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Abstract Let {IP,},>0 and {Qy},>0 be two monic polynomial systems in several

variables satisfying the linear structure relation

Qn =P, +M,P,_y, n>1,

where M, are constant matrices of proper size and Qp = Py. The aim of our work is
twofold. First, if both polynomial systems are orthogonal, characterize when that lin-
ear structure relation exists in terms of their moment functionals. Second, if one of the
two polynomial systems is orthogonal, study when the other one is also orthogonal.

Finally, some illustrative examples are presented.
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1 Introduction

Linear combinations of two families of orthogonal polynomials of one (real or com-
plex) variable have been a subject of great interest for a long time. For instance, it is
well known that some families of classical orthogonal polynomials can be expressed
as linear combinations of polynomials of the same family with different values of
their parameters, the so—called relations between adjacent families (e.g. see formu-
las in Chapter 22 in [1] for Jacobi polynomials, or (5.1.13) in [29] for Laguerre
polynomials).

The study of such type of linear combinations is related with the concept of
quasi—orthogonality introduced by M. Riesz in 1921 (see [9, p. 64]) as the basis of
his analysis of the moment problem. J. A. Shohat (see [28]) used this notion in con-
nection with some aspects of numerical quadrature; the behaviour of the zeros is also
of relevance for problems of approximation theory and interpolation by polynomials,
among others.

Likewise, linear combinations of families of multivariate orthogonal polynomials
are related with the concept of quasi—orthogonality and they also play an important
role in the study of quadrature formulas. Recall the well known results of Gaussian
quadrature formulas in the case of one variable (see, e.g. [9]): If {p,} is a sequence
of orthogonal polynomials with respect to either a weight or a definite positive linear
functional, then the roots of p, + p p,—1 with p € R are the nodes of a minimal
quadrature formula of degree 2n — 2. Moreover, for p = 0 one even obtains a formula
of degree 2n — 1. A straightforward extension of these results for higher dimension
is not possible. The study of Gaussian cubature started with the classical paper of J.
Radon in 1948. The Gaussian cubature formulas of degree 2n — 1 were characterized
by Mysovskikh [24] in terms of the dimension of common zeros of the multivariate
orthogonal polynomials. However, these formulas only exist in very special cases and
it is the case of degree 2n — 2 that becomes interesting. Here, the linear combinations
of multivariate orthogonal polynomials play an important role; again the existence
of a Gaussian cubature, now of degree 2n — 2, is given in terms of the dimension of
the distinct real common zeros of them, see [23, 26]. Moreover the nodes of these
cubatures formulas are the common zeros of these quasi—orthogonal polynomials.
Some progress in this area can be seen in [7, 27, 30, 31].

In recent years there has been a growing interest in linear relations in one variable
because of its relationship with several problems, for example:

— The Sobolev orthogonal polynomials, in particular in connection with the notion
of coherent pair of measures [17, 20, 22] and its generalizations.

— The so—called inverse problem in the constructive theory of orthogonal polyno-
mials: Given two families of polynomials linearly related, find necessary and
sufficient conditions in order to one of them be orthogonal when the other one is
orthogonal; see [2, 3, 5, 20].

— Spectral transformations of moment functionals: Christoffel, Geronimus,
Uvarowv,...; see [19, 21, 33].

— Different properties related to the interlacing of the zeros of particular linear
combinations of orthogonal polynomials; see, for instance, [6, 8, 13].
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The interest on the orthogonal polynomials of several variables has also increased
in recent years. Some problems in which linear relations of multivariate orthogonal
polynomials play an important role, are the following: Sobolev orthogonal polyno-
mials (see, e.g. [25, 32]), and the so—called Uvarov and Geronimus modifications of
multivariate moment functionals (see, e.g. [10-12, 15]).

In this context, the multivariate inverse problem in the sense described above
appears in a natural way and, as far as we know, it has not been considered in the
literature.

Our purpose in this paper is to study polynomial systems in several variables
{Pn}n>0 and {Q,},>0 satisfying a linear structure relation

Qn =P, +M,P,_y, n>1,

where M, are constant matrices of appropriate size, and Q9 = Py. When both
polynomial systems are orthogonal, then we prove that only two cases occur, either
M, = 0,n > 1, or all the matrices M,, have full rank. For these kind of non triv-
ial linear relations, we analyze two inverse problems according to either {IP,},>¢ or
{Qn}n>0 be orthogonal systems. In the case of one variable the study of these two
inverse problems is similar (see [20]), however for multivariate orthogonal polynomi-
als, the non—commutativity of the matrices product leads to a quite different situation.
Thus, this study is not a simple generalization of the one variable case.

The article is organized as follows. In Section 2 we introduce the basic back-
ground that will be needed in the paper. The main results will be stated and developed
in Section 3. First part of this section is devoted to study the rank of the matri-
ces M, in terms of the rank of M/, when both polynomial systems are orthogonal.
Moreover, we give a characterization of the existence of such linear combination
in terms of the relation between the moment functionals. Second part of this sec-
tion focuses on the study of the multivariate inverse problem. So in Theorems 3
and 4, assuming that one of the polynomial systems is orthogonal we analyze when
the other one is also orthogonal. In Section 4 we present a wide set of examples of
orthogonal polynomial systems linearly related as above, giving the explicit expres-
sions of the matrices M,,. We show particular linear combinations of some bivariate
orthogonal polynomial systems introduced by Koornwinder which provide Gaussian
cubature formulas of degree 2n — 2 and besides these quasi—orthogonal polynomial
systems are also orthogonal. On the other hand, using the well known Koornwinder’s
method, we give an example that involves orthogonal polynomials in two variables
on the unit disk. Also we include two examples, namely Krall Laguerre—Laguerre
and Krall Jacobi—Jacobi, where the families are orthogonal with respect to quasi—
definite moment functionals. Finally, we deduce relations between adjacent families
of classical orthogonal polynomials in several variables, that is, we express some
polynomials as linear combinations of polynomials of the same family with different
values of their parameters. In particular we show that these formulas hold for Appell
polynomials on the simplex, multiple Jacobi polynomials on the d—cube, and multi-
ple Laguerre polynomials on Ri. These relations can be seen as a generalization of
the ones for Jacobi and Laguerre polynomials in one variable.
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2 Definitions and tools

Through this paper, we will denote by I1¢ the linear space of polynomials in d vari-
ables with real coefficients, and by I'IZ" its subspace of polynomials of total degree
not greater than n.

Let us denote by My (R) the linear space of & x k real matrices, and by
M« k(l'[d ) the linear space of & x k matrices with polynomial entries. If 1 = k, we
will denote M, «x = My, and, in particular, I, will represent the identity matrix of
order 1. When the dimension of the identity matrix is clear from the context, we will
omit the subscript. Given a matrix M € M}, we denote by M' its transpose, and by
det(M) its determinant. As usual, we say that M is non—singular if det(M) # 0. On
the other side, if My, --- , M; are matrices of the same size & x k, we define their
Jjoint matrix M by [14, p. 76]

M,
M; t t t\!
M = : - (M]aMza et aMd) ) M S Mdh)(k‘

My

Next, we will review some basic definitions and properties about multivariate orthog-
onal polynomials that we will need along this paper. Most of them can be found in
[14] which is the main reference in this work.

Let Ny denote the set of nonnegative integers. For a multi-index v =

wi,...,v9) € Ng, andx = (x1,...,xq) € R4 we define a monomial in d variables
as
v Vi Vd
X = )Cl . xd

The nonnegative integer |v| = vy + - - - + vy is called the fotal degree of x".
For a fixed total degree n > 0, the cardinal rff of the set of independent monomials

of total degree n is
d n+d-—1
ry = d—1 .

It is known that there is no natural order for the monomials. In this work, we will use
the graded lexicographical order, that is, we order the monomials by the total degree,
and within the monomials of the same total degree, we use the reverse lexicographical
order.

Forn > 0, let

{Po’fl (%), Po’fz(x), e P"r‘lr;',‘ (x)} ,
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be rff polynomials of total degree n independent modulus IT¢ n_1» Where
01,02, ..y ..., Qg are the elements in {ot € Nd || = n} arranged according to

the reverse lex1cographlcal order. Then we use the column vector notation

Pl (x)
Py, (x) '
P, =P,(x) = : = <P(;ZI (%), P" x),..., P(;lrd (X)) .

v g (%)

’n

The sequence of polynomial column vectors {IP,},>0 will be called a polynomial
system (PS).

Observe that a PS is a sequence of vectors whose dimension and total degree are
increasing: Py is a constant, Py is a column vector of dimension r{i of multivariate
independent polynomials of total degree 1, [P, is a column vector of dimension rﬁl
whose elements are multivariate independent polynomials of total degree 2, and so
on. The simplest case of polynomial system is the so—called canonical polynomial

system, defined as

— o] (%) ard t- —
Xutnso = (x",x"2, ..., x ) ol =n

Using the vector notation, for a given polynomial system {P,},>0, the vector
polynomial P, can be written as

n>0

Pp(x) = Gn,n X, + Gn,n—l Xn—1 4+ + Gn,O Xo,

where Gn = Gy p 1s called the leading coefficient of IP,, which is a square matrix of
size r . Moreover, since {IP,, }” 0 form a basis of 1'[;{ , then G, is invertible.

We will say that two PS {P,},>0 and {Q,},>0 have the same leading coefficient
if P, and Q, have the same leading coefficient for n > 0, that is, if the entries of the
vector P, — @, are polynomials in I'IZ_I, forn > 1.

In addition, a polynomial system is called monic if every polynomial contains only
one monic term of higher degree, that is, forn > 0,

Pl (x)=x"+R(x), 0<k=<rl

where |ox| = n, and R(x) € 1'[;1_ |- Equivalently, a monic polynomial system is
a polynomial system such that its leading coefficient is the identity matrix, i. e.,
G, = l.a,forn > 0.

Let s = (Sa)aeNg’ be a multi-sequence of real numbers. We define a linear

functional u on IT¢ by means of the moments

(u, x%) = sq,
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and extend it by linearity. The linear functional u will be called a moment functional.
Recall some operations acting over a moment functional u:

e the action of u over a polynomial matrix
(. M) = ((u, m; j(x)))

where M = (m; j )| € M%),
e the left product of a polynomial p € T1¢ times u

h,k
ij=1

€ Mpxr(R),

(pu.q):=(u.pq). ¥gen’
e the left product of a matrix of polynomials M times u
(Mu,q):=(u,M'q), ¥gel’ VM e Mpc(.

o the left product of a matrix of constants M times u acting over a polynomial
matrix

(Mu, Ny := (u, M' Ny = M" (u, N),YM € Mpxi(R), YN € Mpx(T1%).
We say that a polynomial p € Hff is orthogonal with respect to u if

(uqu>=0, qul_[d

n—1-

The orthogonality can be expressed in terms of a PS {IP,,},>0 as

0eMay,a, if nz#m,

P, Py = .
(u, P, m) {Hn EMrgxr,‘f’ lf n=m,

where H, is a symmetric and non-singular matrix. We shall call {P,},>0 an
orthogonal polynomial system (OPS).

A moment functional u is called quasi—definite [14, p. 79] if there is a basis B of
114 such that for any polynomials p, g € B,

(u,pq) =0, if p#gq, and (u, p?) #0.

The moment functional u is quasi—definite if and only if there exists an OPS
with respect to u. If u is quasi—definite, then there exists a unique monic orthogonal
polynomial system (MOPS) with respect to u.

Moreover, u is positive definite if (u, p*) > 0, for all p # 0, p € 4. If
u is positive definite, then it is quasi—definite, and it is possible to construct an
orthonormal polynomial system, that is, an orthogonal polynomial system such that
(u, P, ]P’£l> = Ir;’z.

As in the scalar case, orthogonal polynomials in several variables are character-
ized by a vector—matrix three term relation (see Theorem 3.2.7 in [14], p. 79). More
precisely,

Theorem 1 ([14]) Let {Pp},=0 = {P}(x) : |a| = n,n € No},Py = 1, be an
arbitrary sequence in T1%. Then the following statement are equivalent.

(1) There exists a linear functional u which defines a quasi—definite moment
functional on 114 and which makes {Py}n>0 an orthogonal basis in .
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(2) Forn > 0,1 <i < d, there exist matrices Ay ;, Bn; and Cy, ; of respective

sizes rj X rr‘li+1, rfll X rfll and rj X rr‘l"’_l, such that

(a) the polynomials P, satisfy the three term relation

XiPp = AuiPuy1 + By ,iPy +CoiPp1, 1<i<d, (1)

withP_1 =0and C_1; =0,
(b) forn >0andl <i <d, the matrices A, ; and C,1,; satisfy the rank
conditions
rank A, ; = rank C,11; = r?, )
and, for the joint matrix A, of A, and the joint matrix C}’l 41
of C:t1+],i’
rank A, =rank C, | = r,‘le. 3)

The version of this theorem for orthonormal polynomial systems {PP,},>0 is
obtained by changing C,+1 ; by A;,i, 1<i<d,n>0.

When the orthogonal polynomial system {IP, },,>0 is monic, comparing the highest
coefficient matrices at both sides of (1), it follows that A, ; = L, ;, forn > 0, and

1 <i <d, where L, ; are matrices of size r,‘f X r:ll 41 defined by

Ln,,-x"'H =xx", 1<i<d.

These matrices verify Ln,,-Lfl i = Ir;’z, andrank L, ; = r,‘f ; moreover, the rank of the
joint matrix L, of L, is &, | [14,p. 77].

For the particular case d = 2, we have that L,, ;,i = 1, 2, are the (n+ 1) x (n+2)
matrices defined as

10---00 010---0
01---00 001---0

Ln,1: R .. and Ln,2:
00---10 (n+1)x (n+2) 000---1 (n+1)x (n+2)

3 Main results

In this section we consider two monic polynomial systems {P,},>0 and {Q;},>0
related by

Qn =P, +M,P,_1, n>0, (4)
where M,, € Mrgxrd . n > 1, are constant matrices and Qg = IPy. For convenience,
n—

through the paper, we adopt the convention My = 0. From now on, we will say that
{Pn}n>0 and {Qy},>0 are linearly related by means of (4).

The monic character of the polynomial systems in (4) is superfluous. In fact, for
n > 0, let E,, F,, be non—singular matrices of size r,‘f , and define the new polynomial

systems {I@’n}nzo, {@n}nzo by means of

I@)annIP)na @}'I:FHQVD n > 0.
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§ince P, and @Q, are monic, then E, and F;, are the leading coefficients of I@’n and
Qy, respectively.
Multiplying (4) by F,,, we get
Qn = Fn@n =Fn]P)n+FnMnPnf]

= Fn En_l EnPn + Fn Mn E;,]l En—l IEDn—l

= FyE, By + Fy My E By
Then

@n = [en I@n + Mn IAP)n—ls (5)

that is, {I@)n}nzo and {Qn}nzo are linearly related by the above expression, where
K, = F, E;] and M,, = F, M, E-! . When both polynomial systems have the

n—1-
same leading coefficients then K,, = I,4, but, in general, K, is a non—singular matrix.
n

Moreover, rank Mn = rank M,,, n > 0, since the rank is unchanged upon left or right
multiplication by a non—singular matrix [16, p. 13].

Since the definition of linearly related does not depend on particular bases, it is
often more convenient to work with monic polynomial systems.

First of all, we analyze the case when both monic polynomial systems are orthog-
onal, and we deduce some properties about the rank of all matrices M, in relation (4)
in terms of the rank of M.

Lemma 1 Let {P,},>0 and {Qn}n>0 be two monic orthogonal polynomial systems
linearly related by (4). Then

(i) Ifrank My = 0, then rank M, = O for everyn > 1,
(ii) Ifrank My = 1, then rank M,, = rjilfor everyn > 1.

Proof Because of
(@uim =0 ={0FG): p=br,....ba) €NG, Bl =m, m =0},

is an algebraic basis in T1¢, we can associate to it the corresponding dual basis on the
algebraic dual space of I1¢

{f;’: ot:(al,...,ad)eNg, | =n, n 20},
where f; is the linear functional defined as
(for[z’ QZI> = 6:1,;715611,171 te aad,bd'

If f is an arbitrary linear functional in the dual space of T1¢, then it can be written as
a linear combination of the elements of the basis, that is,

+o00
f= Z Z el fr, where &l = (f, Oh). (6)

n=0 |a|=n
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This dual basis can be written as a sequence of row vectors of functionals

n

q)”=<f0?1"“’f0rlld) , nzO,
g ]><r;,1
where «1, ..., a,q are the elements in {ot € Ng Dl = n} arranged according to the

reverse lexicogra]r;')hical order. Obviously, we can express the duality as follows

((I) Qt>_{0€Mr,?><r,‘flv n;ﬁm,
n»s m| — I

r’élis n=m,

and expression (6) can be written in a vector form as

+o00
f=) CEn  En=(f,Qu)eMua,.
n=0

Let u and v be the respective quasi—definite moment functionals associated with the
orthogonal polynomial systems {P,},>0 and {Q,},>0. Since H, = (v, Qn f1> is an
invertible matrix for n > 0, we deduce

7—1 7—1
(Q;Hn U’an> <Hn U’Q” fn>

- 0e M,iya, n #m,
H, 1 <U,Qﬂ Q%)Z { I dxrd

rga n=m,

that is, the row linear functionals ®,, and Q; Hn_l v coincide over the basis {Q,},>0,

and then ®, = Q) H,'v. Thus, there exist column vectors of constants E, €
M, a1 forn = 0, such that we can express u in terms of this dual basis as

Observe that

+00
(0, Qi) =D En A7 (v, Qu Q) = B

n=0
Now, taking into account relation (4), we have
(”’th>=(”’PIk+P§¢71M/£>=O, k>2,
and then
w= (0 A B+ A Eo) v,

where Ef) = (u, Q) = Ho, and E} = (u, Q}) = (u, P} + Py M}) = Ho M.
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Therefore, we can write

u = (Qt] H' M+ ﬁo_1> Hov = A(x)v. %)

(i) Ifrank M; =0, thatis M; = 0, then by (7), u = (1{10—1 H0> v. Thus P, = Q,,
for all n > 0, and again from (4) we obtain M,, = 0.

(il)) Ifrank M| = 1, that is M has full rank, then from (7), u = A(x)v where A(x)
is a polynomial of exact total degree one, namely

d

d
AMx) =) aixi+b, with > lai| #0.

i=1 i=1

Using (4) and the three term relation (1), we get
My Hy—1 = Mn( s P ]Pn ]> ( Qn n 1> ()\(X)UaQn]P); 1>

d d
t ! t
Zzai<vs(@”xipn— Zal P Ln ll= Z n—1,i’
i=1 i=1

in summary,

M, H,_ = H, (Zaz n— 1,)- (8)

The special shape of the matrices L,_1; described in the above section, allows to
deduce that the rank of the matrix (Z _yai L' ) is r |- Then

n—1,i

d d
rank M, = rank M, H,_, = rank H, (Z a; L;—l,i) = rank (Zai L;—l,i) = rr‘f_l,
i=1 i=1

since Hn and H,_ are non-singular matrices and the rank condition is invariant
through non—singular matrices [16, p. 13].

Next, we characterize when two monic orthogonal polynomial systems {P,},>0
and {Q,},>0 are related by a formula as (4) in terms of the relation between their
respective moment functionals.

Theorem 2 Let {IP,},>0 and {Q, },>0 be two monic orthogonal polynomial systems,
and let u and v be their quasi—definite moment functionals, respectively. Then the
following conditions are equivalent:

(i) There exist real matrices My, € M 4 .a 1 with My # 0, such that {P,},>0 and

{Qn}nso are related by (4).
(ii) There exists a polynomial \(x) of degree one such that

u=Arx)v,
andIP’l 75 Ql.
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Proof

(i) = (ii) From (4) and M; # 0 we have P; # Qq, and from (7) there exists a
polynomial A(x) of degree one such that u = A(x)v where

Ax) = (Q’l A7 M+ FI(;‘) Ho.
(ii) = (i) Consider the Fourier expansion of , in terms of the polynomials P,,,
n—1
Qn =P, + ZMn,j IP)j~
j=0
Then
M, ;= <u Q,,]P”j> H' = <A(x) v, Q,,IP”].> H' = <v, Qu A (%) IP”].> H' =0,
0<j<n-2.

Thus
Q=P +MP,_1, n=>1,
where we denote M,, = M, ,,—1.
Observe that if the explicit expression for the polynomial A is A(x) = Zf: 1 Gi Xi+

b, with Zflzl lai| # 0, as in Lemma 1, we get formula (8).
Thus, for n = 1, it follows

In the sequel, we will consider two polynomial systems {IP,},>0 and {Q.},>0,
and we will use the three term relation (1) in the adequate conditions. Whenever the
system {Q,},>0 be orthogonal in its corresponding three term relation, we will use
the tilde notation:

xQp = A~n,i Qn+l + én,i Qn + én,i Qu—1, n=0, ®

and assume that conditions (2) and (3) for An, ; and én,i are satisfied.

Now, let us analyze the following problem: assuming one of the two polynomial
systems related by (4) is orthogonal, characterize when the other is also orthogonal.
As a consequence of Lemma 1 the case when the matrix M in the relation (4) has
full rank is the only case to be considered, so the condition rank M; = 1 will be
imposed in what follows.

We obtain the following two characterizations.

Theorem 3 Let {Q,},>0 be a system of monic orthogonal polynomials satisfying

(9). Define recursively a polynomial system {IP,,},>0 by (4) with rank My = 1. Then
{Py}n>0 is a monic orthogonal polynomial system satisfying the three term relation
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(1) if and only if
M,Ch_1;=CniMu_1, n=>2, (10)
and
An,i = An,i = Ll’L,is (11)
Bui =By —MyA,_1,;+ ApiMpi1, (12)
Cn,i = Cn,i - Manfl,i + Bn,iMn- (13)
Proof Inserting (4) in (9), we have foreveryi € {1,...,d},andn > 1,

i I — Bui) [Pu + MyPy1] — Ani [Pt + My P
- Cn,i [Pn—l + Mn—lpn—Z] =0.
Assume that {P,},>0 is an OPS. Then by (1), we get

(Ani = Ani)Ppst + (Bui — Bui + MyAy_1,i — An i My )Py
+ (Cpi — Cni + MyBy_1; — ByiMy)P,_
+ (My Co1i = Cpi My )P = 0.
Using the fact that {P,},>0 is a basis of I1¢ we obtain (10)—(13).

Conversely, first of all, we are going to use an induction procedure to verify that
{Pr},>0 satisfies a three term relation as (1). Take the matrices A, ;, B, ;, and Cp ;

given by (11), (12), and (13), respectively. Multiplying (4) for n = 1 by Ao ;, it is
easy to see that
xi Po = Ao, P1 + (Bo.i + Ao,iM1)Po,

and so the first step for the induction procedure is obtained. Now, we suppose that
(1) holds for n — 1 and we are going to prove it for n.
Multiplying P, 1 by A, ; in the relation given in (4), and using the three term
relation for {Q,},>0 and again (4), we get
An,i]Pn+l = xiQn - én,i(@n - CN‘n,i(@nfl - An,iMn+]]Pn
= xiPp + My x;iPp_1 — (Bn,i + An,iMn—i-l)Pn
_(Cn,i + Bn,iMn)Pnf] - Cn,iMnfl]P)nfL
and by the induction hypothesis for x;P,_1, we obtain
An,iP;H»] = x;iP, — (én,i - MnAnfl,i + An,iMn+])Pn
—(Cni — MuBy—1,i + BniMp)Py_1
_(Cn,iMn—l - MnCn—l,i)Pn—Z-

Then taking into account (10) we achieve the three term relation for {,},>0.
Also, we have

rank A, ; = rank An,,- =rank L,; = r,‘f, 1<i<d,
and, for the joint matrix A,, we get

rank A, = rank An =rank L, = rfllH.
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To conclude, consider the linear functional u defined by
<Mal>:15 <M5]P)n>:Oa nZ 17

which is well-defined since {IP, : n > 0} is a basis of [19. We have just proved that
{P,}n>0 satisfies a three term relation (1) and A, has full rank, then using the same
arguments as in [14, p. 80], we obtain that

(. PeP) =0, k. (14)

Next, we show that, for every n > 0, the symmetric and square matrix H, =
(u, P, P!,) is invertible, that is, it has full rank. Taking into account (4) and (14) we
have

(u,(@;)zo, n>2,

and expanding the linear functional u in terms of the dual basis of {Q,},>0, and
handling as in the proof of Lemma 1, we can deduce that formula (8) holds, that is

d
M, H,—y = H, (Za,» L;_u> , n>1
i=1

i=l1 n—1,i

We know that rank (Zd a; L' ) = "2171' Since the matrix I:I,, is non—singular
and the rank condition is invariant through non—singular matrices, we get

d d
rank H,, (Z a; L;_Ll) = rank (Z a; L;_Li) =rd |,
i=1 i=1

and then
r,‘ll_l =rank M,, H, | < min{rank M,,, rank H,,_|} <rank H,,_| < r,‘f_l.
Therefore rank H,,_| = rjfl, n > 2. Moreover, forn = 0,

Hy = (u, Py Ph) = (u, 1) = 1,

is an invertible matrix, and so for every n > 0, H, is invertible. Thus, {PP,},>¢ is an
OPS with respect to u and the proof is completed.

Now, we study the case when the monic polynomial system {IP, },>0 is orthogonal.

Theorem 4 Let {P,},>0 be a monic orthogonal polynomial system satisfying the
three term relation (1). Define the polynomial system {Q,},>0 by means of (4) with
rank My = 1. Then {Q,},>0 is a monic orthogonal polynomial system satisfying (9)
if and only if formula (10) holds and

rank Coy1,; =r?, 1<i<d,
rank C’fH_l = rffH,
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where
An,i - An,i - Ln,ia
Bn,i = Bn,i + MnAnf],i - An,iMn+]a
Cn,z = Cn,i + Man—l,i - Bn,iMn-

Proof The necessary condition has already been proved in Theorem 3. Conversely,
writing (4) for n + 1, multiplying by A, ;, and using the three term relation for Py,
we get

AniQuy1 = xiPy — (Bui — Ap,iMus1) Py — Cn iPu_i.

Using again (4), we have

An,iQn+] = xi@n - (Bn,i - An,iMn+l) Qn
_Mnxipnf] - [Cn,i - (Bn,i - An,iMn+l) Mn] IP)nf]-

Now, inserting (4) in (1), we obtain
XiPy_1=An—1,i Qu — MpPp_1) + Bp_1,;Py1 + Cy—1,iPr—2,
and therefore

An,iQn+] = xi@n - (Bn,i - An,iMn+] + MnAnfl,i)Qn
- [Cn,i + Man—l,i - MnAn—l,iMn - (Bn,i - An,iMn—H) Mn] IP)n—l
_Mncnfl,i]P)nfl

In order to finish the proof, it is enough to replace P, by @,,_1 = M,,_llen_z and
take into account the hypothesis (10) and the expressions of A, ;, B, ;, and C, ;.

It is worth to observe an essential difference between Theorems 3 and 4. In The-
orem 3, starting from the orthogonality of Q,, the conditions of full rank for the
matrices Cp41,i, i = 1,...,d and the joint matrix C}’H] are deduced from (10).
However the situation is quite different if we assume the orthogonality of P,. So
in Theorem 4, although the condition which appears in the characterization of the
orthogonality of Q,, is the same (10), it can not be deduced from it the requirements
about the full rank of the matrices C‘n+1 i, 1 =1,...,d and the joint matrix C'; il

Next, we give an example with d = 2 to show that the required conditions of full
rank for the corresponding matrices in Theorem 4 are not superfluous. Indeed, for
i = 1, 2, consider the matrices

t
An,i = Ln,ia Cn,i = _(Lnfl,i) s Bn,i = Ln,iCn+],i - Cn,iLnf],i-

Observe that B, ; are (n + 1) x (n 4+ 1) symmetric matrices with entries equal to O
up to the entry (n + 1,n + 1) of B, 1, and the entry (1, 1) of B, » which are equal
to —1. Obviously, A, ; and C,41; fori = 1, 2, and the joint matrices A, and C,’Hr1
have full rank. Then by Theorem 1, there exists a unique MOPS {P,},>¢ with three
term relation coefficients A, ;, B, ;and Cy,;,i = 1,2.

Consider M, = C, 1, and define a monic polynomial system {Q },>0 by

Q=P +M, Py, n>1
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Taking
Ani = Ani, n=0,
Bui = Byi+ MyAy_1;— ApiMyi1. n =0,
Cni = Cni+MyBy_1;— By iM,, n>1,
straightforward computations lead to

An,i = Ln,iy n >0,

Bn,] = 0n+l,n+]a Bn,2 = B}’L,za n >0,
CM‘n,l = Cn,](ln + B}’L*l,])a CN‘n,2 = Cn,2, n>1.
Moreover,
CoiMy_1 =Cni I+ By_11)Cp1.1=Cn1Cpo1.1 =My Cy_11, n=>2,
and

Cn,2 M, =M, Cn—l,Zs n>?2.

Then by the previous results, the system {Q, },>0 satisfies a three term relation with

matrix coefficients A, ;, B,; and C, ;, i = 1,2. However rank CN'n,l =n — 1, that
is the matrix C, 1 does not have full rank and therefore the system {Q,},>0 is not
orthogonal.

Note that concerning to the orthogonality of the linearly related polynomials,
the above observation shows an important difference between the cases of several
variables and one variable, and so the case of several variables is not a simple
generalization of the case of one variable (see for instance [20, Theorems 1 and 2]).

4 Examples

In this section we present several particular cases of orthogonal polynomial systems
{Pr}n>0 and {Q, },>0 related by (4), or equivalently (5), giving the explicit expression
of the involved matrices.

4.1 Bivariate orthogonal polynomials related to Gaussian cubature formulas

Linear combinations of orthogonal polynomials (quasi—orthogonal polynomials)
in several variables have been considered in connection with Gaussian cubature
formulas. We apply our previous results to some examples developed by Schmid
and Xu [27] based on some bivariate orthonormal polynomials introduced by
Koornwinder in [18]: Let w(x) be a positive weight on an interval of R. Let {p, },>0
be the sequence of orthonormal polynomials with respect to w(x). It is well known
that these polynomials satisfies the three-term recurrence formula

xpp(x) Zanpn+l(x)+bnpn(x)+anflpnf](x), n=>0,

where pp = 1 and p_; = 0. Denote by {IP,},>¢ the sequence of bivariate orthonor-
mal polynomials with respect to the weight function (u? — 4v)"Y2W (u, v) where
W, v) =wx)w(y),andu =x +y, v =xy.
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In [27] the authors give an specific linear combination of the form Q, = P, +
M, , Pr—1 with

1---0 0

My =M, =p () ] O , p e R\{0},
0---0+/2
0--0=0/ itysn

in order to get explicit Gaussian cubature formulas of degree 2n — 2.

Concerning to the orthogonality of the system {Q,},>0, taking into account that
{Py}n>0 is an orthonormal polynomial system, Theorem 4 yields the following
characterization:

{Q,}n>0 is an orthogonal polynomial system if and only if

Cnl }’Ll_MAn 2,00 nZZ, i=1727 (15)
and
tankC,; =n, n>1, i=1,2,
rank62=n+1, n>1,
with
An,i - An,ia nZOa i:1525
By = ,”-+M An—ti—AniMyy, n=1, i=1.2,
Cn,i = n 1,+Man 1,i — Bn,iMns n>1, i=12

Using the explicit expressions for M, and for the matrices involved in the three—
term relations satisfied by P, given in [27], it is not too difficult to check that

)\”,p 0 O O
0 Anp e 0 0
6 = E E '.- E E ) n= 2’
n,l O 0 }\n,p O
O () pa,—2 \/2)»;1,/)
0 0 - —2p%an2 —2pn, (n+1)xn

with
)\n,p =dp—1 — :02 (an—1 —an) + p (bp—1 — by).
Moreover, (15) for i = 1 holds if and only if

(@n—1 —ap—2) + pby—1 — by) + pz(an —a,—1) =0, n>2.
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In particular, we analyze the orthogonality of the system {Qy},>0 when w(x) =
W(q, ) (x) is a Chebyshev weight. Recall,

a) Chebyshev of the firstkind: o = 8 = —1/2, w1/2,-1/2)(x) = n\/:—xZ’
ap=1/v2, ay=1/2, n>1, and b, =0, n>0.
b) Chebyshev of the second kind: & = B = 1/2, w(12,1/2(x) = 2 V1 —x2,
ap=1/2, n>0, and b, =0, n>0.

¢) Chebyshev of the third kind: @ = —B = 1/2, wy2,—1/2(x) = | \/ e

ap,=1/2, n>0, by=-1/2 and b, =0, n>1.
d) Chebyshev of the fourthkind: o = —8 = —1/2, w(_12,1/2)(x) = ; \/%fj,

an=1/2, n>0, by=1/2 and b, =0, n> 1.

Observe that (15) for i = 1 does not work if w(x) is the Chebyshev weight of the
first kind while for the remainder Chebyshev weights it holds. Thus, {Q,},>0 is not
an orthogonal polynomial system for w(x) = w12, -1/2)(x).

Moreover for the Chebyshev weights of the second, third and fourth kind, it is not
difficult to verify that (15) holds for i = 2 since the matrix C‘n,z takes the following
form

boa az - 0 0 0
at 0 --- 0 0 0
én,2 _ 0 0 -0 a? 0 , n>2,
0 0 . a2 pa2 «/2a2
0 0 -0 (1-pHa® —v2pa’
0O 0 -0 \/2,03@2 (l—|—2p2)a2 (n+1)xn
where a = 1/2.

Also, it is easy to check that for n > 2 rank C~‘,,,,~ =n, i = 1,2, and rank CN',Z =
n+1.
Finally, taking into account that for » = 1 the expressions of the matrices C ;, i =

1,2 are
c _<\/2a+\/2b0p)
1,1 = 2 s
=2bop° —=2ap ), ,
and
~ \/Zabo+\/2,0(b(2)—a2)—\/2abop2
Cio= 2 2(q — b2 bo 03 )
a®+ p*(a = bg) +bop 2x1
we have

rankCy; =1, i=1,2, and rankC! =2,

for the following values of p (o # 0): For all values of p in the case of Chebyshev
of the second kind, for any p # 1 in the case of third kind and for any p # —1 in the
case of fourth kind.
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Summarising, if w(x) is a Chebyshev weight, the system {Q},>0 defined by
Qn = IP)n + Mn,p ]P)nfl

is an orthogonal polynomial system if and only if:

a) p = 0 for Chebyshev of the first kind,

b) p € R for Chebyshev of the second kind,

¢) p € R\{1} for Chebyshev of the third kind,

d) p € R\{—1} for Chebyshev of the fourth kind.

4.2 Koornwinder orthogonal polynomials

We present some special examples of bivariate orthogonal polynomials generated by
orthogonal polynomials of one variable satisfying a linear relation. To do this, we use
the well known Koornwinder’s method [14, 18]. More precisely, let w;(x),i =1, 2,
be two weight functions in one variable defined on the intervals [a;, b; ], respectively,
and let p(x) be a positive function in [a;, b1] verifying either p(x) is a polynomial
of degree 1 or wy(x) is a symmetric weight function and p?(x) is a polynomial of
degree < 2.

For k > 0, we denote by {q,(,k)(x)} o the sequence of univariate monic
n>

orthogonal polynomials with respect to the weight function 0 ()21 w (x), and by
{rn(y)}n>0 the sequence of monic orthogonal polynomials with respect to w(y).
Consider the polynomials of two variables of total degree n given by

y

Qnti(x, ) = ¢ (0) p() g (p o

>, 0<k=<n,

which are orthogonal with respect to the weight function

W(x,y>=w1(x>wz< Y )
px)

on the region {(x, y) € RZ:a; <x <by,a px) <y <b ,o(x)} (see [14], p. 55).
Suppose that there exists a sequence of monic polynomials in one variable
{pn (x)}n>0 orthogonal with respect to the weight w (x) satisfying the relation

(x =& wi(x) = w; (x),

where £ € R\ [ay, b1] is a fixed real number. Then for k& > 0, the two following
weight functions

k
w® @) = p0)¥*H w; (),
~(k ~
TP @) = p0)*H B (),
are related by

x—&wP ) =P ).
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Therefore (see [20]), for a fixed k > 0, the polynomials [q,(Lk) (x)} and the

n>0
polynomials { p,(,k) (x)}n>0 orthogonal with respect to the weight function ﬁgk) (x),
satisfy the linear relation

k
g @) = pP ) +a® p® (x), n=1,

where a,(,k) e R, fork > 0.
Using this fact, the orthogonal polynomials in two variables Q,—x (x, y) satisfy
the linear relation
k
On—ke(x,y) = Ppji(x,y) + a,(,_)k Py i k(x,y),

where
k y
&%wa=mzumuﬁm< )
p(x)
are bivariate polynomials orthogonal with respect to the weight function
W (x, ) = Ax, y) W(x, y),

with A(x, ¥y) = (x — &). In this way, the orthogonal polynomial systems

{Pu(x, MInz0 = {(Pa,0(x, ¥), Pa1,1(5,¥), s Pone, '}, s

{Qu(x, MInz0 = {(Qn,0(x, ¥), Qn—11(x, ¥), -+, Qon(x, YD'},2g
satisfy the matrix linear relation

Qu(x,y) =Py(x,y) + My Py_1(x, y), (16)

where M, is given by

a 0 ... 0
eY)
0 ab . 0

0 0 ---a™?P
0 o0 - 0 (n+1)xn

Using this procedure, we can deduce relations between some families of well
known orthogonal polynomials in two variables. As far as we know, these relations
are new.

4.2.1 Orthogonal polynomials on the unit disk
Orthogonal polynomials in two variables on the unit disk B> =

{(x, y)eR?2:x24+y2 < 1} , (the so—called disk polynomials) are associated with
the inner product

(fs )p = cp f32 e, g, YW (x, y)ydx dy,

where
WPy =A==y -,
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is the weight function, and ¢, is the normalization constant in order to have

(I, ), =1
Using Koornwinder’s tools, disk polynomials can be defined from Jacobi polyno-
mials as

A )kt ) +k X -
0, = P hm(l—ﬁ)2%“”<0—xﬁ 30,

0<k<n,
taking
wix) =1 —x)*, xel-1,1], u>-—1,
wy(y) = (1—yH*, yel-11, p>-—1,
p(x) = V1 —x2.

Since monic Jabobi polynomials satisfy the relation (see [1, Chapter 22])

g PO,

ple) oy pletlae) oy
) n x) m+2a+1 "t

we can write

(10) D) n—k (u+1)
Qn_k,k(xs y) = Pn—k,k (x,y) — 42 +2 Pnflfk,k(x’ y),

where
3 1 k 1
1 pog kot +Hk 2 , 2
P:ilj:,k) (x,y)= Pn(fk )(x) (1 — x2> Pkw W (1 — x2> y
are Koornwinder polynomials associated with the weight function on the unit disk

W (x, y) = (1 —x) WH(x, y).

Then relation (16) holds, where the matrix M, is given by

n 0 -0
On—1---0

~1
n: . . .
mAou+2 |2
0 0 -0

(n+1)xn

4.3 Tensor product of polynomials in one variable

When p(x) = 1, Koornwinder’s method leads to tensor product of orthogonal poly-
nomials in one variable. This case can be rewritten for moment functionals in the
following way. Let v, and w, be two quasi—definite moment functionals (acting on
variables x and y, respectively) and let {g, (x)},>0 and {r, (y)},>0 be their respective
sequences of orthogonal polynomials in the variables x and y.

The polynomials

On—i kX, y) =gnrX)re(y), 0=<k<n,
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are orthogonal with respect to the composition moment functional v

(v, f (YD) = (v, (wy, fGe YD) = (wy, (ve, f ), VS € TT%,
namely v = vy o wy = Wy 0 V.
Suppose that there exists a quasi—definite moment functional u, related with v, by
(x — &) vx = uy,

where & is a fixed real number. Then the orthogonal polynomials {g, (x)},>0 are lin-
early related with the monic orthogonal polynomials {p, (x)},>0 associated with the
quasi—definite moment functional u,. In this way [20], there exist non zero constants
{an}n>1 such that

qn(x) = pn(x) +ay pp—1(x), n=1
Then the polynomials Q,— k (x, y) satisfy a linear relation of the form
Qn—k,k(-xa y):Pn—k,k(-xa y)+an—kPn*]7k,k(-xvy)v nZL Oskin_la
where
Poik (X, y) = pni(x) 1i(y),
are bivariate orthogonal polynomials associated with the moment functional u =
Uy O Wy.
Moreover, both moment functionals are related by
Alx, y)v=u,

with A(x, y) = (x — &), and besides relation (16) holds where the matrices M,, are
given by

a, 0 -0
0 ay_y -0

My=|: : a7
0 0 - q
0O 0 ---0

(n+1)xn
Obviously, an analogous situation occurs when {ri(y)}i>o is linearly related with
other orthogonal polynomial sequence.
Next we present two new examples of orthogonal polynomial systems in two
variables generated from tensor products of polynomials in one variable which are
orthogonal with respect to quasi—definite moment functionals.

4.3.1 Krall Laguerre—Laguerre orthogonal polynomials

Consider the classical Laguerre moment functional
uy =x%e*, a>-—1,
and the modification given by
F(a+1) s
a+1—a
where a; # 0 is a real constant such thato + 1 —aj # 0.

—1
Uy =X Uy + 0,
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Recall that the action of the functional (x — ¢)~! u over a polynomial is defined
by (see [21])
1 ) px) — p(c)
(x—c¢)  u,p):=\u, .

X —=C

The moment functional vy is quasi—definite if and only if (see [5, p. 896]) either

a =T Tae+DH@+1—a)+@—-DHI'n+a) #0, n=>2, for a#0,
or
=@ —1)A+124+---+1/m—=1)+1#0, n>2, for a=0.
Let {L,(,a)}n>0 and {Q,},>0 be the sequences of monic polynomials orthogonal
with respect to the functionals u, and vy, respectively. Since the following relation
XUy = Uy

holds, we have
0n() = L& () +ay L' (x), n=>1.

In [5], it was obtained the explicit expression of the coefficients a,, n > 2,

Up+41
o # 0,
n
ay = ~
Op+1
~ ,a=0.
(o7]

Let wy be any quasi—definite moment functional, and define
V=Uy oWy, U=UyOWy.

These moment functionals satisfy the relation A(x, y)v = u where A(x,y) = x.
If both moment funcionals are quasi—definite, the respective bivariate orthogonal
polynomials satisfy the relation (16) and the matrix M, is given by (17).

4.3.2 Krall Jacobi-Jacobi orthogonal polynomials

In Section 4 of [4], the authors consider the classical Jacobi moment functional
uy = (1 —0)*0+x°f, o B>-1,

and the modification

a+p+2 5.

ol
vr = (1 —x) ”X'H”x’l)2(a+1)+a1(a+,3+2)

where (u,, 1) = fi] (1 —x)*(1 +x)Pdx,and a; # 0 is a parameter satisfying
2+ 1) +ai(@+p+2)#0.

As it was proven in [4], the moment functional vy is quasi—definite if and only if
either

ay =T+ DHI(a+B+2) T MTn+B)+MIT(B+DI'(n+a)T'(n+a+B) #0, n>2,
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2B+ +a@+B+ D+ B+2)

fora #0,and M := 20+ 1D +aj(+ B +2)

, or

~ 2B+ YA _
oz,,._2+a](ﬂ+2) (,3+1)iz:1:<i+ﬂ+i)7é0, n>2 for a=0.

Let iPn(a’ﬂ )} o and {Q,},>0 be the sequences of monic polynomials orthogonal

nx
with respect to the functionals u, and v,, respectively. Since

(1 —x) vy = uy
then
0n(x) = PP (1) +a, PP (o), = 1.
In [4], the authors give an explicit expression of the parameters a,, n > 2, in terms
of the free parameter a;

-2 On+1 a0
Cn+a+pBCn+a+B—-1) a, ’ ’
—2n(n + B) &',,+] o =0
Cn+pRn+p—1) &, '

Then for any quasi—definite moment functional wy, the two quasi—definite
moment functionals v = vy o wy and u = u, o wy satisfy the relation

a, =

A0, v =,

where A(x, y) = 1 — x. Thus, the bivariate orthogonal polynomials associated with
u and v satisfy the relation (16), where the matrix M,, is given explicitly by (17).

4.4 Adjacent families of classical orthogonal polynomials in several variables

This subsection is devoted to deduce relations between adjacent families of classical
orthogonal polynomials in several variables, that is, to give some polynomials as
linear combinations of polynomials of the same family with different values of their
parameters. These relations can be seen as a generalization of the ones for Jacobi and
Laguerre polynomials in one variable.

4.4.1 Classical orthogonal polynomials on the simplex (Appell polynomials)

Classical polynomials on the simplex (see [14], p. 46) are orthogonal with respect to
the inner product

(ﬁmk=m/>ﬂmngW@mX
T
on the simplex in R?,

Td=HX=(x1,x2,~--,xd)€Rd2 X1, %2, ...,x4 >0, 1—1x 20},
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where the weight function is given by

Kk1—1/2 kp—1/2 Kkq—1/2 —1/2 1

W(K)(X) — .X]I / x22 / . "xdd / (1 _ |X|1)Kd+1 / , Ki > _2,
for x € T9 and |x|]1 = x1 + --- + x4 is the usual ¢! norm. Denoting
Kk = (k1,k2,...,Kq+1), the normalization constant w, is taken in order to have

(1, 1), = 1, and it is given by

d+1
r
(1+3 ")

F<K1+é> ---F<Kd+1+é>

Wy =

’

with |k| = k1 + -+ + Kg+1-
We will use the following notation. For x = (x1,...,x4) € R4, we define the
truncation of x as

x0=0, x;=0(0x1...,x5), 1=j=<d.
Observe that x; = x. Associated with v = (v, ..., vg), we define
v/ =Wj,...,v), 1=j=d.
Moreover, we denote by e; = (1, 0, .. ., 0) the first vector of the canonical basis.
For a multi-index v = (v, ..., vq) € Nd , a basis of orthonormal polynomials on

the simplex is given by [14, p. 47]!

¢ ==\ (aj.bj) 2x;j
— aj,o;j
PO (x) = [h{F17! | | ( ! ) pv’ < J - 1)
j=1

I—x;j-1 I —1xj-1l1

-1
= 1] A=) pa @ — 1)

V]
d v/ *1
1— |Xj|l ) (aj,bj) ( 2)(?]‘ )
x oy 1), (8
J.E[z<1 = Ixj-1lh Y N =gl

wherea; = [,/ F!|+2[v/H! |+ d_é_l Jbj=kj— ;, the polynomials {p,(,‘f’b)(t)} .
m>
are the orthonormal Jacobi polynomials in one variable,

R R R
] =
d+1)
<|K|+ 2 Jop

and (a), = a(a+1)---(a+n—1) denotes the usual Pochhammer symbol fora € R
and n > 0, with the convention (a)y = 1.

21)j

3

I'The formula that appears in this Subsection has been rewritten using the document published by the
author in http://pages.uoregon.edu/yuan/paper/Errata.pdf
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The following relation between orthonormal families of Jacobi polynomials with
different parameters can be easily deduced from formula (22.7.19) in [1]:

(a b)(t) _ C(a b) p(a b+1)(l‘) + drgf,b) p(a’b+1)(t), m >0 (19)

m—1

where

b _ 2Qm+b+Dm+a+b+1) 172
mo Tl Cm4a+b+2)Qm+a+b+1) ’

dab) _ 2m(m +a) 2
Qm+a+b+1)2m+a+b) '

Then, substituting in (18), we get
-1
POG) =[] (1= et ot 2x — 1)

a0 pl D 2y - 1)

d 4 [/ +! 4
Xl—[< l_llel )V p]()?j,bj)( 2)(?] _1>
, I —Ixj-1h I—Ixj-1h

j=2
h(/c+e1) (k+ep) ( )
_ v clarby) pleter) v—ei (al by) K+€1
= hf,’” c; P, (x) + hff) d; P, x), (20)
where the second summand vanishes for v = 0. Observe that

{P,E'H_e])(x) |vl=n,n> O} are the orthonormal polynomials defined by (18),
associated with the inner product

(f+ &)icter = Doy /T , F)gEWET) (x)dx,

and
WO ) = ey W (30 = 2 25212 T2 (1 gy T2,
Next, we represent relation (20) in matrix form like (5) using the orthonormal
and HP(KJre')}
n>0

Letn > 1,andletay, ay, . .., a,q be the elements in{a € Ng: || = n} arranged
according to the reverse lex1cograph10al order. We will denote the components of the
multi—index «; as

polynomial systems on the simplex {]P’(K)}

n=

. d

alz(ai,lva[,21"'3ai,d)s l:1921"'3rn'
Observe that ;1 > 1fori = 1,2,..., ;11 p and a1 = Oforrd | <1 = rj
Moreoveray —ey, ap—eq, ..., 0.a —ej aretheelementsm{ﬂeNd |,B|_n—1}

Tn—1
arranged again according to the reverse lexicographical order.
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For n > 1, we define the matrices

1 1
ci) O ' O
1
e 4l
e (D (D _—
Kn Célr()j s Mn O déi; ,
n—1 n—1
. QO v oeee O
O y
of respective sizes rj X rj and r,‘f X r:ll_l, where
i s a
Cop = (k) 01711 v, l=]’2""’rn’
(k+er)
1 aj—ej b . d
dV = o aitn, i=1,2,,n
o

Then, (20) reads as

PY (x) = RV PEFD () + MO PXTV(50) > 1.

n—1

Notice that 1%,5” is non singular and M,E“ has full rank.

Likewise we could have replaced formula (19) in (18) for every Jacobi polynomial

(a’ ’)(t) for 1 < j < d fixed. Then, a similar procedure shows that

PG = KB 6o+ M B 60, n
holds for the matrices

I%,Ej)zdiag{(’) i=1,2,... d},

? I’L

s no

I\;I,Ej):L;fl’jdiagidé{):i=1,2,...r stayj > 1},

with
h(K+e,-) (ktej)
(]) . (aj,bj) d(j) _ ai—ej (aj,bj)
Ca; h(;c) i o h((xK-) i, j ’
where e; = (0,...,0,1,0,...,0) is the jth vector of the canonical basis.

4.4.2 Multiple Jacobi polynomials on the d—cube

Multiple Jacobi polynomials on the cube [14, p. 37] are orthogonal with respect to
the multiple Jacobi weight function

d
WP ) = [T —x)® (1 +x0)™,

i=1
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on the cube [—1, l]d of R, where x = (x1,...,xq), and
a=(ai,...,aq), b=(bi,...,by), a;,b; > —1.

According to [14], an orthogonal basis is given in terms of standard Jacobi polyno-
mials by

Py (3 WD) = PV 0ey) o PO (), o] = . @1

The following relations between adjacent families of Jacobi polynomials can be
found in [1, Chapter 22]:

Prga,b)(t) _ f’;a,b) P;;Hl’b)(f) _ (a b) P(a+1 b)(t) m=>0 (22)
P () = (@b pabth gy 4 gla) p@hth gy -y > 0 (23)
where
@b _ m+ta-+b+1 @b) _ m-+b
T 2m4a+b+1T "™ 2m4a+b+1’
Let j be fixed with 1 < j < d. Then, we can substitute (22) in (21), and we obtain
PV(X, W}a,b)) — f(dj b ) P(al bl)(x ) (dj+] b )( ) L. Pv(:d,bd)(xd)
(aj,bj) ( +l bj)
—gv, Péfh””(x ) Pyl ) PN (xa)

_ 70 B (x W;ﬁww) L ()

As in the above example, we denote by o), 00, ..., 0 the elements in
{a € Nd lo| = n} arranged according to the reverse lexicographical order with
(a,,l,a,,z,...,ai,d)fori:1,2,... andbye; = (0,...,0,1,0,...,0)
the jth vector of the canonical basis.
In this way, if [IP’,, (x; W}“’b))} - denotes the classical Jacobi polynomial
system on the cube defined as above, rfl(;r 1<j<d,andn > 1, we get

Py (3 W) = R (@, by o (s W) = 000 @, ) By (s W)

where

’I’L’

RY(a,b) = dia g{f(a’b) i=1,2,... rd},

M@ b) = Ly diag {gi™ i = 1.2, st =1

s ino
In a similar way, using relation (23) we obtain
Po (x W) = R @, 0y B (5 W) 4 B, ) By (3 W),
where

Mr(l])(b’ a) Lfl ]]dlag igéljjaj)’ | — 1,2, Vd S.t.ai,j > 1} .

s ino
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. . d
4.4.3 Multiple Laguerre polynomials on R%.

Multiple Laguerre polynomials are orthogonal with respect to the weight function
[14, p. 51]
W) =x e xeRY,
which is the product of Laguerre weights in one variable.
As in the above case, multiple Laguerre polynomials defined by

Py (3 W) = LIV L), ol =,

form a mutually orthogonal basis associated with WEK).

Using formula (5.1.13) in [29],
1
L@@ =Ly 0 - Lyt o), m=0
we get the following relation between adjacent families of Laguerre polynomials

Py (5 W) = Py (56 W) = P, (s W),

andej = (0,...,0,1,0,...,0) is the jth vector of the canonical basis. In a matricial
form, we express above relation as

Po (6 W) =B (s W) = Ly B (e W),

where {IP’,, (x; WI(‘K)) } denotes the Laguerre polynomial system on Ri{.

n>0
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