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1. Introduction

Given a linear functional u on the linear space of polynomials with real coefficients, a se-
quence of monic polynomials {Pn}n≥0 with deg Pn = n is said to be orthogonal with respect
to u if 〈u, PnPm〉 = 0 for every n , m and 〈u, P2

n〉 , 0 for every n = 0, 1, . . . .
A very well known result (Favard’s theorem, see [7] for instance) gives a characterization

of a quasi–definite (respectively positive definite) linear functional in terms of the three–term
recurrence relation that the sequence {Pn}n≥0 satisfies, i.e.

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), (1)
P0(x) = 1, P1(x) = x − β0,

whith γn , 0 (respectively γn > 0).
In particular, if u is a positive definite linear functional then there exists a positive Borel

measure µ supported on an infinite subset of R such that 〈u, q〉 =
∫
R

q dµ for every polynomial
q. In such a situation, the zeros of Pn are real, simple, and they are located in the convex hull
of the support of the measure µ, supp(µ). Furthermore, the zeros of Pn−1 interlace with those
of Pn, and this is a relevant fact in numerical quadrature i.e. in the discrete representation

∫

R

q dµ ∼
n∑

j=1

λ jq(c j) . (2)

If we choose the nodes (c j)n
j=1 as the zeros of Pn then (2) has degree of precision 2n − 1, i.e.

it is exact for every polynomial of degree at most 2n− 1 but not for all polynomials of bigger
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degree. As a consequence of the interlacing property aforementioned, the Christoffel-Cotes
numbers (λ j)n

j=1 are positive.
>From a long time, linear combinations of orthogonal polynomials have attracted the

interest of many authors because of its connections with several topics in mathematics, like
quasi–orthogonality, moment problem, mechanical quadrature formulas and so on. Among
others, see [1], [2], [5], [12], [13] and the references therein.

In a remarkable paper ([14]), Shohat studying mechanical quadrature formulas with pos-
itive coefficients considered such linear combinations. More precisely, he proved that (2) has
degree of precision 2n − 1 − k if and only if we choose (c j)n

j=1 as the zeros of Qn where
Qn(x) = Pn(x) + a1Pn−1(x) + · · · + akPn−k(x) with ak , 0. Moreover, properties of their zeros
were studied and also a question about orthogonality was mentioned.

Grinshpun, in [9], studied the orthogonality of special linear combinations of polynomi-
als orthogonal with respect to a weight function supported on an interval of the real line.
Such families of orthogonal polynomials come up in some extremal problems of Zolotarev–
Markov type as well as in problems of least deviating from zero. A special feature of this
representation is that the coefficients do not depend on n. The relevant fact proved in this
paper is that the Bernstein–Szegő polynomials and just them can be represented as a linear
combination of Chebyshev polynomials with coefficients independent of n and fixed length.

Linear combinations of orthogonal polynomials appears not only in a mathematical con-
text but also as solutions of several physical problems. For example, related with the isotonic
oscillator see [6].

In this note, we expose some results on linear combinations of orthogonal polynomials
concerning orthogonality and properties of their zeros.

2. Orthogonality and Jacobi matrices

In the sequel, {Pn}n≥0 denotes a sequence of monic polynomials orthogonal (SMOP) with
respect to a quasi–definite linear functional u.

Let {Qn}n≥0 be a sequence of monic polynomials with deg Qn = n such that,

Qn(x) = Pn(x) + a1Pn−1(x) + · · · + akPn−k(x), n ≥ k + 1 (3)

with k ≥ 1 fixed and where the coefficients are independent of n and ak , 0.
An immediate consequence of the representation (3) is that {Qn}n≥0 constitutes a sequence

of quasi–orthogonal polynomials of order k.
Next, we show a necessary and sufficient condition in order for the sequence {Qn}n≥0 to

be orthogonal with respect to a quasi–definite linear functional v and we give the relation
between the linear functionals u and v, via Jacobi matrices.

If the coefficients in (3) depend on n, a necessary and sufficient condition can be deduced
using similar techniques to those employed in the case of constant coefficients. For the sake
of simplicity we omit the statement of the corresponding theorem.
Theorem 2.1 ([1]). Let {Pn}n≥0 be a sequence of monic orthogonal polynomials with re-
currence coefficients {βn}n≥0 and {γn}n≥1 (γn , 0) and let {Qn}n≥0 be a sequence of monic
polynomials such that, for n ≥ k + 1,

Qn(x) = Pn(x) + a1Pn−1(x) + · · · + akPn−k(x)
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where {a j}kj=1 are constant coefficients and ak , 0. Then {Qn}n≥0 is orthogonal with respect
to a quasi–definite linear functional if and only if the following conditions hold

(i) For each j, 1 ≤ j ≤ k, the polynomials Q j satisfy a three term recurrence relation
xQ j(x) = Q j+1(x) + β̃ jQ j(x) + γ̃ jQ j−1(x), with γ̃ j , 0.

(ii) For n ≥ k + 2

γn + a1(βn−1 − βn) = γn−k ,

a j−1(γn−k − γn− j+1) = a j(βn− j − βn) , 2 ≤ j ≤ k .

(iii)

γk+1 + a1(βk − βk+1) , 0 ,

a jγk− j+1 + a j+1(βk− j − βk+1) = a(k)
j [γk+1 + a1(βk − βk+1)] , 1 ≤ j ≤ k − 1 ,

akγ1 = a(k)
k [γk+1 + a1(βk − βk+1)] ,

where a(k)
j , j = 1, . . . , k , denotes the coefficient of Pk− j in the Fourier expansion of Qk in

terms of the orthogonal system {P j}kj=0.

Moreover, denoting by β̃n and γ̃n the coefficients of the three-term recurrence relation for
the polynomials Qn, we have for n ≥ k + 1

β̃n = βn, γ̃n = γn + a1(βn−1 − βn) .

Now, we perform the relation between the orthogonality linear functionals in terms of the
Jacobi matrices. Consider two families of monic polynomials {Pn}n≥0 and {Qn}n≥0 orthogonal
with respect to the quasi-definite linear functionals u and v, respectively, satisfying the con-
dition (3). It is well known (see, e.g., [11]) that the relation between both linear functionals
is u = hkv where hk is a polynomial of degree k. Writing P = (P0, P1, . . . , Pn, . . . )T and
Q = (Q0,Q1, . . . ,Qn, . . . )T for the column vectors associated with these orthogonal families,
and JP and JQ for the corresponding Jacobi matrices, we get

x P = JP P , x Q = JQ Q . (4)

If M denotes the matrix associated with the change of bases Q = MP, then M is a lower
triangular matrix with diagonal entries equal to 1 and zero subdiagonals from the (k + 1)–th
one. >From (4) it follows M JP P = x M P = JQ M P and, therefore,

M JP = JQ M . (5)

Next, we describe a simple algorithm to compute the polynomial hk.

(1) From the data M and JP, we have (5) and we can deduce JQ .

(2) From JP and JQ we deduce DP and DQ, respectively, where DP = 〈u,PPT 〉 and DQ =

〈v,QQT 〉.
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(3) If we write hk(x) = c0 + c1x + · · · + ck xk, we get

hk(JP) = c0I + c1JP + · · · + ckJk
P = DPMT D−1

Q M ,

which is a system of linear equations with k + 1 unknowns. Notice that the matrices of
the first and second terms are 2k + 1 diagonal.

If the monic polynomials {Pn}n≥0 and {Qn}n≥0 were replaced by the corresponding orthonor-
mal polynomials {P̃n}n≥0 and {Q̃n}n≥0, similar computations would have led to

hk(JP̃) = M̃T M̃ , hk(JQ̃) = M̃M̃T ,

where M̃ denotes the matrix of the change of bases, that is Q̃M̃P̃. This gives us an interest-
ing interpretation of the matrix operation involving the linear combination of the orthogonal
polynomials Qn(x) = Pn(x) + a1Pn−1(x) + · · · + akPn−k(x), n ≥ k + 1.

On the other hand, if the symbol (A)n denotes the truncation of any infinite matrix A at
level n + 1, it can be seen that

(JQ)n = (M)n [(JP)n − Ln] (M)−1
n ,

where

Ln =



0 . . . 0 0 . . . 0
. . . . . . . . . .
0 . . . 0 0 . . . 0
. . . . . . . . . .
0 . . . 0 ak . . . a1


∈ R(n+1,n+1) .

This expression means that (JQ)n is similar to a rank–one perturbation of the matrix (JP)n and
this perturbation is given by the matrix Ln. In particular, the zeros of the polynomial Qn are
the zeros of the characteristic polynomial of the matrix (JP)n − Ln.

2.1. The Case k = 2

Among the classical orthogonal polynomial families, the Chebyshev polynomials are unique
families such that the sequence of polynomials {Qn}n≥0 defined by (3) is orthogonal (see for
example [3]). But, what happens if the sequence {Pn}n≥0 is not a classical one?

Next Theorem describes, for the case k = 2, all the families of monic polynomials {Pn}n≥0
orthogonal with respect to a quasi–definite linear functional such that the new families {Qn}n≥0
are also orthogonal.

Theorem 2.2 ([1]). Let {Pn}n≥0 be an SMOP with respect to a quasi–definite linear func-
tional. Assume that a1 and a2 are real numbers with a2 , 0 and Qn the monic polynomials
defined by

Qn(x) = Pn(x) + a1Pn−1(x) + a2Pn−2(x) , n ≥ 3 . (6)

Then the orthogonality of the sequence {Qn}n≥0 depends on the choice of a1 and a2. More
precisely, {Qn}n≥0 is an SMOP if and only if γ3 + a1(β2 − β3) , 0, and

(i) if a1 = 0, for n ≥ 4, βn = βn−2 and γn = γn−2 .
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(ii) if a1 , 0 and a2
1 = 4a2, then for n ≥ 2 ,

βn = A + Bn + Cn2 , γn = D + En + Fn2,

with a1C = 2F , a1B = 2E − 2F , (A, B,C,D, E, F ∈ R).
(iii) if a1 , 0 and a2

1 > 4a2, then for n ≥ 2 ,

βn = A + Bλn + Cλ−n , γn = D + Eλn + Fλ−n ,

with a1C = (1 + λ)F , a1λB = (1 + λ)E , (A, B,C,D, E, F ∈ R) ,
where λ is the unique solution in (−1, 1) of the equation a2

1λ = a2(1 + λ)2.

(iv) if a1 , 0 and a2
1 < 4a2, and let λ = eiθ be the unique solution of the equation a2

1λ =

a2(1 + λ)2 with θ ∈ (0, π), then for n ≥ 2

βn = A + Beinθ + Be−inθ , γn = D + Eeinθ + Ee−inθ ,

with a1λ B = (1 + λ) E, (A,D ∈ R , B, E ∈ C) .

Notice that, when a1 = 0 the SMOP {Pn}n≥0 such that the sequence {Qn}n≥0 defined by
(6) is also an SMOP can be explicitly given in terms of the Chebyshev polynomials, see [10,
p. 109]. However, in general the explicit description of all sequences {Pn}n≥0, as well as their
orthogonality measure, is an open problem.

We point out a difference between the cases k = 1 and k = 2. Let Qn be the monic
polynomials defined by

Qn(x) = Pn(x) + a1Pn−1(x), n ≥ 2 ,

with a1 , 0. From Theorem 2.1 written for k = 1, it follows that {Qn}n≥0 is an SMOP if and
only if

γ2 + a1(β1 − β2) , 0 (7)
γn − γ2 = a1(βn − β2) , n ≥ 3 .

Thus, in the case k = 1, for any sequence of {γn}n≥1 with γn , 0, if we take β0, β1 ∈ R, and
βn (n ≥ 2) satisfying (7), we obtain all the SMOP {Pn}n≥0 such that {Qn}n≥0 is also an SMOP.
However, in the case k = 2 with a1 , 0, it can be seen that the recurrence coefficients γn and
βn have to be solutions of the following difference equation with constant coefficients

yn +

1 −
a2

1

a2

 yn−1 −
1 −

a2
1

a2

 yn−2 − yn−3 = 0 , n ≥ 5 .

Therefore, although in both cases we get that βn and γn have a similar asymptotic behaviour,
roughly speaking, for k = 2 there are fewer families {Pn}n≥0.

When more than three polynomials Pn are involved in the definition of Qn, the description
of all families {Pn}n≥0 in terms of the recurrence coefficients remains open.
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3. Interlacing of zeros

Let µ be a positive Borel measure on the real line. Recall that if {Pn}n≥0 is the sequence of
monic orthogonal polynomials with respect to µ, the n zeros of Pn are real and distinct and
lie in the convex hull of supp(µ). Further, if x1,n < x2,n < · · · < xn,n are the zeros of Pn and
x1,n+1 < x2,n+1 < · · · < xn+1,n+1 are the zeros of Pn+1, then the interlacing of the zeros

x1,n+1 < x1,n < x2,n+1 < x2,n < · · · < xn,n+1 < xn,n < xn+1,n+1 , (8)

holds.

Stieltjes proved a stronger result than this one, namely that the zeros of Pm and Pn

are interlaced whenever m < n in the sense that there are m disjoint intervals of the form
(x j,n, x j+1,n) such that each contains a zero of Pm (see [15]).

In [16], it is shown that a necessary and sufficient condition for two real polynomials, of
consecutive degrees, to be embedded in an orthogonal sequence is that their zeros interlaced.
Recently Driver, see [8], gives an example to illustrate that the Wendroff’s result cannot
be extended to the case of three polynomials of consecutive degrees. Likewise, in [4], the
authors show that the zeros of Van Vleck polynomials corresponding to Stieltjes polynomials
of successive degrees interlace but the spectral polynomials formed from the Van Vleck zeros
are not orthogonal with respect to any measure. Then, the interlacing property of the zeros of
polynomials of adjacent degrees in a sequence is a weaker property than the orthogonality of
such a sequence.

Concerning the linear combinations of polynomials orthogonal with respect to µ, given
by (3), the quasi–orthogonality condition yields the polynomial Qn has at least n − k distinct
odd–order zeros in the interior of the convex hull of supp(µ). This result is the best possible
(see [2], [14]).

An interlacing of the nodes of a quadrature formula (2) and the zeros of a linear combina-
tion of the corresponding orthogonal polynomials is deduced in the main theorem in [2]. Its
statement suggests that the property of interlacing of zeros is inherited from the positivity of
the Cotes numbers in a quadrature formula rather than directly from orthogonality. As a con-
sequence, in the same paper, the authors obtain the following generalization of the Stieltjes’
result above quoted:

Theorem 3.1 ([2]). Let {Pn}n≥0 be a sequence of monic orthogonal polynomials and suppose
that x1,n < x2,n < · · · < xn,n are the zeros of Pn. Let Qm(x) = amPm(x) + · · · + asPs(x) where
asam , 0, 1 ≤ s ≤ m ≤ n and s < n. Then there are at least s disjoint intervals (x j,n, x j+1,n)
that contains at least one zero of Qm.

Different properties related to the interlacing of the zeros of particular linear combinations
of orthogonal polynomials are given in several papers: [2], [5], [8] and [14]. Most of them
correspond to the cases k = 1 and k = 2 in formula (3). We only point out Theorem VIII
in [14] where when k = 1, that is Qn = Pn + a1Pn−1, interlacing results for the zeros of
Qn, Qn−1, Pn and Pn−1 are obtained depending on the sign of the coefficient a1.



On linear combinations of orthogonal polynomials 7

4. Conclusion

Linear combinations of orthogonal polynomials are an old topic in the field of orthogonal
polynomials. In the last years, they have been object of an increasing study. Special attention
has been given to orthogonality and properties of their zeros.
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