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1. Introduction

The analysis of M-N type linear structure relations involving two monic orthogonal polynomial sequences (MOPS), (Py),,
and (Qy)y, such as

M—-1 N—-1
Q) + D TinQui®) =Pa®) + Y sinPai(), n>0,
i=1 i=1

where M and N are fixed positive integer numbers, and (r; ), and (s; ), are sequences of complex numbers (and empty
sum equals zero), has been a subject of research interest in the last decades, both from the algebraic and the analytical point
of view. For historical references, as well as a description of several aspects focused on the interest and importance of the
study of structure relations involving linear combinations of two MOPSs, we refer the introductory sections in the recent
works [1,4] by F. Marcellan and three of the authors of this article, as well as the references therein. Such a study is also of
interest in the framework of the theory of Sobolev orthogonal polynomials, in particular in connection with the notion of
coherent pair of measures and its generalizations, where linear structure relations involving derivatives of at least one of
the families (P,), and (Q,), appear (see e.g. [9,11,7]).

It is known [14] that up to some natural conditions (avoiding degenerate cases) the above M-N type structure relation
leads to a rational transformation

du=Vvv
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between the regular (or quasi-definite) moment linear functionals u and v with respect to which the sequences (P,), and
(Qyn)n are orthogonal (respectively), where @ and ¥ are polynomials of (exact) degrees M-1 and N-1, respectively. As usual,
(w, q) means the action of the functional w over the polynomial q and the left product of a functional w (defined in the space
of all polynomials) by a polynomial ¢ is defined in the distributional sense, i.e., {(¢pw, p) = (w, ¢p) for any polynomial p. In
terms of the Stieltjes transforms associated with u and v, the above relation between the functionals leads to a linear spectral
transformation, in the sense described and studied by A. Zhedanov [17], and by V. Spiridonov, L. Vinet, and A. Zhedanov [ 16].
Moreover, P. Maroni [ 12] gave a characterization of the relation between the MOPSs associated with two regular functionals
u and v fulfilling ®u = W¥v. In connection with the study of direct problems related to orthogonal polynomials associated
with this kind of modifications of linear functionals (rational modifications), besides the work [2], among others we also
point out the works by W. Gautschi [8], M. Sghaier and ]. Alaya [15], M.L. Bueno and F. Marcellan [5], and J.H. Lee and K.H.
Kwon [10], in particular, in the framework of the so-called Christoffel formula and its generalizations.

Concerning the above M-N type structure relation, most of the papers in the available literature deal with relations
considering concrete values for M and N, specially M, N € {1, 2, 3}. Indeed, the simplest relations of types 1-2 and 2-1
have been studied in [11], the 2-2 type relation in [3,2], and the more elaborated situation involving a 1-3 type relation has
been studied in [4]. In addition, the 1-N type relation with constant coefficients (i.e., each (s; ), is a constant sequence)
has been analyzed in [1]. In all these works a main problem stated and solved therein was the following inverse problem:
assuming that (P,), is a MOPS and (Q,), only a simple set of polynomials - i.e., every Q, is a polynomial of degree n -,
to determine necessary and sufficient conditions such that (Q,), becomes also a MOPS. The general M-N type relations
have been considered in [ 14], but the results were therein obtained assuming the orthogonality of both sequences (P,), and
(Qn)n, as well as some additional assumptions ensuring non-degenerate situations. The analysis of the regularity conditions
is usually a hard task, since it involves solving systems of nonlinear difference equations, and in general there are not
available methods for solving them. Therefore often the success depends on the application of ad-hoc methods for solving
such systems.

In this contribution we focus on the analysis of the M-N type relation with M = 2 and N = 3, that is

Qu(X) + 1 Qu-1(%) = Po(X) + $pPr_1(X) + taPr2(X), n =0, (1.1)

where (1)n, (Sn)n, and (t,), are sequences of complex numbers with the conventions rp = sg = to = t; = 0.

Our aim is twofold. On the first hand, we determine whether (1.1) is a degenerate or a non-degenerate structure relation.
We say that the 2-3 type relation (1.1) is degenerate if there exists another structure relation of type M-N linking (P,),
and (Q,), withM < 2 or N < 3.In Theorem 2.1 we will see how some appropriate initial conditions, involving only
the parameters rq, 1, 3, S1, S2, t2, and t3, allow us to describe all the possible degenerate cases. Besides, only under the
assumption t; # r,(s; — rq) and r3t3 # 0 we really have a non-degenerate 2-3 type relation. Since all the degenerate
cases have been already considered in the previous works [3,2,4,11], we will focus on the non-degenerate case. Some
non-degenerate (1.1) relations have been already considered in [14], but as we will prove not all of them.

On the other hand, the following so-called inverse problem is considered: given two sequences of monic polynomials
(Pp)n and (Qp), such that (1.1) holds, and under the assumptions that (1.1) is non-degenerate and (P,), is a MOPS, to find
necessary and sufficient conditions such that (Q,), becomes also a MOPS and, under such conditions, to give the relation
between the linear functionals with respect to which (P,), and (Q,), are orthogonal. In this paper, we not only show such
a characterization (see Theorem 3.1), but we achieve another more developed result which describes the orthogonality of
(Qy)y in terms of some sequences which remain constant (see Theorem 3.2). Even more, the most interesting fact is that the
values of these constants are precisely the coefficients of the polynomials involved in the relation between the linear func-
tionals. We want to observe that the same property was obtained in [11, Theorem 2], [3, Theorem 2.2], and [4, Theorem 2.2]
for non-degenerate relations 1-2, 2-2, and 1-3 respectively. Thus, for a general M-N type structure relation (avoiding de-
generate cases) we conjecture that a deeper solution of the inverse problem can be done in terms of the existence of certain
constant sequences whose values coincide with the coefficients of the polynomials of (exact) degree M-1 and N-1 which
relate both regular functionals.

The structure of the paper is the following. In Section 2, the first of the above mentioned questions, i.e., determining
under which conditions the 2-3 type (1.1) relation is either degenerate or non-degenerate is solved in Theorem 2.1. Besides,
a regularity characterization of the functional @u is given in Proposition 2.2, filling out the non-degenerate relation (1.1)
studied in [14, Section 5]. Also, an example of a non-degenerate relation (1.1) where the functional @u is not regular is
presented. The announced regularity (orthogonality) conditions, i.e. the solution of our inverse problem, will be stated in
Theorems 3.1 and 3.2 in Section 3. Finally, in Section 4 we present a computational example illustrating the developed
theory. The reader may find the basic background on orthogonal polynomials needed in the sequel in most of the articles
appearing in the set of references, specially the monograph [6] by T.S. Chihara where the general theory is presented, and
the paper [13] by P. Maroni concerning some algebraic aspects of the theory.

2. Degenerate and non-degenerate 2-3 type relations

Let (P,), and (Q,), be two sequences of monic polynomials orthogonal with respect to the regular functionals u and v
(resp.), normalized by (u, 1) = 1 = (v, 1). Let (8,), and (yn), be the sequences of recurrence coefficients characterizing
(Py)n, and (By)n and (3,), the corresponding sequences characterizing (Qy),. Suppose that these families of polynomials are
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related by the 2-3 type relation (1.1) with the conventions ry = so = to = t; = 0. It is known [14, Theorem 1.1] that the
initial conditions t; # r,(s; — r1) and r3t3 # 0 yield a relation between the linear functionals u and v such as

du=Vvv,

where @ and ¥ are polynomials of (exact) degrees 1 and 2, respectively.

We will show that these initial conditions are not only sufficient but also necessary to have a non-degenerate relation,
thatis ryt, % O foralln > 3.

First, we point out that the conditions t; # r,(s; — r1) and r3 # 0 imply that there exists a complex number c such that
((x — c)u, Q3) = 0 and therefore ((x — c)u, Q,;) = 0 for all n > 3. Indeed, for an arbitrary c € C, we may write

((x —ou, Q3) = (u, (x — ¢)(P3 + s3P2 + t3P1 — 13Q2))

t3(u, (x — C)P1) — r3(u, (x — O)[Py + (s — 12)P1 + ta — 1a(s1 — r)])
= [t3 — r3(s2 — 12)]y1 — 13[t2 — r2(s1 — r1)1(Bo — ©).

Then there exists ¢ such that ((x — c)u, Q3) = 0, more precisely

. V1 t3 —13(52 — 12)
= AT BT
r3 ty —12($1 —11)

For this choice of ¢ and taking into account the 2-3 type relation (1.1) we have
(x=0ou, Q) = =1 {(x — 0w, Qu—1), n=>4.

Thus ((x — c)u, Q,) = 0 for alln > 3, as we wish to prove. Moreover, using standard results [13], we obtain the relation
between the functionals (x — c)u and v:

(2.1)

2
((x —o)u, Q)
_ _z: v, 2.2
(X C)u j=0 <V7 Q_,z) Q’ Y ( )

being

((x —ou, Q) = o —c,
(x—0ou, Q1) = y1 + (s —r1)(Bo — ©), (2.3)

(= M, Q) = (2 = r)y + (o = Otz = a5y = )] = 22,
Therefore ift, # r,(s;—r1) and r3t3 # 0, we see that the relation between the regular functionalsuand vis (x—c)u = hy (x)v,
where h, is a polynomial of exact degree two. Moreover, if t; # r,(s; — 1), r3 # 0,and t3 = 0, then {((x — c)u, Q;) = 0 and
so (2.2) reduces to (x — c)u = hyv, with h; a polynomial of degree less than or equal to one, so we have a degenerate case.
In the next theorem we deduce all the possible degenerate cases from some appropriate initials conditions involving only
the seven parameters ry, 15, I'3, S1, S2, t2, and ts.

Theorem 2.1. Let (P,), and (Q,), be two MOPSs with respect to the regular functionals u and v, respectively, normalized by
(u,1) = 1 = (v, 1). Assume that there exist sequences of complex numbers (r,)n, (Sp)n, and (t,), such that the 2-3 type
relation (1.1) holds, with rg = sy = tg = t; = 0. We have
(i) If t =1ry(sy —ry)andsy =rq, thent, =0, n > 2ands, = r,, n > 1. Thus (1.1) reduces to the trivial 1 — 1 type relation
Q,=P;,n>0.
(ii) If t; = ry(sy —ry) and sy # rq, then t, = 1,(Sp—1 — Tm—1), n > 2and s, # r,, n > 1. In this case (1.1) reduces to a 1-2
type relation:
Qu =Py +ayPpq, n>0; an::Sn_rn¢Os n>1

(iii) If t; #£ rp(s; —ry) and r3 = O, then t, % 1, (Sp—1 — 'm—1), N > 2 and r, = 0, n > 3. In this case (1.1) reduces to a 1-3
type relation:
Qn:Pn+anPn—1+ann—2; HZO;
ap =S —Tp, N= ]; bn =ty — rn(sn—l - rn—1) 7é 0» n= 2.
(iv) If t # ry(s;y —ry) and r3 # 0O, thenr, % 0, n > 3. In addition:
(iv-a) If t = 0and t; = sp(s; — 1), thent, = 0 = s,, n > 3. In this case (1.1) reduces to a 2-1 type relation:
Q+ Qo1 =P, n=>0; =T —$#0, n>1
(iv-b) If t3 = Oand t; # s,(sy —ry), thent, = 0, n > 3ands, # 0, n > 3. In this case (1.1) reduces to a 2-2 type
relation. More precisely:
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e If sy # 1y, then (1.1) becomes
Qn+CnQn—1:Pn+ann—la nZO;
c1—dii=r1—$
Q=r—t/(s1—n), d=s—1/(s1—11)
Cpi=T, n>3, dy:=s;,, n>3

so that c,d, #0, n > 1.

e If sy =1y, then
Q =Py
Q2 +12Q1 = Py + 52P1 + 135
Qu +1,Qu1 =Py +$,Py—1, n>3.

(V) If t 5 1ra(s; — 1) and r3t3 # O, then ryt, # 0, n > 3. Thus in this case (1.1) is a non-degenerate 2-3 type relation.

Proof. From (1.1) it follows that

(w,Qq) =51 — 174, (u, Q) =t —ra(s1 —11),
(us Qn> = —T <l.l, Qn—1>’ n 2 3

(i) Ift; = ry(sy —r1) and sy = rq, (2.4) implies (u, Q,) =0, n > 1,sou = v. Thus P, = Q, for all n > 0 and the relation
(1.1) derivess, =1, n > 1l,and t, = 0, n > 2.

(ii) If t; = ry(s;y — rq) and sy # ry, then from (2.4) we have (u, Q;) # 0 and (u, Q,) = 0, n > 2. Hence, the relation
between the two functionals is u = h(x)v where h is a polynomial of degree one, and so Q,(x) = P,(x) + a,P,_1(x) for all
n > 0, with a, # 0, n > 1. Then the relation (1.1) yields s, = a, + r,, n > 1,and t;, = rpap_1 = r4(Sp—1 — m—1), 1 > 2.
Observe that we obtain a degenerate case, namely a 1-2 type relation.

(iii) If ty # ro(sy —ry) and r3 = 0, from (2.4) we deduce (u, Q;) # 0and (u, Q,) = 0, n > 3, so there exists a polynomial
h of degree two such that u = h(x)v. Thus, Q,(x) = P;(X) + azPn—1(x) 4+ byPr_>(x) for alln > 0, with b, # 0, n > 2. Again,
the relation (1.1) leads tos, = a, +r,, n > 1,t, = b, + a,_1, n > 2,and b,y =0, n > 3,s0r, = 0, n > 3, and
t, # 0, n > 3. Then we have another degenerate case, namely a 1-3 type relation.

(iv)Ift; % ra(s;y—r1) and r3 # 0, from (2.4) we see that (u, Q;) # 0, (u, Q3) # 0, and foreachn > 4 we have (u, Q,;,) =0
ifr, = 0. Assuming that there exists n > 4 such thatr, = 0,letng := min{n e N | n > 4,r, = 0}.Then (u, Q,) =0, n > ng
and (u, Q;) # 0, 2 < n < ng — 1. Hence, u = h(x)v, with h a polynomial of degree ny — 1, and so

(2.4)

np—1

Q) =P + Y aPPy (),
j=1

with af,"“fl) # 0, n > ng — 1. Taking into account (1.1) we easily see that this is not possible, so r, # 0, n > 3. Moreover:

(iv-a) If t3 = 0 and t; = s,(s; — 1), then (1.1) implies (v,P;) = 0, n > 2 and (v, P;) # 0,sov = h(x)u with h a

polynomial of degree one. Then working in the same way as in (ii) we get t, = 0 = s,, n > 3. Note that, in this case (iv-a)

we have another degenerate case, namely a 2-1 type relation.

(iv-b) If t; = O and t; # s,(s; — 1), then by (2.3) and (2.4) we can obtain

ty — s3(s1 —11)

L

ty —1a(s1 —11)

(x=0u, Q) =y #0, (x—0u,Q)=0, n=2,

so there exists a polynomial h of degree one such that (x — c)u = h(x)v. Applying the auxiliary functional (x — ¢)"~?u to
the main relation (1.1) we obtain forn > 3
ta(u, P2 ,) = ((x — )" 20, Py + $yPu_1 + tnPn_2)
= ((x =" 1, Qu 4+ 1Qu1)
(v, x = )" h(X) (Qu + 1Qu-1)) = 0.
Then the condition t, = 0, n > 3, holds and (1.1) becomes
Qn(x) + 17Qu_1(X) = Py(x) +spPp_1(x), n > 3.
On the other hand, to analyze the parameters s,, we see that forn > 3
s, Pr_y) = ((x = ", Py +53Pt) = (X — 0" W, Qo+ 1Qu-1)
= (v, X = 0" 2 h(®) (Qu + 1 Qu-1)) = krn(v, Q7 ),

where k is the leading coefficient of the polynomial h, and so we obtain s, # 0, n > 3. Thus another degenerate case
appears, namely a 2-2 type relation.
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(V)Ift; # ry(s;—rp) and r3t; # 0, then as we have seen just before the statement of this theorem, there exists a constant
¢ such that (x — c)u = h,(x)v, with h, a polynomial of degree two and so, by (1.1), we obtain

ty (u, P,f72> = ((X - C)ll, (Pn + $nPnq1 + tnPn—Z)Qn—3>
= (v, 1,(0)(Q + 1Qu-1)Quo3) = kol (v, Q7 ), 1> 3,
where k; is the leading coefficient of the polynomial h,. Now, it is enough to apply (iv) to obtain r, # 0, n > 3, and so also
t, # 0, n > 3. Thus the proof is concluded. O

Remark 2.1. Observe that (v) is the unique case where the relation (1.1) between the two families (P,), and (Q;), is a
non-degenerate 2-3 type relation. All the degenerate cases, except the case (iv-b) with r; = s1, have already been considered
in the previous works [3,2,4,11]. The case (iv-b) with r; = s; can be studied and solved in a similar way as in [3]. Then from
now on we will concentrate on the analysis of the non-degenerate case.

The non-degenerate 2-3 type relations have already been considered in [ 14, Section 5]. However, there some additional
hypothesis about the parameters involved in the relation (1.1) were imposed, namely

ty 7é Tn(Sn,] - rn—])a n= 3.
In the following proposition we prove that to impose these conditions, together with the conditions r3t; # 0 and t; #

r2(s; — r1), is equivalent to assume that the functional (x — c)u is regular.

Proposition 2.2. Let (P,), and (Q,), be two MOPSs with respect to the regular functionals u and v, respectively, normalized
by (u,1) = 1 = (v, 1). Assume that there exist sequences of complex numbers (1), (Sp)n, and (t,), such that the 2-3 type
relation (1.1) holds, withrg = so = ty = t; = 0 and the initial conditions t, # ry(s; — r1) and r3t3 % 0. Then the following
statements are equivalent:

(i) The functional (x — c)u is regular.
(i) ta # ra(Sp—1 — 1) foralln > 2.

Proof. Multiplying both sides of (1.1) by P,_; and applying u, we find

(U, QuPr1) = (Sn — ) (W, P} 4), n>1. (2.5)
Moreover, multiplying both sides of (1.1) by P,,_», then applying u and taking into account (2.5), we get

(u, QuPp—2) = [ty — rp(Su—1 — r—)(u, Pii]), n>2. (2.6)
Thus

tn # rn(sn—l - rn—l) — <u7 QnPn—2> # Oa n= 2.

On the other hand, it is well known that (x — c)u is a regular functional if and only if P,(c) # 0 for all n > 0. Therefore we
only need to show that

(W, QuiaPr) #0 <= Pa(c) #0, n=0.

Indeed, since P,(x) = Z}‘:O a]'7 (x — ¢) with ap = 1and aj = P,(c), and (as we have seen just before the statement of

Theorem 2.1) the relation between the regular functionals u and v is (x — c)u = h,(x)v, where h; is a polynomial of degree
two, we obtain foralln > 1

n—1
(w0, Qui2Pn) = <(x —Ou, Q2 [(x AR B C)HD + Pa(c)(w, Qu+2)
j=1

n—1
= <h2(x>v, Qi [(x —O" T+ ) dx - cwD + Pa(c) (W, Quy2)
j=1

= Pn(C)<u, Qﬂ+2>» n ZO

To conclude the proof it suffices to observe that from (v) in Theorem 2.1 we have r,, # 0, n > 3, and therefore taking into
account (2.4) we obtain (u, Q,) #Oforalln > 2. O

Next, we are going to present an example showing that a non-degenerate 2-3 type relation (1.1) may occur even when
the functional (x — c)u is not regular. This example shows that Theorem 5.1 in [ 14] does not give a full description of the
non-degenerate 2-3 type relations. The full characterization of these relations (including the determination of the
orthogonality conditions) is the main purpose of our study in the next section.
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Example. In the sequel we denote by w,, ws, and wy the regular functionals associated with the Chebyshev polynomials
of the second, third, and fourth kind, which are represented (up to suitable normalizing constants) by the weight functions
1=x"214+x72, (1 —x)"Y2(1 4+ %)%, and (1 — x)/2(1 + x)~ /2, respectively. Consider also the regular functional

1
u=——xws+9d,
3XWs+ 0
where §; means the Dirac functional at a point & € C, so that (8¢, p) := p(§) for every polynomial p. The regularity of u has

been stated in an example presented in [2, pp. 181-182].

Denote by (P,)n, (Qy), and (R,), the MOPSs with respect to u, wy, and w, (respectively). These functionals satisfy the
following relations

wy = (14 x)wyg, 3(x — Du = xwy = x(1 + x)wy.
As a consequence of these relations and the results in [2], we have that the relation
Qu(x) = Rn(X) + AnRn_1(x), n >0
with A, = %, n > 1, holds as well as the following 2-2 type relation
Py(x) + anPy—1(x) = Ry(x) + bpRy—1(x), n>1,

where
4n + 1
02n:b2n:—m, n=1,
4n —1 4n+3
02n+1=m, b2n+1=—m, n=

Moreover, since xw,, is not a regular functional, then (x — 1)u is not a regular functional. Nevertheless, a non-degenerate
2-3 type relation between (P,), and (Q,), holds. Indeed, noticing that b, # A,, n > 1, we may define parameters s, t,,
and r,, as

bn_)\n

Shn=0an+ Ay ———, n=>2,
n n n—1 bn—l — )Ln—l
b= ot hp P 0, nz 2
n — UYn—-1/ n-1 bn,1 — )Lnfl ) )
b b = A £0, n>2
m=by1 —m , n=
" i bnfl — An-1
and then, by straightforward computations, we check that formula (1.1) is satisfied for alln > 2. Forn = 1 we have

Pi(x)+a; = Ry(x) + by = Qi(X) — A1 + by, hence s; —ry = a; — by +A; = 3 # 0.Moreover, t, = —1 # —3 =r;(s; — 7).

Finally, we observe that t;,11 = 12p11(S2n — 12p) for all n > 1, hence the conditions t, # r,,(S,—1 — rp—1) foralln > 3 are
not satisfied.

3. Orthogonality characterizations

From now on, (P,), denotes a MOPS with respect to a regular functional u, and (8,), and (y,), the corresponding
sequences of recurrence coefficients, so that

Pop1(x) = (X — Bn)Pr(x) — ynPo_1(x), n >0,
Po(x) =1, P_1(x) =0,
with y, # 0 for all n > 1. In this section we give two characterizations of the orthogonality of a sequence (Q,), of monic

polynomials defined by a non-degenerate type relation (1.1). We already know from Theorem 2.1 that in order to have a
non-degenerate 2-3 type relation with (P,), and (Q,),, MOPSs, the conditions

r3t3 # 0, ty #1(s1 —11)

must hold, and these conditions imply r,t, #~ 0 for alln > 3.
The first characterization of the orthogonality of the sequence (Q,), is the following.

(3.1)

Theorem 3.1. Let (P,;), be a MOPS and (B,), and (y,). the corresponding sequences of recurrence coefficients. We define
recursively a sequence (Qy,), of monic polynomials by formula (1.1), i.e.,

Qn(x) + rnQn—](X) - Pn(x) + SnPn—l(x) + tnPn—Z(X)a n>0,
where (y)n, (Sp)n, and (t,), are sequences of complex numbers fulfilling the conventions ro = so = to = t; = 0, and such that
t; ?é Tz(S] - rl)a Tntn ?é 0, n>3.
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Then (Q,), is a MOPS with recurrence coefficients (Bn)n and (Yn)n, where

,En =Bn+Sn—Snt1—Tn+Tny1, n=>0 (3.2)
Vo=Vt ta — tarr + Su(nit = Sn — Bu+ Bao1) — Ta(ngt — T — Bu+ Paor), n =1 (3.3)
if and only if Y1y> # 0 and the following equations hold:
by —dy = ax(s1 — 1), (3.4)
bs —d3 = as(s; —r2), (3.5)
c3 — b3(s1 — ) = as[t — sa(s1 — ), (3.6)
b, = apsy_1, n >4, (3.7)
Ch = Quty_q, N >4, (3.8)
dy = ayrp_1, n >4, (3.9)
where
U = Yo+ tn — tap1 + Sn(Sn1 = Sn — B+ fn1), N =1, (3.10)
bn i= sp¥n—1 4+ ta(Sng1 — Sn — Bn + Bn—2), N =2, (3.11)
Cn = ta¥Yn—2, N =3, (3.12)
dp == 1pYao1, n>=2. (3.13)

Proof. From the definition of Q, we get
Qui1(X) = Pup1(X) + S 1Pa(X) + tay1Poo1(x) — 1h1Qu(x), n > 0. (3.14)

Inserting formula (3.1) in (3.14), applying (1.1) to xP,(x), and then substituting xP,,_1(x) and xP,_, (x) using again (3.1), we
get

Qu1(¥) = xQu(X) + (Snt1 — Bn — SW)Pu(®) — Tn1Qn(X) + 10XQn—1(X) + (tnt1 — Vi — SnPn—1 — tn)Pp—1(X)
— (Sn¥n—1 + taBn—2)Pn_2(X) — taYu—2Pr_3(x), n >0,
with the~usua1 convention that polynomials with negative index are zero. Now, Eq. (1.1) applied to P,(x) and the definition
(3.2) of B, yield
Q100 = (X = B)Qu®) + (gt — T — B)Quo1(0) + [tap1 — Vo — tn — Sn(Sns1
—Sp — ,Bn + ,Bn—l)]Pn—l(X) - [Snyn—l + tn(sn-H —Sh — ﬂn + /311—2)] Pn—z(X) - thn—ZPn—B(X)
—1p[Qu (%) —XQu_1(x)], n>0.
So (Qn)n is a MOPS if and only if 7, # 0 for alln > 1 and
(g1 — T — Bn)th](X) + [tar1 — Vo — tn — Sa(Spg1 — Sn — Bn + Bn—1)] Po_1 (%)
— [Sn¥n-1+ ta(Snt1 — Sn — B + Bn—2)] Pra(¥) — taVn—2Pn—3(x)
=1 [Qu(X) = xQu_1(X)] = =VnQu-1(x), n=0. (3.15)
Moreover, (Bn)n and (), are the corresponding sequences of recurrence coefficients of (Qn)y.
Next, we are going to see that (Q,), is a MOPS with recurrence coefficients (8,), and (), if and only if 7, # 0 for all
n > 1 and the relation
I:);n + (g1 — Tn — Bn + Bn—l)] Qu—1(X) + 1 ¥a-1Qu—2(x)
= [¥u + tn — tag1 + Su(Snt1 — Sn — B + Ba—1) ] Pim1 ()
+ [Su¥Vn—1+ ta(Snp1 — Sn — Bn + Bu—2) 1 Pa2(®) + tyVn—2Pn—3(%) (3.16)

holds for every n > 1. _
Suppose first that (Qy), is a MOPS with recurrence coefficients (8,), and (;),. Then

Qui1(0) = (X = B Q) — hQu1(®), 1 >0,
Qx =1, Q1) =0
and ¥, # Oforalln > 1, and so it is enough to substitute the expression for Q,(x) — xQ,_1(x) obtained from this three-term

recurrence relation (after replacing n by n — 1) in formula (3.15) to obtain (3.16).
Conversely, if (3.16) is satisfied and y, # 0 for all n > 1, then we show that the sequence (Q,), satisfies the three-term

recurrence relation (3.17), that is, (Q,), is a MOPS with recurrence coefficients (Bn)n and (y)s. Indeed, applying (3.1) in

(3.17)
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(3.16), and by the definition of Bn, for n > 1 we obtain

o (Br1Qu1 00 + Fa1Qa29) = YaPac1 (X0 + (et = T = Bo) [S0Pat 00 + taPa2(9) = 1aQaa (9]
+ 8 [XPn—1(X) — Pn(X)] + taXPy_2(X) — tyy1Pno1(X) — YnQu1(X)
= VaPao1 (0 + (a1 — Tn = B)Qu®) — (Sny1 — B)Pa(®)
+ X[$nPn—1(%) + taPn—2(X)] — ta-1Pr_1(X) — ¥nQu—1(X),
where the last equality follows from (1.1). Applying (1.1) in s,,P,_1 (X) 4 t,P,_ (x) as well as the recurrence relation for (P;,),
we get

o (Br-1Qu 100 + Fr1Qa29) = 1alXQuo1 () = Qul09] = Pt (0 + 1 Qa09) = Sn1Pa(X)
= tap1Pao1(0) = BrQa(0) + X0 — Q1 (¥).

Hence, by definition of Q,,; we have

Qui1(X) — (X — B)Qu(®) + nQuo1(X) = =1l Qu(®) — (X — Br—1)Quo1(X) + P1Qua(®) 1, 1> 1.

Therefore, since by (1.1) Q1 (x) = Py(x) +s1 — 11 =x—Bo+S1— 11 =x — Eo, we deduce recursively
Qui1(®) = X — B)Qu(X) — 72Qu-1(x), 1 >0,

and so (Qy), is a MOPS with recurrence coefficients (,Bn)n and (¥4)n-
Now, observe that from (1.1) and (3.3), it follows that (3.16) is equivalent to

(dn - rn—lan)Qn—Z(x) = (bn - sn—]an)Pn—Z(x) + (Cn - tn—lan)Pn—3(X)7 (3]8)

forn > 2, where a,, b, ¢y, and d,, are defined by (3.10)-(3.13).

To conclude we show that (3.18) holds with 3, # 0 for all n > 1 if and only if ;7 # 0 and formulas (3.4)-(3.9) hold.

Comparing coefficients in both sides of (3.18) for n = 2 and n = 3, we obtain (3.4)-(3.6), respectively. Moreover, it is
easy to verify that (3.7)-(3.9) hold for n > 4. Indeed, on the first hand, since by hypothesis t, # r,(s; — ry) and r,, # 0 for
every n > 3, then by (2.4) we deduce (u, Q,) # O for all n > 2. On the other hand, applying u to both sides of (3.18) we
obtain (d, — ry,_1a,) (1, Q,_3) = 0forn > 4. Thus d,, — r,_1a, = 0 for every n > 4, and this proves (3.9). Therefore, taking
into account (3.18) again, we immediately obtain (3.7) and (3.8).

Conversely, notice that, from (3.8) and (3.9), we have

Th—1 [y

Vo1 = Yn—2, N >4

n tnfl
Thus, 7, # 0 for every n > 3, hence the conditions (3.4)-(3.9) together with 7,7, # 0 imply that (3.18) holds and ¥, # 0
for all n > 1. This concludes the proof. O

Remark 3.1. Using the same techniques, it can be proved a similar result exchanging the role of the sequences (P,), and
(Qn)n. More precisely: given two sequences of monic polynomials (P,), and (Qy), linked by a non-degenerate relation (1.1),
where (Qy), is a MOPS with (Bn)n and (7,), the corresponding sequences of recurrence coefficients, then (P,), is a MOPS with
recurrence coefficients (Bn)n and (yn)n, satisfying (3.2) and (3.3), if and only if y1y> # 0 and Eqs. (3.4)-(3.9) hold.

Now, we show that the orthogonality of the sequence (Q,), can be also characterized by the fact that there are three
sequences (depending on the parameters s,, t,, I, and the recurrence coefficients) which remain constant. Note that this
new characterization of the orthogonality of (Q,), is more interesting than the previous one, giving an implicit solution of
the system of Eqs. (3.4)-(3.9).

Theorem 3.2. Let (P,), be a MOPS and (8,), and (y,)n the corresponding sequences of recurrence coefficients. Let (Q,), be a
simple set of polynomials such that the structure relation (1.1) holds, i.e.,

Qu(X) + 1Qu—1(x) = Pr(X) + $yPp—1(X) + tyPr2(x), n =0,
where (y)n, (Sp)n and (t,), are sequences of complex numbers such that
tp #r(s1—r1),  Tatn#0, n=3,
withrg = sg = tg = t; = 0. Let (,En)n and (V) be defined by (3.2) and (3.3). Then the following two statements are equivalent:

(i) (Qu)n is a MOPS with (En)n and (¥,)n the corresponding sequences of recurrence coefficients.
(ii) It holds Y1y, # 0O together with the initial conditions (3.4)-(3.6), and

tays = auts, (3.19)
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and the following three sequences remain constant

SnQn41

Ap=——— =B —Bn+Sp1 =A, n=3 (3.20)
a1
ana Spa
B, = iy + (Sn — Bn=1) <iJrl — B — sn +5n+1> +th—a— Y1 =B, n=3, (3.21)
th+1 th+1
G = En —Thg1 — M =C n>3, (3.22)
1

n

where (ay), is defined by (3.10).
Proof. To prove this theorem, we introduce the auxiliary coefficients 8y and y,", namely

By = Bn+Sn—Sap1, n=0, (3.23)

Yo = Vot ta—tog1 +50(Snp1 —Sn— B+ Buc1), n =1, (3.24)
so we have y, = a, for all n > 1. Now, observe that the conditions (3.7)-(3.9) in Theorem 3.1 may be rewritten as

Sn1¥p = Su¥n—1 + ta(Bn2 — By), n =4 (3.25)

th1Vy =taVn2, N=4; (3.26)

Tmo1Vn =T¥n-1, M=% (3.27)

and therefore (Q,), is a MOPS if and only if the condition 7,7, # 0, the initial conditions (3.4)-(3.6) and the above Egs.
(3.25)-(3.27) hold.
First, since

Vn* =0y =Yn+n(np1 —Tn — En + En—l)» nx>1,
we have
rn77n—1 = TIn—10n = rn—l[?n + rn(rrH—l —In— En + En—l)]v n= 4,

hence, dividing the left and the right hand sides by r,,r,,_1, we immediately deduce that (3.27) holds if and only if there exists
a constant C (independent of n) such that (3.22) holds.

To conclude the proof we need to show that Egs. (3.25) and (3.26) are equivalent to (3.19)—(3.21). To do this, we notice
that relations (3.25) and (3.26) are formally the same as (2.3) and (2.4) for n > 4 appearing in [4], after replacing 8, and ¥,
by B and y,7, respectively.

e We first prove that (3.25) and (3.26) = (3.19)-(3.21):

Observe that (3.26) for n = 4 is the condition (3.19). Moreover, from (3.25) and (3.26), by making exactly the same
algebraic manipulations that have been made in the proof of (i) = (ii) in [4, Theorem 2.2] we deduce that the analogue of
relation (2.10) and (2.11) for n > 4 in [4] holds. Thus, by straightforward computations, using the definition of 8 and y,;,
we obtain (3.20) and (3.21).

e Next we show that (3.19)-(3.21) = (3.25) and (3.26):

As before, by making the same algebraic manipulations that have been made in the proof of (ii) = (i) in [4, Theorem 2.2],

we deduce that an equation analogous to (2.12) in [4] holds, i.e.,

Ya tht1 £
+1 n n
. (Vn - Vn*+2) = VYn-1— 71/"*4.1, n>3.

tht1 thi2 b1
This relation ensures that 7, ; # 0 for alln > 3, and so, taking into account hypothesis (3.19), i.e., Y1 — tn%y,;jrl = 0 for
n = 3, using induction we may conclude that

E3
L R Y (3.28)
tn tn+1

This proves (3.26). To prove (3.25), notice first that by (3.20) we have

Sa_1YF SnY,;

n= 1V - ﬂ:_z + Sp—2 = ”Vn+1 - ﬂ: +Sp—1, N = 4.

th tnt1

As a consequence, taking into account (3.28),

Sn—1Yy  Sn¥n-1 Sn¥n-1
— = + /3:72 — Sp—2 + Sp—1 — /3: =
ty th th

and (3.25) holds. Thus the proofis finished. O

+:3n—2_13:, n>4,
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Next, to conclude this section, we will see that the constants A, B, and C appearing in the above Theorem 3.2 are,
respectively, the coefficients a, b, and c of the polynomials which relate the two regular linear functionals, that is

A(x — c)u = (X 4+ ax + b)v. (3.29)
First of all, we observe that the values of a, b, ¢, and A may be computed from the following formulas:

Yo 13ty + (t3 — 1352) (51 — 11)

R A
t3 ty —1(s1 —11)
~~ o PoYarstat (5 —138)(s1— 1) | VaYats —13(Sy —12)
b= pop1—11 — - )
t3 ty —12(s1 —11) t3 tp —1a(s1 —11)
Yit3 —r13(s2 —12) 3 Y1Y2
c=py— A2 32T =307
r3 ty —1(81 —11) t3 Y1

Indeed, making both sides of (3.29) acting on the polynomials Qq, Q1, and Q-, and taking into account Egs. (2.3), we obtain
the relations

A(Bo — ¢) = B2 + Boa + b+, (3.30)
Ayt + (Bo — ©)(s1 = )] = (Bo + B1 + O, (331)
M(s2 =)y + (Bo — Oty — r2(s1 — 1)1} = M. (3.32)

The expression for ¢ has been already determined in Section 2; see (2.1). Hence we deduce successively A, a, and b from
Egs.(3.32),(3.31) and (3.30), respectively. Note that these expressions can be also achieved by applying the proof of Theorem
1.1in[14] (which is constructive) to the particular 2-3 type relation considered here.

Theorem 3.3. Let (P,), and (Q,), be two MOPSs with respect to the regular functionals u and v respectively, normalized by
(u,1) = 1 = (v, 1). Let (Bn, Ynr1)n=0 and (Bn, Vnr1)n=0 be the corresponding sets of recurrence coefficients, respectively.
Suppose that (P,), and (Q,), are linked by a non-degenerate 2-3 type relation such as (1.1) and therefore the relation between
the moment linear functionals is

A(x —c)u= (x* + ax + b)v.
Then the constants A, B, and C appearing in Theorem 3.2 coincide, respectively, with the constants a, b, and c.

Proof. (i)C =c.
From (3.22), C = C3 and using the definition of as in terms of 5 (see (3.10) and (3.3)), we have

~ Vs _ % as
C=G=p—-13——=pp—rn——.
I3 3

Therefore we want to prove that
CoBpor—Bp BTN TR
I3 r3 by —r2(s1 —11)
Indeed, by Theorem 3.1, the initial conditions (3.4)-(3.6) hold. Using these second and third initial conditions we obtain
as[ty — s2(s1 —r)] = 31 — (51 — r)las(s2 — r2) + 13721
that is
t3y1 = a3lty — ra(s1 — r)] + 13051 — 1) (333)
The first initial condition (3.4) yields
ay(s1 —11) = $2y1 + ta(s3 — $2 — B2 + Bo) — 21

Handling adequately this expression we can obtain, see ((3.10) and (3.3))

(2= r2)y1 = (51 = )72 — (13 — B2 + Bo)l2 — a(s1 — o). (3.34)
Multiplying both sides of (3.34) by r3, and then subtracting the resulting equation from (3.33), we obtain
t3 —13(S2 — 12)
thy —1a(s1 —11)

and thenc = C.
(ii)A = a.

14! = a3 +13(r3 — B2 + Bo), (3.35)
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First notice that from (3.20) and (3.19), and using the definition of b; (see (3.11)) we have

S3Y; b
A=A3—2—52 /33+S4=?3—,31—/32+53~
3
We want to prove
b r3ty — (t3 — 1387)(r; — S
P B R SN N J/z 3ty — (t3 —135) (1 — s1)
t3 t3 ty —1a(s1 —11)

Taking into account the expression of En (see (3.2)) and formula (3.35) we get

~ % _b t3 —r3(sy — 1 a
AtotFri= 2Pt o= 2y NBDO TR & (3.36)
t3 f3 r3 bty —ra(s1—r1) 13

Now, applying successively the second initial condition (3.5), the definition of d5 (see (3.13)), and (3.33) we deduce

as(s; — 1) + 3% a3 itz —r3(s2 1)

A+Bo+ B =
f3 r3 r3 ty —1(s1 —11)
T3 Vits —13(52 —12)
=TT (t3—r3(s2—r2))+—7
t3 r3 ty — (81 —11)
t3 — r3($2 — 1) t3y1 3.
= —a3¢+ —)¥2
r3t3 ty —12(s1 —11) t3
_t3—n(s—n) nbi—rn I3 57
= — V2,
r3t3 ty —12(s1 —11)
hence A = a.
(iii) B = b.
From (3.21) and (3.19) we have
asys $3)2
B=B; = T+f3—(13—)/2+(53 B2) <—53—S3+S4)
3

and using the definition of En (see (3.2)), and the fact already proved A3 = a we obtain

V2 —
3

t ~ ~
B= 3a3—|—(t3—y2)+(r3—f32 +sy—n)a+ B —r3+1r—5).

Hence, taking into account the expression of b in terms of A, a and ¢ given by (3.30), we have to prove
B=—% +A(Bo — ©) — Po(Bo + a).
Observe that by the definition of En and y, (see (3.2) and (3.3)) we can write

ts— 1y =ty — 12(51 —11) — Po + (52 — 1) (13 — Bo + B1) (3.37)
and then by Eq. (3.33) we get
—t > — _3
Vzt 30 = — 1 (51 — Tl)ﬁ ta 3);2 as(s; Tz)(? B2+ ,31). (3.38)
3 3 3

Next, we analyze the last term in the expression of B, that is (r; — ,Ez + 5y —1)(a+ ,Ez — 13471 — ).
In the sequel of the proof, we will use the following identity
Bo—Bo—Pr+Bi+r—5=0,
which is a direct consequence of the definition of ,El and Eo: see (3.2). This relation together with the first equality in (3.36)
and the initial condition (3.5) leads to

I as(s, — T
a+Pr—rstr—s= 3y2+u—51~
ts ts

Then
(T3—Ez-i-sz—Tz)(a+Ez—T3+T2—52) = (T3—Ez+,31+ﬁo—E0—E1)(a+Ez—T3+T2—52)

= (13— B2+ B1) (% + 703(52&_ ) _ ,31>
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+(Bo—Bo— P)@+ Ba— 13+ Bo+ Br — B1 — Bo)

= (s — ﬂ2+ﬁ1)<rm ‘h(si:m—ﬁﬁ’ﬁ]—ﬁwﬁo)
+(Bo — Bo — B1)(@+ Bo + Bi — Bo)- (3.39)

Now, we add the formulas (3.37)-(3.39). Thus, by the relation Eo — Bo + s1 — r; = 0 and the definition of ; (see (3.3))
we deduce

¥: asy. V:
B=—% —Poa+Po) + (51 - n)ﬁ e CR R RS 51)£ +(Bo — B1)(@+ Bo + B).
3
Therefore, since C = c that is ﬂz —r3 — 2 =cweget
r3¥2

B

~% = Bola+Bo) — 7o + 7(/31 —c+51—11) + (Bo — B)(@+ Bo + B1)

~% — Bola+Bo) — 7 + ?(,31 —c4si =11+ fo— )+ ﬁ(ﬁo —0)(Bo — B1)(s1 — 1),

where in the second equality we have used A = ;3 %1% and the relation (3.31). Finally, it is sufficient to observe (3.32) and
the definition of ; to conclude thatB=b. O

4. Example

A new example of a non-degenerate 2-3 type relation (1.1) is presented.

From some rational transformations of the Jacobi weight function we construct two regular functionals u and v such that
(1 + x)>v = (1 — x)u, in the distributional sense. Moreover we analyze when their corresponding MOPSs (P,), and (Q,).
satisfy a non-degenerate 2-3 type relation (1.1), and in this case we give explicitly the parameters involved in this relation.
The construction will be done in several steps.

Let w = w®#) be the positive definite linear functional defined by the weight function (1 — x)® (1 + x)# x(_1.1) where
o > —1and B > —1, and x; represents the characteristic function of a set E. Denote by (W),,),, its corresponding MOPS (we
have chosen this notation instead of the classical one (P,S“’ﬂ ))n to avoid confusions with the notation (P,), used along all this
paper). It is well known (see for instance [6]) that the recurrence coefficients (8,, y,) of (W,), are given by

2 2
ﬂn - ﬂ ¢ ’ n Z Oa
Cn4+a+pBCn+a+B+2)
dn(n+oa)(n+ B)(n+ o + p)

J/n: ) nzl
Cn+a+B-1DCn+a+p)?Cn+a+B+1)
Besides
2B T (a + DB+ 1)
wo = (w, 1) = )

Ia+pB+2)
and forn > 1

W, W2) 22 P DI (n+a+ DI+ +DIMn+a+p+1) 1)
w, = . .
" rn+a+B+0DIr2n+oa+p+2)

First, we consider a functional w such that (1 — x)W = w, that is

W= (1 —x)"'W+ Wd.
If the functional w is regular and (W,), is the corresponding MOPS, then there exists a sequence of complex numbers (a,),
with a, # 0 for every n > 1, such that

Wa(x) = Wa(X) + @G Wo 1(x), 1> 1. (4.2)
The regularity of the functional W is equivalent to the parameters a, in (4.2) being the solution of the nonlinear difference
equation

5W—%“—£ﬁ=n n> 1, (4.3)

n
(see Theorem 2 in [11] and its proof). Observe that there is only a free parameter, namely a;.
Besides since
wo(1— o+ ar) = wo
it follows that 1 — By 4+ a; # 0 and using the value of S, we obtain

2+ 1) +a(a+ B +2) #0. (4.4)
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Now, the main goal is to characterize under which conditions the functional w is regular and to obtain the expression of
the parameters a,.

Through clever calculations, we can deduce that if we take a; # 0 satisfying the above condition (4.4), then for « # 0
the functional W is regular if and only if

Av=T(@+ DI @+B+2DI M+ P)+MIB+DIn+a)[(n+a+p)#0, n>2, (4.5)

where
20w 2B+ D)+ ai(a+B+D)(a+B+2
Moo 220 gy o 2BE D a@ fr D@t p+2)
wo 2@+ D +a(a+B+2)
and moreover, we can deduce by induction that the parameters
-2 A
a, = L onz2, (4.6)

Cn+a+B)R2n+a+p—-1) A,

are the solution of Eq. (4.3). Note that when @ + 8 > —1,(4.6) is valid for n > 1.
Whenever o = 0, the functional W is regular if and only if the condition (4.4) holds and

A”._——(ﬁﬂ)Z( ,3+1>7£0’ n>2. (4.7)

Besides it can be proved by induction (empty sum equals zero) that

—2n(n+B)  Aun
@n+p2n+g-1) A,
From (4.2) and the relation (1 — X)W = w, we obtain

(W, W2) = —a,(w, W2 ,), n>1, (4.9)

, n>1. (4.8)

ap, =

and so we have an explicit expression for (W, VT/HZ) in terms of the parameter a;.
In a second step, we consider the functional u verifying (1 4+ x)w = u. Then,
u=(1—x)"'weD Ly 68,

1+Bo—aq
1-Bo+ay

(1 +x)W, p(x)) = (W, (14 x)p(x))
_ < (1+x)p(x) —2p(1)
= (w,
1—x

p() p()>

where ug = 2w — wy = wy. Indeed, for any polynomial p

>+217)0P(1)

<w 1+ + 2 — wo)p(1)

=({(1-0""0+ X)w(“’f” + (2Wo — )81, p(x)).
Observe that the value of ug yields 1 + By — a; # 0, that is
2B+ 1) —ai(@+ B +2) £0. (4.10)

Since the expression of the functional u is similar to the one of W, taking in mind the previous study of the regularity of
the functional W and exchanging S for 8 + 1 and M for M where
~ 20 Uy a+pB+2
M=——F-—-(+8+2)=—M,
w(()ot,ﬂ+l) ( ‘B ) IB +1
we can ensure that for « # 0 the functional u is a regular functional whenever we also impose that the conditions
Bi=T(@+ DI @+p+3)IMIm+B+D)+MIB+2)In+a)(n+a+p+1)£0,
n>1, (4.11)

hold. For ¢ = 0, these conditions should be replaced by

~ 2U0

B, = ST (ﬁ+2)Z< /3+1+z>7é0’ n>1, (4.12)

(empty sum equals zero).
Denoting by (P,), the MOPS associated with this regular functional u, then the following linear relation

Wi(x) = Po(x) + baPyo1(x), n>1, (4.13)
holds, where b, = (W, W2)/(u, P2_,).

’n]
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Furthermore, from the value of (W, \7\73) given in (4.9) and exchanging 8 for 8 + 1 and W, for ug, we can obtain the value
of (u, P,f). Thus, from (4.1), (4.6) and (4.8) and straightforward computations we obtain

b] = — ﬂ
Up
anl
b, =—-an—1(n+a—1) 5 n>2 a#0
n
n—1 En—l
b, = —a, ~—, n>2,a=0.
n+p B,
Notice that we have obtained the following 2-2 relation
Wi (%) + apWy_1(x) = Pp(x) + byPp1(x), n>1, (4.14)

and the corresponding functionals satisfy
14+xw=(1—x)u.
In the last step, we consider a new functional v defined by (1 + x)v = w, that is
v=(14x "W+ vs_1.

Again, if the functional v is regular and (Q,), is the corresponding MOPS, there exists a sequence of complex numbers (¢;),
with ¢, # 0, n > 1, such that

Q(x) = Wy(¥) + cnWp_1(x), n>1 (4.15)
The functional v is regular if and only if the parameters ¢, satisfy
,Bn_cn+l_ﬁ:_1s n>1, (4.16)
C

n
(see Theorem 2 in [11]). Moreover,

vo(1+ Bo — 1) = wo
hence 1+ By — ¢ # 0, and using the value of B, we obtain
2+1) —ci(a+B+2)#0. (4.17)

Now, working in the same way as we have done before with the functional W, we can prove (by induction) that for 8 # 0 if
we take c; # 0 satisfying the above condition (4.17) and

C=TB+Dra+B+2IrMI'n+a)+NTa+DI'+BIn+a+pB)#0, n>2, (4.18)

where
28v 20+1) —cila+ B+ D+ B +2
N BY gy Mt D oalrpr@t fi2)
wo 2B+ 1) —c(@+p+2)
then the functional v is regular and the parameters c, in the relation (4.16) are given by
2 C
= o> (4.19)

Cn+a+pBCCn+a+p—-1) G
For B = 0, the functional V is regular if and only if the condition (4.17) holds and

Cp = @—( +1)Z< OH_I)#O n>2, (4.20)

and besides it can be proved by induction that
—2n(n+a) o
en+a)2n+a—1) C,

Summarizing: if we take a; # 0 and c; # 0 satisfying the conditions (4.4), (4.5) or (4.7) if ¢ = 0, (4.10), (4.11) or (4.12)
ifa = 0,(4.17), and (4.18) or (4.20) if 8 = 0, then the functionals
1 —a
u=(1—x"'w*F 4 Ith-o wo 81,
1—fo+a

= n>2.

and

1
v=(1+x""w*? 4+ TFh—c wod_1,
0 — L1

are regular and they are related by
(1—xu=(1+x)>.
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In general, the above relation does not imply the existence of a non-degenerate 2-3 type relation (1.1) between the
sequences (P;), and (Q,), associated with the functionals u and v, respectively. More precisely we can ensure that a
necessary and sufficient condition to get this type of relation is

ap # Cp, N> 2. (4.21)

Indeed, if there exists a non-degenerate 2-3 type relation (1.1), since the functional (1 — x)u is regular, from Proposition 2.2
we have t, # 1,(Sp—1 — p—1) for alln > 2. Now, Theorem 5.1 in [ 14] yields

(V. Q) # —(u, QuPrs), n=2.
From (4.13)-(4.15) we have
(W, QuPr_1) = (by + cn — an)(u, P;_,),
and
(V. QD) = calw, Wi_,) = = (W, W) = =" bu(u, Py_,).

s tn—1
Therefore, we get

C
bn+cn_an7éibna n>2,
a

n

and then (4.21) holds.
Conversely, from (4.14) and (4.15) we obtain

Qi(X) =P1(x) + b1 +¢c1 —ay,

Q(x) + (@2 — 2)Qi(X) = P2(X) + baP1(x) + (a2 — C2)C (4.22)
and straightforward computations lead us to the following explicit non-degenerate 2-3 type relation

Qu(X) + Qu_1(X) = Pp(x) + $pPr_1(%) + t;.Pr_2(x),

where
ap — Cp
n = Qn—1 #0, nx=3,
ap—1 — Cp—1
ap — Cp
Sn:bn"i'cn—l , n>3,
n—1 — Cn—1
ap — Cp
tn = by_1cp1— #0, n>3.
ap—1 — Ch—1

Observe that the condition t; # ry(s; — ry) is satisfied because a; # b;.

We want to remark that in the case a; # c4, the above relation for n = 2 is equivalent to the relation (4.22).

Finally, by the sake of completeness, we show that there are a wide spectrum of free parameters a; and c¢; which allows
us to build these examples.

For instance, takingo = g = 1/2, a; &€ (—1/2,0] U {£1}, and ¢c; = —ajy, the conditions (4.4), (4.10) and (4.17) are
trivially satisfied, and besides, it is not difficult to verify that A, # 0, B, # 0, C;, = A, # 0, for everyn > 1. So the
functionals

1+ 2a
u= W(_1/2’3/2) — T + ! 1,
1-’—(11
and
w1+ 2a
v=wir-yn Tl —1s
2 1+a

are regular and satisfy
(1=xu=(1+x)v.

Furthermore since c; = —ay, from (4.6) and (4.19) we deduce ¢, = —a,, n > 1.In this case the values of the parameters
of the 2-3 type relation are given by

rn:an; ’7227
Sn:bn_an; n>2,

tp = _bn—lan» n= 29
with
1 1—(1+2ay)n
an = — = 5 n= )
21—042a)(n—1)
and
b — 2n—1)14+a) — (14 2a)(n— 1)n
n =

—ay , n>1
n+ 1)1 4+a;)) — (14 2a)n(n+ 1)
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