x)ψ′(x, n− 1)Dju+ ϕ(x)ψ(x;n− 1)Dj+1u−
−{(n− 1− j)ϕ′(x)ψ(x; j) + ψ(x; j + 1)−
−ψ(x; j)[ψ(x)− (j + 1)ϕ′(x)]}ϕn−1−j(x)Dn−1u

= ϕ(x)ψ′(x, n− 1)Dju+ ϕ(x)ψ(x;n− 1)Dj+1u−
−{ψ(x; j + 1)− ψ(x; j)[ψ(x)− nϕ′(x)]}ϕn−1−j(x)Dn−1u

= {ϕ(x)ψ′(x, n− 1) + ψ(x;n− 1)[ψ(x)− nϕ′(x)]}Dju+

+ϕ(x)ψ(x;n− 1)Dj+1u− ψ(x; j + 1)ϕn−1−j(x)Dn−1u

= ψ(x;n)Dju+ ϕ(x)ψ(x;n− 1)Dj+1u− ϕ(x)ψ(x;n− 1)Dj+1u

= ψ(x;n)Dju.

ii) If j = n − 1, multiplying (6.5) by ψ(x;n − 1), and using the induction
hypothesis, we obtain the result taking into account (6.6).

Now, from i) and ii), we conclude, since the case j = n is trivial.

We define a linear differential operator F (N) on the linear space of real
polynomials P in the following way

F (N) = (−1)N (x− c)N
N∑
i=0

(
N
i

)
ϕi(x)ψ(x;N − i)DN+i, (6.9)
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where D denotes the derivative operator and the polynomials ψ(x;n) are
defined as in Lemma 6.2.

Remark. In the particular case of a semiclassical linear functional u defined
from a weight function, expression (6.9) can be written in a very compact
form

F (N) = (−1)N (x− c)N
ϕN (x)

ρ(x)
N
(
ρ(x)DN

)
where ρ denotes the weight function associated with the semiclassical linear
functional u.

In the next Lemma, we recall a very useful formula involving derivatives.

Lemma 6.4 ([8]) Let f and g be n–times and 2n–times differentiable func-
tions, respectively. Then,

f (n)g(n) =
n∑

i=0

(−1)i
(
n
i

)(
fg(n+i)

)(n−i)
.

In the following Proposition, we show how the linear operator F (N) al-
lows us to obtain a representation for the Sobolev bilinear form (2.1), in
terms of the consecutive derivatives of the semiclassical linear functional u.

Proposition 6.5 Let B(N)
S be a Sobolev bilinear form with u semiclassical

and f , g arbitrary polynomials. Then, for 0 ≤ i ≤ N , we have

B(N)
S

(
(x− c)Nϕi(x)ψ(x;N − i)f, g

)
= ⟨DN−iu, fF (N)g⟩.

Proof. From Lemmas 6.2, 6.3 and 6.4, we get

B(N)
S

(
(x− c)Nϕi(x)ψ(x;N − i)f, g

)
= ⟨u,

(
(x− c)Nϕi(x)ψ(x;N − i)f

)(N)
g(N)⟩

=
N∑
j=0

(−1)j
(
N
j

)
⟨u,
(
(x− c)Nϕi(x)ψ(x;N − i)fg(N+j)

)(N−j)
⟩

=
N∑
j=0

(−1)N
(
N
j

)
⟨DN−ju, (x− c)Nϕi(x)ψ(x;N − i)fg(N+j)⟩
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=
N∑
j=0

(−1)N
(
N
j

)
⟨ϕi(x)ψ(x;N − i)DN−ju, (x− c)Nfg(N+j)⟩

=
N∑
j=0

(−1)N
(
N
j

)
⟨ϕj(x)ψ(x;N − j)DN−iu, (x− c)Nfg(N+j)⟩

= ⟨DN−iu, f [(−1)N (x− c)N
N∑
j=0

(
N
j

)
ϕj(x)ψ(x;N − j)g(N+j)]⟩

= ⟨DN−iu, fF (N)g⟩.

Theorem 6.6 The linear operator F (N) is symmetric with respect to the
Sobolev bilinear form (2.1), that is

B(N)
S (F (N)f, g) = B(N)

S (f,F (N)g).

Proof. From Proposition 6.5 and Lemma 6.4, we can deduce

B(N)
S (F (N)f, g) =

N∑
i=0

(−1)N
(
N
i

)
B(N)
S

(
(x− c)Nϕi(x)ψ(x;N − i)f (N+i), g

)

=
N∑
i=0

(−1)N
(
N
i

)
⟨DN−iu, f (N+i)F (N)g⟩

=
N∑
i=0

(−1)i
(
N
i

)
⟨u,
(
f (N+i)F (N)g

)(N−i)
⟩

= ⟨u, f (N)
(
F (N)g

)(N)
⟩ = B(N)

S (f,F (N)g).

Now, we study the degree of the polynomial F (N)xn for every n. Observe
that F (N) vanishes on every polynomial with degree less than N .

Proposition 6.7 For every n ≥ 0, we have

deg
(
F (N)xn

)
≤ n+N max{p− 1, q},

where p = deg ϕ and q = degψ.
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Proof. By using the induction method it is very easy to see that degψ(x;n)
≤ n+max{p−1, q} for all n ≥ 0. Taking into account the definition of the lin-
ear operator F (N), the conclusion follows.

On the other hand, the linear operator F (N) never reduces the degree
for all polynomials.

Proposition 6.8 There exists n0 ≥ N such that

degF (N)xn0 ≥ n0.

Proof. Suppose that degF (N)xn < n, for all n ≥ N . Then, we can expand

F (N)Qn =
n−1∑
i=0

an,iQi.

Thus, since F (N) vanishes on every polynomial of degree less than N , using
its symmetry property, we have

an,i =
B(N)
S

(
F (N)Qn, Qi

)
B(N)
S (Qi, Qi)

=
B(N)
S

(
Qn,F (N)Qi

)
B(N)
S (Qi, Qi)

= 0, i = 0, 1, . . . , n− 1,

and the result follows.

To study the degree of F (N)xn, we need to know the degree of the poly-
nomials ψ(x;N − i), i = 0, . . . , N in formula (6.9). The following Lemma
provides us some combinatorial identities, that will be useful for our purpose.

Lemma 6.9 Let a and b arbitrary real numbers. Then for every non nega-
tive integer n, we have

i) (a)n = (−1)n(−a− n+ 1)n,

ii)
n∑

i=0

(
a
i

)(
b

n− i

)
=

(
a+ b
n

)
,

iii)
n∑

i=0

(−1)i
(
a
i

)(
b− i
n− i

)
=

(
b− a
n

)
,

where

(
a
k

)
and (a)k are given by (3.2) and (3.3).
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Proof. i) It is a direct consequence of the definition of the Pochhammer’s
symbol.
ii) It can be derived from the power series expansion of the identity

(1 + x)a(1 + x)b = (1 + x)a+b,

comparing the coefficients.
iii) This formula can be deduced from i) and ii).

Remark. For a and b positive integer numbers, formulas ii) and iii) can be
found on page 8 in [11].

Let assume that the explicit representation for the polynomials ϕ and ψ
is given by

ϕ(x) =
p∑

i=0

aix
i, ap ̸= 0, p ≥ 0, ψ(x) =

q∑
i=0

bix
i, bq ̸= 0, q ≥ 1,

and without loss of generality, we can suppose that ap = 1.
Next Lemma gives us the degree of the polynomial ψ(x;n) and its leading

coefficient in terms of p, q and bq.

Lemma 6.10 The following assertions are true:
i) If p− 1 < q, then

ψ(x;n) = bnqx
nq + lower degree terms,

and degψ(x;n) = nq, n ≥ 0.
ii) If p− 1 > q, then

ψ(x;n) = (−1)n(p)nx
n(p−1) + lower degree terms,

and degψ(x;n) = n(p− 1), n ≥ 0.
iii) If p− 1 = q, then

ψ(x;n) = (−1)n(p− bq)nx
n(p−1) + lower degree terms.

Therefore,
iii.1) If p− bq ̸= 0,−1, . . . ,−(n− 1) then degψ(x;n) = n(p− 1), n ≥ 0,
iii.2) If p − bq = −k, k ≥ 0, then degψ(x;n) = n(p − 1), 0 ≤ n ≤ k, and
degψ(x;n) < n(p− 1), n > k.
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Proof. These results can be obtained by induction on n.

As we are going to see, the equality in Proposition 6.7 is true for almost
all n, that is, the action of F (N) on a polynomial of degree bigger than
or equal to N increases its degree exactly in Nt being t = max{p − 1, q}.
Therefore, we can write

F (N)xn = F (n;N, t)xn+Nt + . . . ,

where F (n;N, t) denotes the leading coefficient of the polynomial F (N)xn.
We want to notice that this coefficient can be zero for some specific values
of n and in particular for every n < N .

To prove this, we decompose the operator F (N) in N + 1 differential
operators defined by

F (N)
i = (−1)N (x− c)N

(
N
i

)
ϕi(x)ψ(x;N − i)DN+i, i = 0, 1, . . . , N.

(6.10)
Thus,

F (N) =
N∑
i=0

F (N)
i , and F (N)xn =

min{N,n−N}∑
i=0

F (N)
i xn, n ≥ N,

where, for i = 0, . . . ,min{N,n−N},

F (N)
i xn = (−1)N (x− c)N

(
N
i

)
ϕi(x)ψ(x;N − i)

n!

(n−N − i)!
xn−N−i.

Let us denote by Fi(n) the leading coefficient of the polynomial F (N)
i xn

and, for the sake of simplicity, we will put F (n;N, t) = F (n).

Theorem 6.11 Let t = max{p − 1, q}. Except for finitely many values of
n ≥ N , we have

degF (N)xn = n+Nt,

that is,
F (N)xn = F (n)xn+Nt + lower terms degree,

with F (n) ̸= 0. More precisely
i) If p− 1 < q, then

F (n) = (−bq)N
n!

(n−N)!
,
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and degF (N)xn = n+Nt, n ≥ N .

ii) If p− 1 > q, then

F (n) = (p− n+N)N
n!

(n−N)!
,

and

degF (N)xn < n+Nt, N + p ≤ n ≤ 2N − 1 + p,

degF (N)xn = n+Nt, N ≤ n < N + p, n ≥ 2N + p.

iii) If p− 1 = q, then

F (n) = (p− bq − n+N)N
n!

(n−N)!
,

and

iii.1) if p− bq = −k, k = 0, 1, . . . , N − 1, then

degF (N)xn < n+Nt, N ≤ n ≤ 2N − 1− k,

degF (N)xn = n+Nt, n ≥ 2N − k,

iii.2) if p− bq is a positive integer, then

degF (N)xn < n+Nt, N + p− bq ≤ n ≤ 2N − 1 + p− bq,

degF (N)xn = n+Nt, N ≤ n < N + p− bq, n ≥ 2N + p− bq.

iii.3) in another case,

degF (N)xn = n+Nt, n ≥ N.

Proof. To prove the theorem a basic tool will be Lemma 6.10. For this
reason, we distinguish three different cases.
i) Case p− 1 < q. In this situation, we have

degF (N)
i xn = n+Nq − i(q − (p− 1)), i = 0, 1, . . . ,min{N,n−N},

and then, degF (N)xn = degF (N)
0 xn = n+Nq, for all n ≥ N.
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The explicit expression for F (N)
0 xn is

F (N)
0 xn = (−1)N (x− c)Nψ(x;N)DNxn

= (−bq)N
n!

(n−N)!
xn+Nq + lower terms degree,

and the leading coefficient for F (N)xn is

F (n) = F0(n) = (−bq)N
n!

(n−N)!
, n ≥ N.

ii) Case p− 1 > q. In this case, as p > 2, we get

degF (N)
i xn = n+N(p− 1), i = 0, . . . ,min{N,n−N},

and then degF (N)xn ≤ n + N(p − 1), for all n ≥ N. The leading

coefficient of F (N)
i xn is

Fi(n) = (−1)i
(
N
i

)
(p)N−i

n!

(n−N − i)!
, i = 0, 1, . . . ,min{N,n−N}.

Taking into account that

F (n) =

min{N,n−N}∑
i=0

Fi(n), (6.11)

and using Lemma 6.9 iii), we can show that:

If N ≤ n < 2N , since min{N,n−N} = n−N , we obtain

F (n) =
n−N∑
i=0

Fi(n) = n! (p)2N−n

n−N∑
i=0

(−1)i
(
N
i

)(
p− 1 +N − i
n−N − i

)
= n! (p)2N−n

(
p− 1
n−N

)
= (p− n+N)N

n!

(n−N)!
.

On the other hand, if n ≥ 2N ,

F (n) =
N∑
i=0

Fi(n) =
n! N !

(n−N)!

N∑
i=0

(−1)i
(
n−N
i

)(
p− 1 +N − i

N − i

)
=

n! N !

(n−N)!

(
p− 1− n+ 2N

N

)
= (p− n+N)N

n!

(n−N)!
.
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Observe that, since p is an integer bigger than 2, from the definition of
the Pochhammer’s symbol (p − n + N)N , we have F (n) = 0 if and only if
N + p ≤ n ≤ 2N − 1 + p. Then, there exist exactly N values of n such
that degF (N)xn < n + N(p − 1). In another case, we have degF (N)xn =
n+N(p− 1).

iii) Case p− 1 = q.
First, we assume that p − bq = −k, k = 0, 1, . . . , N − 1. In this case,

by Lemma 6.10, degψ(x;N − i) = (N − i)(p − 1), if 0 ≤ N − i ≤ k and
degψ(x;N − i) < (N − i)(p− 1) for k + 1 ≤ N − i ≤ N .

Therefore, for n ≥ N , we have degF (N)
i xn < n + N(p − 1) when i =

0, 1, . . . , N − k− 1, and degF (N)
i xn = n+N(p− 1) if N − k ≤ i ≤ N . In

this way, degF (N)xn < n+N(p− 1) when N ≤ n ≤ 2N − k − 1.

For n ≥ 2N − k, we can observe that

F (n) =

min{N,n−N}∑
i=N−k

Fi(n),

where, by Lemma 6.9 i),

Fi(n) = (−1)N
(
N
i

)
(−1)N−i(−k)N−i

n!

(n−N − i)!

= (−1)N
(
N
i

)
(i+ 1− (N − k))N−i

n!

(n−N − i)!
.

Now, we give an explicit expression of F (n). Suppose 2N −k ≤ n < 2N ,
then min{N,n−N} = n−N , and using Lemma 6.9 ii)

F (n) = (−1)N
n−N∑

i=N−k

(
N
i

)
(i+ 1− (N − k))N−i

n!

(n−N − i)!

= (−1)N
n! N !

(n−N)!

n−(2N−k)∑
i=0

(
k
i

)(
n−N

n− (2N − k)− i

)
= (−1)N

n! N !

(n−N)!

(
n+ k −N
n− (2N − k)

)
= (−1)N (n+ 1− (2N − k))N

n!

(n−N)!
.
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If n ≥ 2N , again by Lemma 6.9 ii), we have

F (n) = (−1)N
N∑

i=N−k

(
N
i

)
(i+ 1− (N − k))N−i

n!

(n−N − i)!

= (−1)N
n! k!

(n− (2N − k))!

k∑
i=0

(
n− (2N − k)

i

)(
N
k − i

)
= (−1)N

n! k!

(n− (2N − k))!

(
n+ k −N

k

)
= (−1)N (n+ 1− (2N − k))N

n!

(n−N)!
.

Hence, if n ≥ 2N − k,

F (n) = (−1)N (n+1− (2N −k))N
n!

(n−N)!
= (−k−n+N)N

n!

(n−N)!
̸= 0.

Now, we assume that p−bq ̸= 0,−1, . . . ,−(N−1) and thus, from Lemma
6.10, degψ(x;N − i) = (N − i)(p − 1), i = 0, 1, . . . , N . As in the case

p−1 > q, we have degF (N)
i xn = n+N(p−1), i = 0, 1, . . . ,min{N,n−N},

degF (N)xn ≤ n+N(p− 1), and also (6.11), where

Fi(n) = (−1)i
(
N
i

)
(p−bq)N−i

n!

(n−N − i)!
, i = 0, 1, . . . ,min{N,n−N}.

Using the same technique, we obtain

F (n) = (p− bq − n+N)N
n!

(n−N)!
, n ≥ N.

If p− bq is a positive integer, then F (n) = 0 if and only if N + p− bq ≤
n ≤ 2N − 1 + p − bq, that is, there exist precisely N values of n such that
degF (N)xn < n + N(p − 1), and for the other values of n ≥ N , F (n) ̸= 0
and hence degF (N)xn = n+N(p− 1).

In another case, degF (N)xn = n+N(p−1), for all n ≥ N .

7 Recurrence relations and differential operators

As a direct consequence of Proposition 6.5, which relates the discrete–

continuous Sobolev bilinear form B(N)
S and the one defined from a semi-

classical linear functional u, we can establish some relations between the
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monic Sobolev orthogonal polynomials {Qn}n and the monic orthogonal
polynomials {Pn}n, associated with the semiclassical linear functional u. In
the sequel, for the sake of simplicity, we will denote

kn = ⟨u, P 2
n⟩ ≠ 0, k̃n = B(N)

S (Qn, Qn) ̸= 0, ∀n ≥ 0.

Proposition 7.1 The following formulas hold:

i) (x− c)NϕN (x)Pn(x) =

n+N(p+1)∑
i=r

α
(n)
i Qi(x), n ≥ 0, (7.1)

where r = max{N,n−Nt}, α
(n)
n+N(p+1) = 1 and α

(n)
r =

⟨u, PnF (N)Qr⟩
k̃r

.

ii) F (N)Qn(x) =
n+Nt∑

i=n−N(p+1)

β
(n)
i Pi(x), n ≥ N(p+ 1), (7.2)

where β
(n)
n+Nt = F (n), β

(n)
n−N(p+1) =

k̃n
kn−N(p+1)

.

Proof.
i) Expanding the polynomial (x− c)NϕNPn in terms of the Sobolev poly-
nomials Qn, we have

(x− c)NϕN (x)Pn(x) =

n+N(p+1)∑
i=0

α
(n)
i Qi(x),

where, taking into account Proposition 6.5,

α
(n)
i =

B(N)
S

(
(x− c)NϕNPn, Qi

)
B(N)
S (Qi, Qi)

=
⟨u, PnF (N)Qi⟩

k̃i
.

¿From the orthogonality of {Pn}n and since F (N)Qi = 0 for i < N , we

deduce that α
(n)
i = 0 when 0 ≤ i < r = max{N,n−Nt}.

ii) Because of Proposition 6.7, the expansion of the polynomial F (N)Qn

in terms of Pn is

F (N)Qn(x) =
n+Nt∑
i=0

β
(n)
i Pi(x).
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The coefficients β
(n)
i can be computed using again Proposition 6.5, and there-

fore

β
(n)
i =

⟨u, PiF (N)Qn⟩
⟨u, P 2

i ⟩
=

B(N)
S

(
(x− c)NϕNPi, Qn

)
ki

.

Finally, from the orthogonality of {Qn}n it follows β
(n)
i = 0 for 0 ≤ i < n−

N(p+1).

¿From the symmetry of the linear operator F (N), we can obtain a diffe-
rence–differential relation satisfied by the Sobolev orthogonal polynomials
with respect to the Sobolev bilinear form (2.1), where u is a semiclassical
linear functional.

Proposition 7.2 (Difference–Differential Relation) For every n ≥ N ,
the following relation holds

F (N)Qn(x) =
n+Nt∑
i=r

γ
(n)
i Qi(x), (7.3)

where r = max{N,n−Nt}, γ(n)n+Nt = F (n) and γ
(n)
r =

B(N)
S

(
Qn,F (N)Qr

)
k̃r

.

Proof. Consider the Fourier expansion of the polynomial F (N)Qn in terms
of Qn which, by Proposition 6.7, is

F (N)Qn(x) =
n+Nt∑
i=0

γ
(n)
i Qi(x).

Then

γ
(n)
i =

B(N)
S

(
F (N)Qn, Qi

)
B(N)
S (Qi, Qi)

=
B(N)
S

(
Qn,F (N)Qi

)
k̃i

,

where we have used Theorem 6.6. Notice that γ
(n)
i = 0 for 0 ≤ i < N and

that the orthogonality of the polynomials {Qn}n leads to γ
(n)
i = 0 for 0 ≤ i <

n−Nt. So the result follows.
Remark. In formulas (7.1) and (7.3), when r = n − Nt, the coefficients

α
(n)
r and γ

(n)
r can explicitly be given by

α(n)
r = F (r)

kn

k̃r
, γ(n)r = F (r)

k̃n

k̃r
.

Recall that the values of F (n) had been calculated in Theorem 6.11.
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