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a b s t r a c t

Let (Pn)n and (Qn)n be two sequences of monic polynomials linked by a type structure
relation such as

Qn(x) + rnQn−1(x) = Pn(x) + snPn−1(x) + tnPn−2(x),

where (rn)n, (sn)n and (tn)n are sequences of complex numbers.
First,we state necessary and sufficient conditions on theparameters such that the above

relation becomes non-degenerate when both sequences (Pn)n and (Qn)n are orthogonal
with respect to regular moment linear functionals u and v, respectively.

Second, assuming that the above relation is non-degenerate and (Pn)n is an orthogonal
sequence, we obtain a characterization for the orthogonality of the sequence (Qn)n in terms
of the coefficients of the polynomialsΦ andΨ which appear in the rational transformation
(in the distributional sense) Φu = Ψ v .

Some illustrative examples of the developed theory are presented.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The analysis ofM–N type linear structure relations involving twomonic orthogonal polynomial sequences (MOPS), (Pn)n
and (Qn)n, such as

Qn(x) +

M−1
i=1

ri,nQn−i(x) = Pn(x) +

N−1
i=1

si,nPn−i(x), n ≥ 0,

where M and N are fixed positive integer numbers, and (ri,n)n and (si,n)n are sequences of complex numbers (and empty
sum equals zero), has been a subject of research interest in the last decades, both from the algebraic and the analytical point
of view. For historical references, as well as a description of several aspects focused on the interest and importance of the
study of structure relations involving linear combinations of two MOPSs, we refer the introductory sections in the recent
works [1,4] by F. Marcellán and three of the authors of this article, as well as the references therein. Such a study is also of
interest in the framework of the theory of Sobolev orthogonal polynomials, in particular in connection with the notion of
coherent pair of measures and its generalizations, where linear structure relations involving derivatives of at least one of
the families (Pn)n and (Qn)n appear (see e.g. [9,11,7]).

It is known [14] that up to some natural conditions (avoiding degenerate cases) the above M–N type structure relation
leads to a rational transformation

Φu = Ψ v

∗ Corresponding author.
E-mail addresses: alfaro@unizar.es (M. Alfaro), anap@unizar.es (A. Peña), josep@mat.uc.pt (J. Petronilho), rezola@unizar.es (M.L. Rezola).

0022-247X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2012.12.004

http://dx.doi.org/10.1016/j.jmaa.2012.12.004
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
mailto:alfaro@unizar.es
mailto:anap@unizar.es
mailto:josep@mat.uc.pt
mailto:rezola@unizar.es
http://dx.doi.org/10.1016/j.jmaa.2012.12.004


M. Alfaro et al. / J. Math. Anal. Appl. 401 (2013) 182–197 183

between the regular (or quasi-definite) moment linear functionals u and v with respect to which the sequences (Pn)n and
(Qn)n are orthogonal (respectively), whereΦ andΨ are polynomials of (exact) degreesM–1 andN–1, respectively. As usual,
⟨w, q⟩means the action of the functionalw over the polynomial q and the left product of a functionalw (defined in the space
of all polynomials) by a polynomial φ is defined in the distributional sense, i.e., ⟨φw, p⟩ = ⟨w, φp⟩ for any polynomial p. In
terms of the Stieltjes transforms associatedwithu and v, the above relation between the functionals leads to a linear spectral
transformation, in the sense described and studied by A. Zhedanov [17], and by V. Spiridonov, L. Vinet, and A. Zhedanov [16].
Moreover, P. Maroni [12] gave a characterization of the relation between theMOPSs associated with two regular functionals
u and v fulfilling Φu = Ψ v. In connection with the study of direct problems related to orthogonal polynomials associated
with this kind of modifications of linear functionals (rational modifications), besides the work [2], among others we also
point out the works by W. Gautschi [8], M. Sghaier and J. Alaya [15], M.I. Bueno and F. Marcellán [5], and J.H. Lee and K.H.
Kwon [10], in particular, in the framework of the so-called Christoffel formula and its generalizations.

Concerning the above M–N type structure relation, most of the papers in the available literature deal with relations
considering concrete values for M and N , specially M,N ∈ {1, 2, 3}. Indeed, the simplest relations of types 1–2 and 2–1
have been studied in [11], the 2–2 type relation in [3,2], and the more elaborated situation involving a 1–3 type relation has
been studied in [4]. In addition, the 1–N type relation with constant coefficients (i.e., each (si,n)n is a constant sequence)
has been analyzed in [1]. In all these works a main problem stated and solved therein was the following inverse problem:
assuming that (Pn)n is a MOPS and (Qn)n only a simple set of polynomials – i.e., every Qn is a polynomial of degree n –,
to determine necessary and sufficient conditions such that (Qn)n becomes also a MOPS. The general M–N type relations
have been considered in [14], but the results were therein obtained assuming the orthogonality of both sequences (Pn)n and
(Qn)n, as well as some additional assumptions ensuring non-degenerate situations. The analysis of the regularity conditions
is usually a hard task, since it involves solving systems of nonlinear difference equations, and in general there are not
available methods for solving them. Therefore often the success depends on the application of ad-hoc methods for solving
such systems.

In this contribution we focus on the analysis of theM–N type relation withM = 2 and N = 3, that is

Qn(x) + rnQn−1(x) = Pn(x) + snPn−1(x) + tnPn−2(x), n ≥ 0, (1.1)

where (rn)n, (sn)n, and (tn)n are sequences of complex numbers with the conventions r0 = s0 = t0 = t1 = 0.
Our aim is twofold. On the first hand, we determine whether (1.1) is a degenerate or a non-degenerate structure relation.

We say that the 2–3 type relation (1.1) is degenerate if there exists another structure relation of type M–N linking (Pn)n
and (Qn)n with M < 2 or N < 3. In Theorem 2.1 we will see how some appropriate initial conditions, involving only
the parameters r1, r2, r3, s1, s2, t2, and t3, allow us to describe all the possible degenerate cases. Besides, only under the
assumption t2 ≠ r2(s1 − r1) and r3t3 ≠ 0 we really have a non-degenerate 2–3 type relation. Since all the degenerate
cases have been already considered in the previous works [3,2,4,11], we will focus on the non-degenerate case. Some
non-degenerate (1.1) relations have been already considered in [14], but as we will prove not all of them.

On the other hand, the following so-called inverse problem is considered: given two sequences of monic polynomials
(Pn)n and (Qn)n such that (1.1) holds, and under the assumptions that (1.1) is non-degenerate and (Pn)n is a MOPS, to find
necessary and sufficient conditions such that (Qn)n becomes also a MOPS and, under such conditions, to give the relation
between the linear functionals with respect to which (Pn)n and (Qn)n are orthogonal. In this paper, we not only show such
a characterization (see Theorem 3.1), but we achieve another more developed result which describes the orthogonality of
(Qn)n in terms of some sequences which remain constant (see Theorem 3.2). Evenmore, the most interesting fact is that the
values of these constants are precisely the coefficients of the polynomials involved in the relation between the linear func-
tionals. We want to observe that the same property was obtained in [11, Theorem 2], [3, Theorem 2.2], and [4, Theorem 2.2]
for non-degenerate relations 1–2, 2–2, and 1–3 respectively. Thus, for a general M–N type structure relation (avoiding de-
generate cases) we conjecture that a deeper solution of the inverse problem can be done in terms of the existence of certain
constant sequences whose values coincide with the coefficients of the polynomials of (exact) degree M–1 and N–1 which
relate both regular functionals.

The structure of the paper is the following. In Section 2, the first of the above mentioned questions, i.e., determining
under which conditions the 2–3 type (1.1) relation is either degenerate or non-degenerate is solved in Theorem 2.1. Besides,
a regularity characterization of the functional Φu is given in Proposition 2.2, filling out the non-degenerate relation (1.1)
studied in [14, Section 5]. Also, an example of a non-degenerate relation (1.1) where the functional Φu is not regular is
presented. The announced regularity (orthogonality) conditions, i.e. the solution of our inverse problem, will be stated in
Theorems 3.1 and 3.2 in Section 3. Finally, in Section 4 we present a computational example illustrating the developed
theory. The reader may find the basic background on orthogonal polynomials needed in the sequel in most of the articles
appearing in the set of references, specially the monograph [6] by T.S. Chihara where the general theory is presented, and
the paper [13] by P. Maroni concerning some algebraic aspects of the theory.

2. Degenerate and non-degenerate 2–3 type relations

Let (Pn)n and (Qn)n be two sequences of monic polynomials orthogonal with respect to the regular functionals u and v
(resp.), normalized by ⟨u, 1⟩ = 1 = ⟨v, 1⟩. Let (βn)n and (γn)n be the sequences of recurrence coefficients characterizing
(Pn)n, and (βn)n and (γn)n the corresponding sequences characterizing (Qn)n. Suppose that these families of polynomials are
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related by the 2–3 type relation (1.1) with the conventions r0 = s0 = t0 = t1 = 0. It is known [14, Theorem 1.1] that the
initial conditions t2 ≠ r2(s1 − r1) and r3t3 ≠ 0 yield a relation between the linear functionals u and v such as

Φu = Ψ v,

where Φ and Ψ are polynomials of (exact) degrees 1 and 2, respectively.
We will show that these initial conditions are not only sufficient but also necessary to have a non-degenerate relation,

that is rntn ≠ 0 for all n ≥ 3.
First, we point out that the conditions t2 ≠ r2(s1 − r1) and r3 ≠ 0 imply that there exists a complex number c such that

⟨(x − c)u,Q3⟩ = 0 and therefore ⟨(x − c)u,Qn⟩ = 0 for all n ≥ 3. Indeed, for an arbitrary c ∈ C, we may write

⟨(x − c)u,Q3⟩ = ⟨u, (x − c)(P3 + s3P2 + t3P1 − r3Q2)⟩

= t3⟨u, (x − c)P1⟩ − r3⟨u, (x − c)[P2 + (s2 − r2)P1 + t2 − r2(s1 − r1)]⟩
= [t3 − r3(s2 − r2)]γ1 − r3[t2 − r2(s1 − r1)](β0 − c).

Then there exists c such that ⟨(x − c)u,Q3⟩ = 0, more precisely

c := β0 −
γ1

r3

t3 − r3(s2 − r2)
t2 − r2(s1 − r1)

. (2.1)

For this choice of c and taking into account the 2–3 type relation (1.1) we have

⟨(x − c)u,Qn⟩ = −rn⟨(x − c)u,Qn−1⟩, n ≥ 4.

Thus ⟨(x − c)u,Qn⟩ = 0 for all n ≥ 3, as we wish to prove. Moreover, using standard results [13], we obtain the relation
between the functionals (x − c)u and v:

(x − c)u =

2
j=0

⟨(x − c)u,Qj⟩

⟨v,Q 2
j ⟩

Qj v, (2.2)

being

⟨(x − c)u,Q0⟩ = β0 − c,

⟨(x − c)u,Q1⟩ = γ1 + (s1 − r1)(β0 − c), (2.3)

⟨(x − c)u,Q2⟩ = (s2 − r2)γ1 + (β0 − c)[t2 − r2(s1 − r1)] =
γ1t3
r3

.

Therefore if t2 ≠ r2(s1−r1) and r3t3 ≠ 0,we see that the relation between the regular functionalsu and v is (x−c)u = h2(x)v,
where h2 is a polynomial of exact degree two. Moreover, if t2 ≠ r2(s1 − r1), r3 ≠ 0, and t3 = 0, then ⟨(x− c)u,Q2⟩ = 0 and
so (2.2) reduces to (x − c)u = h1v, with h1 a polynomial of degree less than or equal to one, so we have a degenerate case.
In the next theorem we deduce all the possible degenerate cases from some appropriate initials conditions involving only
the seven parameters r1, r2, r3, s1, s2, t2, and t3.

Theorem 2.1. Let (Pn)n and (Qn)n be two MOPSs with respect to the regular functionals u and v, respectively, normalized by
⟨u, 1⟩ = 1 = ⟨v, 1⟩. Assume that there exist sequences of complex numbers (rn)n, (sn)n, and (tn)n such that the 2–3 type
relation (1.1) holds, with r0 = s0 = t0 = t1 = 0. We have

(i) If t2 = r2(s1 − r1) and s1 = r1, then tn = 0, n ≥ 2 and sn = rn, n ≥ 1. Thus (1.1) reduces to the trivial 1− 1 type relation
Qn = Pn, n ≥ 0.

(ii) If t2 = r2(s1 − r1) and s1 ≠ r1, then tn = rn(sn−1 − rn−1), n ≥ 2 and sn ≠ rn, n ≥ 1. In this case (1.1) reduces to a 1–2
type relation:

Qn = Pn + anPn−1, n ≥ 0; an := sn − rn ≠ 0, n ≥ 1.

(iii) If t2 ≠ r2(s1 − r1) and r3 = 0, then tn ≠ rn(sn−1 − rn−1), n ≥ 2 and rn = 0, n ≥ 3. In this case (1.1) reduces to a 1–3
type relation:

Qn = Pn + anPn−1 + bnPn−2, n ≥ 0;
an := sn − rn, n ≥ 1; bn := tn − rn(sn−1 − rn−1) ≠ 0, n ≥ 2.

(iv) If t2 ≠ r2(s1 − r1) and r3 ≠ 0, then rn ≠ 0, n ≥ 3. In addition:
(iv-a) If t3 = 0 and t2 = s2(s1 − r1), then tn = 0 = sn, n ≥ 3. In this case (1.1) reduces to a 2–1 type relation:

Qn + cnQn−1 = Pn, n ≥ 0; cn := rn − sn ≠ 0, n ≥ 1.
(iv-b) If t3 = 0 and t2 ≠ s2(s1 − r1), then tn = 0, n ≥ 3 and sn ≠ 0, n ≥ 3. In this case (1.1) reduces to a 2–2 type

relation. More precisely:
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• If s1 ≠ r1, then (1.1) becomes
Qn + cnQn−1 = Pn + dnPn−1, n ≥ 0;
c1 − d1 := r1 − s1
c2 := r2 − t2/(s1 − r1), d2 := s2 − t2/(s1 − r1)
cn := rn, n ≥ 3, dn := sn, n ≥ 3

so that cndn ≠ 0, n ≥ 1.
• If s1 = r1, then

Q1 = P1;
Q2 + r2Q1 = P2 + s2P1 + t2;
Qn + rnQn−1 = Pn + snPn−1, n ≥ 3.

(v) If t2 ≠ r2(s1 − r1) and r3t3 ≠ 0, then rntn ≠ 0, n ≥ 3. Thus in this case (1.1) is a non-degenerate 2–3 type relation.

Proof. From (1.1) it follows that

⟨u,Q1⟩ = s1 − r1, ⟨u,Q2⟩ = t2 − r2(s1 − r1),
⟨u,Qn⟩ = −rn ⟨u,Qn−1⟩, n ≥ 3.

(2.4)

(i) If t2 = r2(s1 − r1) and s1 = r1, (2.4) implies ⟨u,Qn⟩ = 0, n ≥ 1, so u = v. Thus Pn = Qn for all n ≥ 0 and the relation
(1.1) derives sn = rn, n ≥ 1, and tn = 0, n ≥ 2.

(ii) If t2 = r2(s1 − r1) and s1 ≠ r1, then from (2.4) we have ⟨u,Q1⟩ ≠ 0 and ⟨u,Qn⟩ = 0, n ≥ 2. Hence, the relation
between the two functionals is u = h(x)v where h is a polynomial of degree one, and so Qn(x) = Pn(x) + anPn−1(x) for all
n ≥ 0, with an ≠ 0, n ≥ 1. Then the relation (1.1) yields sn = an + rn, n ≥ 1, and tn = rnan−1 = rn(sn−1 − rn−1), n ≥ 2.
Observe that we obtain a degenerate case, namely a 1–2 type relation.

(iii) If t2 ≠ r2(s1 − r1) and r3 = 0, from (2.4) we deduce ⟨u,Q2⟩ ≠ 0 and ⟨u,Qn⟩ = 0, n ≥ 3, so there exists a polynomial
h of degree two such that u = h(x)v. Thus, Qn(x) = Pn(x) + anPn−1(x) + bnPn−2(x) for all n ≥ 0, with bn ≠ 0, n ≥ 2. Again,
the relation (1.1) leads to sn = an + rn, n ≥ 1, tn = bn + rnan−1, n ≥ 2, and rnbn−1 = 0, n ≥ 3, so rn = 0, n ≥ 3, and
tn ≠ 0, n ≥ 3. Then we have another degenerate case, namely a 1–3 type relation.

(iv) If t2 ≠ r2(s1−r1) and r3 ≠ 0, from (2.4) we see that ⟨u,Q2⟩ ≠ 0, ⟨u,Q3⟩ ≠ 0, and for each n ≥ 4we have ⟨u,Qn⟩ = 0
if rn = 0. Assuming that there exists n ≥ 4 such that rn = 0, let n0 := min{n ∈ N | n ≥ 4, rn = 0}. Then ⟨u,Qn⟩ = 0, n ≥ n0
and ⟨u,Qn⟩ ≠ 0, 2 ≤ n ≤ n0 − 1. Hence, u = h(x)v, with h a polynomial of degree n0 − 1, and so

Qn(x) = Pn(x) +

n0−1
j=1

a(j)
n Pn−j(x),

with a(n0−1)
n ≠ 0, n ≥ n0 − 1. Taking into account (1.1) we easily see that this is not possible, so rn ≠ 0, n ≥ 3. Moreover:

(iv-a) If t3 = 0 and t2 = s2(s1 − r1), then (1.1) implies ⟨v, Pn⟩ = 0, n ≥ 2 and ⟨v, P1⟩ ≠ 0, so v = h(x)u with h a
polynomial of degree one. Then working in the same way as in (ii) we get tn = 0 = sn, n ≥ 3. Note that, in this case (iv-a)
we have another degenerate case, namely a 2–1 type relation.

(iv-b) If t3 = 0 and t2 ≠ s2(s1 − r1), then by (2.3) and (2.4) we can obtain

⟨(x − c)u,Q1⟩ = γ1
t2 − s2(s1 − r1)
t2 − r2(s1 − r1)

≠ 0, ⟨(x − c)u,Qn⟩ = 0, n ≥ 2,

so there exists a polynomial h of degree one such that (x − c)u = h(x)v. Applying the auxiliary functional (x − c)n−2u to
the main relation (1.1) we obtain for n ≥ 3

tn⟨u, P2
n−2⟩ = ⟨(x − c)n−2u, Pn + snPn−1 + tnPn−2⟩

= ⟨(x − c)n−2u,Qn + rnQn−1⟩

= ⟨v, (x − c)n−3 h(x) (Qn + rnQn−1)⟩ = 0.

Then the condition tn = 0, n ≥ 3, holds and (1.1) becomes

Qn(x) + rnQn−1(x) = Pn(x) + snPn−1(x), n ≥ 3.

On the other hand, to analyze the parameters sn, we see that for n ≥ 3

sn⟨u, P2
n−1⟩ = ⟨(x − c)n−1u, Pn + snPn−1⟩ = ⟨(x − c)n−1u,Qn + rnQn−1⟩

= ⟨v, (x − c)n−2 h(x) (Qn + rnQn−1)⟩ = krn⟨v,Q 2
n−1⟩,

where k is the leading coefficient of the polynomial h, and so we obtain sn ≠ 0, n ≥ 3. Thus another degenerate case
appears, namely a 2–2 type relation.
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(v) If t2 ≠ r2(s1 − r1) and r3t3 ≠ 0, then as we have seen just before the statement of this theorem, there exists a constant
c such that (x − c)u = h2(x)v, with h2 a polynomial of degree two and so, by (1.1), we obtain

tn⟨u, P2
n−2⟩ = ⟨(x − c)u, (Pn + snPn−1 + tnPn−2)Qn−3⟩

= ⟨v, h2(x)(Qn + rnQn−1)Qn−3⟩ = k2rn ⟨v,Q 2
n−1⟩, n ≥ 3,

where k2 is the leading coefficient of the polynomial h2. Now, it is enough to apply (iv) to obtain rn ≠ 0, n ≥ 3, and so also
tn ≠ 0, n ≥ 3. Thus the proof is concluded. �

Remark 2.1. Observe that (v) is the unique case where the relation (1.1) between the two families (Pn)n and (Qn)n is a
non-degenerate 2–3 type relation. All the degenerate cases, except the case (iv-b)with r1 = s1, have already been considered
in the previous works [3,2,4,11]. The case (iv-b) with r1 = s1 can be studied and solved in a similar way as in [3]. Then from
now on we will concentrate on the analysis of the non-degenerate case.

The non-degenerate 2–3 type relations have already been considered in [14, Section 5]. However, there some additional
hypothesis about the parameters involved in the relation (1.1) were imposed, namely

tn ≠ rn(sn−1 − rn−1), n ≥ 3.

In the following proposition we prove that to impose these conditions, together with the conditions r3t3 ≠ 0 and t2 ≠

r2(s1 − r1), is equivalent to assume that the functional (x − c)u is regular.

Proposition 2.2. Let (Pn)n and (Qn)n be two MOPSs with respect to the regular functionals u and v, respectively, normalized
by ⟨u, 1⟩ = 1 = ⟨v, 1⟩. Assume that there exist sequences of complex numbers (rn)n, (sn)n, and (tn)n such that the 2–3 type
relation (1.1) holds, with r0 = s0 = t0 = t1 = 0 and the initial conditions t2 ≠ r2(s1 − r1) and r3t3 ≠ 0. Then the following
statements are equivalent:

(i) The functional (x − c)u is regular.
(ii) tn ≠ rn(sn−1 − rn−1) for all n ≥ 2.

Proof. Multiplying both sides of (1.1) by Pn−1 and applying u, we find

⟨u,QnPn−1⟩ = (sn − rn)⟨u, P2
n−1⟩, n ≥ 1. (2.5)

Moreover, multiplying both sides of (1.1) by Pn−2, then applying u and taking into account (2.5), we get

⟨u,QnPn−2⟩ = [tn − rn(sn−1 − rn−1)]⟨u, P2
n−1⟩, n ≥ 2. (2.6)

Thus

tn ≠ rn(sn−1 − rn−1) ⇐⇒ ⟨u,QnPn−2⟩ ≠ 0, n ≥ 2.

On the other hand, it is well known that (x − c)u is a regular functional if and only if Pn(c) ≠ 0 for all n ≥ 0. Therefore we
only need to show that

⟨u,Qn+2Pn⟩ ≠ 0 ⇐⇒ Pn(c) ≠ 0, n ≥ 0.

Indeed, since Pn(x) =
n

j=0 a
n
j (x − c)j with ann = 1 and an0 = Pn(c), and (as we have seen just before the statement of

Theorem 2.1) the relation between the regular functionals u and v is (x − c)u = h2(x)v, where h2 is a polynomial of degree
two, we obtain for all n ≥ 1

⟨u,Qn+2Pn⟩ =


(x − c)u,Qn+2


(x − c)n−1

+

n−1
j=1

anj (x − c)j−1


+ Pn(c)⟨u,Qn+2⟩

=


h2(x)v,Qn+2


(x − c)n−1

+

n−1
j=1

anj (x − c)j−1


+ Pn(c)⟨u,Qn+2⟩

= Pn(c)⟨u,Qn+2⟩, n ≥ 0.

To conclude the proof it suffices to observe that from (v) in Theorem 2.1 we have rn ≠ 0, n ≥ 3, and therefore taking into
account (2.4) we obtain ⟨u,Qn⟩ ≠ 0 for all n ≥ 2. �

Next, we are going to present an example showing that a non-degenerate 2–3 type relation (1.1) may occur even when
the functional (x − c)u is not regular. This example shows that Theorem 5.1 in [14] does not give a full description of the
non-degenerate 2–3 type relations. The full characterization of these relations (including the determination of the
orthogonality conditions) is the main purpose of our study in the next section.
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Example. In the sequel we denote by w2,w3, and w4 the regular functionals associated with the Chebyshev polynomials
of the second, third, and fourth kind, which are represented (up to suitable normalizing constants) by the weight functions
(1 − x)1/2(1 + x)1/2, (1 − x)−1/2(1 + x)1/2, and (1 − x)1/2(1 + x)−1/2, respectively. Consider also the regular functional

u = −
1
3
xw3 + δ1,

where δξ means the Dirac functional at a point ξ ∈ C, so that ⟨δξ , p⟩ := p(ξ) for every polynomial p. The regularity of u has
been stated in an example presented in [2, pp. 181–182].

Denote by (Pn)n, (Qn)n and (Rn)n the MOPSs with respect to u,w4, and w2 (respectively). These functionals satisfy the
following relations

w2 = (1 + x)w4, 3(x − 1)u = xw2 = x(1 + x)w4.

As a consequence of these relations and the results in [2], we have that the relation

Qn(x) = Rn(x) + λn Rn−1(x), n ≥ 0

with λn =
1
2 , n ≥ 1, holds as well as the following 2–2 type relation

Pn(x) + anPn−1(x) = Rn(x) + bnRn−1(x), n ≥ 1,

where

a2n = b2n = −
4n + 1

2(4n − 1)
, n ≥ 1,

a2n+1 =
4n − 1

2(4n + 1)
, b2n+1 = −

4n + 3
2(4n + 1)

, n ≥ 0.

Moreover, since xw2 is not a regular functional, then (x− 1)u is not a regular functional. Nevertheless, a non-degenerate
2–3 type relation between (Pn)n and (Qn)n holds. Indeed, noticing that bn ≠ λn, n ≥ 1, we may define parameters sn, tn,
and rn, as

sn = an + λn−1
bn − λn

bn−1 − λn−1
, n ≥ 2,

tn = an−1 λn−1
bn − λn

bn−1 − λn−1
≠ 0, n ≥ 2,

rn = bn−1
bn − λn

bn−1 − λn−1
≠ 0, n ≥ 2

and then, by straightforward computations, we check that formula (1.1) is satisfied for all n ≥ 2. For n = 1 we have
P1(x)+ a1 = R1(x)+ b1 = Q1(x)−λ1 + b1, hence s1 − r1 = a1 − b1 +λ1 =

3
2 ≠ 0. Moreover, t2 = −

1
6 ≠ −

3
2 = r2(s1 − r1).

Finally, we observe that t2n+1 = r2n+1(s2n − r2n) for all n ≥ 1, hence the conditions tn ≠ rn(sn−1 − rn−1) for all n ≥ 3 are
not satisfied.

3. Orthogonality characterizations

From now on, (Pn)n denotes a MOPS with respect to a regular functional u, and (βn)n and (γn)n the corresponding
sequences of recurrence coefficients, so that

Pn+1(x) = (x − βn)Pn(x) − γnPn−1(x), n ≥ 0,
P0(x) = 1, P−1(x) = 0,

(3.1)

with γn ≠ 0 for all n ≥ 1. In this section we give two characterizations of the orthogonality of a sequence (Qn)n of monic
polynomials defined by a non-degenerate type relation (1.1). We already know from Theorem 2.1 that in order to have a
non-degenerate 2–3 type relation with (Pn)n and (Qn)n MOPSs, the conditions

r3t3 ≠ 0, t2 ≠ r2(s1 − r1)

must hold, and these conditions imply rntn ≠ 0 for all n ≥ 3.
The first characterization of the orthogonality of the sequence (Qn)n is the following.

Theorem 3.1. Let (Pn)n be a MOPS and (βn)n and (γn)n the corresponding sequences of recurrence coefficients. We define
recursively a sequence (Qn)n of monic polynomials by formula (1.1), i.e.,

Qn(x) + rnQn−1(x) = Pn(x) + snPn−1(x) + tnPn−2(x), n ≥ 0,

where (rn)n, (sn)n, and (tn)n are sequences of complex numbers fulfilling the conventions r0 = s0 = t0 = t1 = 0, and such that

t2 ≠ r2(s1 − r1), rntn ≠ 0, n ≥ 3.
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Then (Qn)n is a MOPS with recurrence coefficients (β̃n)n and (γ̃n)n, whereβn := βn + sn − sn+1 − rn + rn+1, n ≥ 0 (3.2)γn := γn + tn − tn+1 + sn(sn+1 − sn − βn + βn−1) − rn(rn+1 − rn − βn + βn−1), n ≥ 1 (3.3)

if and only if γ̃1γ̃2 ≠ 0 and the following equations hold:

b2 − d2 = a2(s1 − r1), (3.4)
b3 − d3 = a3(s2 − r2), (3.5)
c3 − b3(s1 − r1) = a3[t2 − s2(s1 − r1)], (3.6)
bn = ansn−1, n ≥ 4, (3.7)
cn = antn−1, n ≥ 4, (3.8)
dn = anrn−1, n ≥ 4, (3.9)

where

an := γn + tn − tn+1 + sn(sn+1 − sn − βn + βn−1), n ≥ 1, (3.10)

bn := snγn−1 + tn(sn+1 − sn − βn + βn−2), n ≥ 2, (3.11)
cn := tnγn−2, n ≥ 3, (3.12)
dn := rnγn−1, n ≥ 2. (3.13)

Proof. From the definition of Qn we get

Qn+1(x) = Pn+1(x) + sn+1Pn(x) + tn+1Pn−1(x) − rn+1Qn(x), n ≥ 0. (3.14)

Inserting formula (3.1) in (3.14), applying (1.1) to xPn(x), and then substituting xPn−1(x) and xPn−2(x) using again (3.1), we
get

Qn+1(x) = xQn(x) + (sn+1 − βn − sn)Pn(x) − rn+1Qn(x) + rnxQn−1(x) + (tn+1 − γn − snβn−1 − tn)Pn−1(x)
− (snγn−1 + tnβn−2)Pn−2(x) − tnγn−2Pn−3(x), n ≥ 0,

with the usual convention that polynomials with negative index are zero. Now, Eq. (1.1) applied to Pn(x) and the definition
(3.2) of β̃n yield

Qn+1(x) = (x − β̃n)Qn(x) + rn(rn+1 − rn − β̃n)Qn−1(x) + [tn+1 − γn − tn − sn(sn+1

− sn − βn + βn−1)]Pn−1(x) − [snγn−1 + tn(sn+1 − sn − βn + βn−2)] Pn−2(x) − tnγn−2Pn−3(x)
− rn[Qn(x) − xQn−1(x)], n ≥ 0.

So (Qn)n is a MOPS if and only if γ̃n ≠ 0 for all n ≥ 1 and

rn(rn+1 − rn − β̃n)Qn−1(x) + [tn+1 − γn − tn − sn(sn+1 − sn − βn + βn−1)] Pn−1(x)
− [snγn−1 + tn(sn+1 − sn − βn + βn−2)] Pn−2(x) − tnγn−2Pn−3(x)

− rn [Qn(x) − xQn−1(x)] = −γ̃nQn−1(x), n ≥ 0. (3.15)

Moreover, (β̃n)n and (γ̃n)n are the corresponding sequences of recurrence coefficients of (Qn)n.
Next, we are going to see that (Qn)n is a MOPS with recurrence coefficients (β̃n)n and (γ̃n)n if and only if γ̃n ≠ 0 for all

n ≥ 1 and the relation
γ̃n + rn(rn+1 − rn − β̃n + β̃n−1)


Qn−1(x) + rnγ̃n−1Qn−2(x)

= [γn + tn − tn+1 + sn(sn+1 − sn − βn + βn−1)] Pn−1(x)

+ [snγn−1 + tn(sn+1 − sn − βn + βn−2)] Pn−2(x) + tnγn−2Pn−3(x) (3.16)

holds for every n ≥ 1.
Suppose first that (Qn)n is a MOPS with recurrence coefficients (β̃n)n and (γ̃n)n. Then

Qn+1(x) = (x − βn)Qn(x) − γnQn−1(x), n ≥ 0,
Q0(x) = 1, Q−1(x) = 0

(3.17)

andγn ≠ 0 for all n ≥ 1, and so it is enough to substitute the expression for Qn(x)− xQn−1(x) obtained from this three-term
recurrence relation (after replacing n by n − 1) in formula (3.15) to obtain (3.16).

Conversely, if (3.16) is satisfied and γ̃n ≠ 0 for all n ≥ 1, then we show that the sequence (Qn)n satisfies the three-term
recurrence relation (3.17), that is, (Qn)n is a MOPS with recurrence coefficients (β̃n)n and (γ̃n)n. Indeed, applying (3.1) in
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(3.16), and by the definition of β̃n, for n ≥ 1 we obtain

rn

β̃n−1Qn−1(x) + γ̃n−1Qn−2(x)


= γnPn−1(x) + (rn+1 − rn − β̃n) [snPn−1(x) + tnPn−2(x) − rnQn−1(x)]

+ sn [xPn−1(x) − Pn(x)] + tnxPn−2(x) − tn+1Pn−1(x) − γ̃nQn−1(x)

= γnPn−1(x) + (rn+1 − rn − β̃n)Qn(x) − (sn+1 − βn)Pn(x)
+ x[snPn−1(x) + tnPn−2(x)] − tn+1Pn−1(x) − γ̃nQn−1(x),

where the last equality follows from (1.1). Applying (1.1) in snPn−1(x)+ tnPn−2(x) as well as the recurrence relation for (Pn)n,
we get

rn

β̃n−1Qn−1(x) + γ̃n−1Qn−2(x)


= rn[xQn−1(x) − Qn(x)] − Pn+1(x) + rn+1Qn(x) − sn+1Pn(x)

− tn+1Pn−1(x) − β̃nQn(x) + xQn(x) − γ̃nQn−1(x).

Hence, by definition of Qn+1 we have

Qn+1(x) − (x − β̃n)Qn(x) + γ̃nQn−1(x) = −rn[Qn(x) − (x − β̃n−1)Qn−1(x) + γ̃n−1Qn−2(x) ], n ≥ 1.

Therefore, since by (1.1) Q1(x) = P1(x) + s1 − r1 = x − β0 + s1 − r1 = x − β0, we deduce recursively

Qn+1(x) = (x − β̃n)Qn(x) − γ̃nQn−1(x), n ≥ 0,

and so (Qn)n is a MOPS with recurrence coefficients (β̃n)n and (γ̃n)n.
Now, observe that from (1.1) and (3.3), it follows that (3.16) is equivalent to

(dn − rn−1an)Qn−2(x) = (bn − sn−1an)Pn−2(x) + (cn − tn−1an)Pn−3(x), (3.18)

for n ≥ 2 , where an, bn, cn, and dn are defined by (3.10)–(3.13).
To conclude we show that (3.18) holds withγn ≠ 0 for all n ≥ 1 if and only ifγ1γ2 ≠ 0 and formulas (3.4)–(3.9) hold.
Comparing coefficients in both sides of (3.18) for n = 2 and n = 3, we obtain (3.4)–(3.6), respectively. Moreover, it is

easy to verify that (3.7)–(3.9) hold for n ≥ 4. Indeed, on the first hand, since by hypothesis t2 ≠ r2(s1 − r1) and rn ≠ 0 for
every n ≥ 3, then by (2.4) we deduce ⟨u,Qn⟩ ≠ 0 for all n ≥ 2. On the other hand, applying u to both sides of (3.18) we
obtain (dn − rn−1an)⟨u,Qn−2⟩ = 0 for n ≥ 4. Thus dn − rn−1an = 0 for every n ≥ 4, and this proves (3.9). Therefore, taking
into account (3.18) again, we immediately obtain (3.7) and (3.8).

Conversely, notice that, from (3.8) and (3.9), we have

γ̃n−1 =
rn−1

rn

tn
tn−1

γn−2, n ≥ 4.

Thus, γ̃n ≠ 0 for every n ≥ 3, hence the conditions (3.4)–(3.9) together with γ1γ2 ≠ 0 imply that (3.18) holds and γn ≠ 0
for all n ≥ 1. This concludes the proof. �

Remark 3.1. Using the same techniques, it can be proved a similar result exchanging the role of the sequences (Pn)n and
(Qn)n. More precisely: given two sequences of monic polynomials (Pn)n and (Qn)n linked by a non-degenerate relation (1.1),
where (Qn)n is a MOPS with (β̃n)n and (γ̃n)n the corresponding sequences of recurrence coefficients, then (Pn)n is a MOPS with
recurrence coefficients (βn)n and (γn)n, satisfying (3.2) and (3.3), if and only if γ1γ2 ≠ 0 and Eqs. (3.4)–(3.9) hold.

Now, we show that the orthogonality of the sequence (Qn)n can be also characterized by the fact that there are three
sequences (depending on the parameters sn, tn, rn and the recurrence coefficients) which remain constant. Note that this
new characterization of the orthogonality of (Qn)n is more interesting than the previous one, giving an implicit solution of
the system of Eqs. (3.4)–(3.9).

Theorem 3.2. Let (Pn)n be a MOPS and (βn)n and (γn)n the corresponding sequences of recurrence coefficients. Let (Qn)n be a
simple set of polynomials such that the structure relation (1.1) holds, i.e.,

Qn(x) + rnQn−1(x) = Pn(x) + snPn−1(x) + tnPn−2(x), n ≥ 0,

where (rn)n, (sn)n and (tn)n are sequences of complex numbers such that

t2 ≠ r2(s1 − r1), rntn ≠ 0, n ≥ 3,

with r0 = s0 = t0 = t1 = 0. Let (βn)n and (γn)n be defined by (3.2) and (3.3). Then the following two statements are equivalent:

(i) (Qn)n is a MOPS with (βn)n and (γn)n the corresponding sequences of recurrence coefficients.
(ii) It holdsγ1γ2 ≠ 0 together with the initial conditions (3.4)–(3.6), and

t4γ2 = a4t3, (3.19)
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and the following three sequences remain constant

An :=
snan+1

tn+1
− βn−1 − βn + sn+1 = A, n ≥ 3 (3.20)

Bn :=
anan+1

tn+1
+ (sn − βn−1)


snan+1

tn+1
− βn − sn + sn+1


+ tn − an − γn−1 = B, n ≥ 3, (3.21)

Cn := βn − rn+1 −
γn

rn
= C n ≥ 3, (3.22)

where (an)n is defined by (3.10).
Proof. To prove this theorem, we introduce the auxiliary coefficients β∗

n and γ ∗
n , namely

β∗

n = βn + sn − sn+1, n ≥ 0, (3.23)

γ ∗

n = γn + tn − tn+1 + sn(sn+1 − sn − βn + βn−1), n ≥ 1, (3.24)

so we have γ ∗
n = an for all n ≥ 1. Now, observe that the conditions (3.7)–(3.9) in Theorem 3.1 may be rewritten as

sn−1γ
∗

n = snγn−1 + tn(βn−2 − β∗

n ), n ≥ 4; (3.25)

tn−1γ
∗

n = tnγn−2, n ≥ 4; (3.26)

rn−1γ
∗

n = rnγn−1, n ≥ 4; (3.27)

and therefore (Qn)n is a MOPS if and only if the condition γ1γ2 ≠ 0, the initial conditions (3.4)–(3.6) and the above Eqs.
(3.25)–(3.27) hold.

First, since

γ ∗

n = an = γn + rn(rn+1 − rn − βn + βn−1), n ≥ 1,

we have

rnγn−1 = rn−1an = rn−1[γn + rn(rn+1 − rn − βn + βn−1)], n ≥ 4,

hence, dividing the left and the right hand sides by rnrn−1, we immediately deduce that (3.27) holds if and only if there exists
a constant C (independent of n) such that (3.22) holds.

To conclude the proof we need to show that Eqs. (3.25) and (3.26) are equivalent to (3.19)–(3.21). To do this, we notice
that relations (3.25) and (3.26) are formally the same as (2.3) and (2.4) for n ≥ 4 appearing in [4], after replacingβn andγn
by β∗

n and γ ∗
n , respectively.

• We first prove that (3.25) and (3.26) H⇒ (3.19)–(3.21):
Observe that (3.26) for n = 4 is the condition (3.19). Moreover, from (3.25) and (3.26), by making exactly the same

algebraic manipulations that have been made in the proof of (i) ⇒ (ii) in [4, Theorem 2.2] we deduce that the analogue of
relation (2.10) and (2.11) for n ≥ 4 in [4] holds. Thus, by straightforward computations, using the definition of β∗

n and γ ∗
n ,

we obtain (3.20) and (3.21).
• Next we show that (3.19)–(3.21) H⇒ (3.25) and (3.26):

As before, by making the same algebraic manipulations that have beenmade in the proof of (ii)⇒ (i) in [4, Theorem 2.2],
we deduce that an equation analogous to (2.12) in [4] holds, i.e.,

γ ∗

n+1

tn+1


γn −

tn+1

tn+2
γ ∗

n+2


= γn−1 −

tn
tn+1

γ ∗

n+1, n ≥ 3.

This relation ensures that γ ∗

n+1 ≠ 0 for all n ≥ 3, and so, taking into account hypothesis (3.19), i.e., γn−1 −
tn

tn+1
γ ∗

n+1 = 0 for
n = 3, using induction we may conclude that

γn−1

tn
=

γ ∗

n+1

tn+1
, n ≥ 3. (3.28)

This proves (3.26). To prove (3.25), notice first that by (3.20) we have

sn−1γ
∗
n

tn
− β∗

n−2 + sn−2 =
snγ ∗

n+1

tn+1
− β∗

n + sn−1, n ≥ 4.

As a consequence, taking into account (3.28),

sn−1γ
∗
n

tn
=

snγn−1

tn
+ β∗

n−2 − sn−2 + sn−1 − β∗

n =
snγn−1

tn
+ βn−2 − β∗

n , n ≥ 4,

and (3.25) holds. Thus the proof is finished. �
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Next, to conclude this section, we will see that the constants A, B, and C appearing in the above Theorem 3.2 are,
respectively, the coefficients a, b, and c of the polynomials which relate the two regular linear functionals, that is

λ(x − c)u = (x2 + ax + b)v. (3.29)

First of all, we observe that the values of a, b, c , and λ may be computed from the following formulas:

a = −β0 − β1 +
γ2

t3

r3t2 + (t3 − r3s2)(s1 − r1)
t2 − r2(s1 − r1)

,

b = β0β1 − γ1 −

β0γ2

t3

r3t2 + (t3 − r3s2)(s1 − r1)
t2 − r2(s1 − r1)

+
γ1γ2

t3

t3 − r3(s2 − r2)
t2 − r2(s1 − r1)

,

c = β0 −
γ1

r3

t3 − r3(s2 − r2)
t2 − r2(s1 − r1)

, λ =
r3
t3

γ1γ2

γ1
.

Indeed, making both sides of (3.29) acting on the polynomials Q0,Q1, and Q2, and taking into account Eqs. (2.3), we obtain
the relations

λ(β0 − c) = β2
0 + β0a + b + γ1, (3.30)

λ[γ1 + (β0 − c)(s1 − r1)] = (β0 + β1 + a)γ1, (3.31)

λ{(s2 − r2)γ1 + (β0 − c)[t2 − r2(s1 − r1)]} = γ1γ2. (3.32)

The expression for c has been already determined in Section 2; see (2.1). Hence we deduce successively λ, a, and b from
Eqs. (3.32), (3.31) and (3.30), respectively. Note that these expressions can be also achieved by applying the proof of Theorem
1.1 in [14] (which is constructive) to the particular 2–3 type relation considered here.

Theorem 3.3. Let (Pn)n and (Qn)n be two MOPSs with respect to the regular functionals u and v respectively, normalized by
⟨u, 1⟩ = 1 = ⟨v, 1⟩. Let (βn, γn+1)n≥0 and (βn,γn+1)n≥0 be the corresponding sets of recurrence coefficients, respectively.
Suppose that (Pn)n and (Qn)n are linked by a non-degenerate 2–3 type relation such as (1.1) and therefore the relation between
the moment linear functionals is

λ(x − c)u = (x2 + ax + b)v.

Then the constants A, B, and C appearing in Theorem 3.2 coincide, respectively, with the constants a, b, and c.

Proof. (i) C = c.
From (3.22), C = C3 and using the definition of a3 in terms ofγ3 (see (3.10) and (3.3)), we have

C = C3 = β3 − r4 −
γ3

r3
= β2 − r3 −

a3
r3

.

Therefore we want to prove that

C = β2 − r3 −
a3
r3

= β0 −
γ1

r3

t3 − r3(s2 − r2)
t2 − r2(s1 − r1)

= c.

Indeed, by Theorem 3.1, the initial conditions (3.4)–(3.6) hold. Using these second and third initial conditions we obtain

a3[t2 − s2(s1 − r1)] = t3γ1 − (s1 − r1)[a3(s2 − r2) + r3γ̃2]

that is

t3γ1 = a3[t2 − r2(s1 − r1)] + r3(s1 − r1)γ̃2. (3.33)

The first initial condition (3.4) yields

a2(s1 − r1) = s2γ1 + t2(s3 − s2 − β2 + β0) − r2γ̃1.

Handling adequately this expression we can obtain, see ((3.10) and (3.3))

(s2 − r2)γ1 = (s1 − r1)γ̃2 − (r3 − β2 + β0)[t2 − r2(s1 − r1)]. (3.34)

Multiplying both sides of (3.34) by r3, and then subtracting the resulting equation from (3.33), we obtain

γ1
t3 − r3(s2 − r2)
t2 − r2(s1 − r1)

= a3 + r3(r3 − β2 + β0), (3.35)

and then c = C .
(ii) A = a.
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First notice that from (3.20) and (3.19), and using the definition of b3 (see (3.11)) we have

A = A3 =
s3γ2

t3
− β2 − β3 + s4 =

b3
t3

− β1 − β2 + s3.

We want to prove

A =
b3
t3

− β1 − β2 + s3 = −β0 − β1 +
γ2

t3

r3t2 − (t3 − r3s2)(r1 − s1)
t2 − r2(s1 − r1)

= a.

Taking into account the expression ofβn (see (3.2)) and formula (3.35) we get

A + β0 + β1 =
b3
t3

+ r3 − β2 + β0 =
b3
t3

+
γ1

r3

t3 − r3(s2 − r2)
t2 − r2(s1 − r1)

−
a3
r3

. (3.36)

Now, applying successively the second initial condition (3.5), the definition of d3 (see (3.13)), and (3.33) we deduce

A + β0 + β1 =
a3(s2 − r2) + r3γ2

t3
−

a3
r3

+
γ1

r3

t3 − r3(s2 − r2)
t2 − r2(s1 − r1)

=
r3
t3

γ2 −
a3
r3t3

(t3 − r3(s2 − r2)) +
γ1

r3

t3 − r3(s2 − r2)
t2 − r2(s1 − r1)

=
t3 − r3(s2 − r2)

r3t3


t3γ1

t2 − r2(s1 − r1)
− a3


+

r3
t3

γ2

=
t3 − r3(s2 − r2)

r3t3

r3(s1 − r1)γ2

t2 − r2(s1 − r1)
+

r3
t3

γ2,

hence A = a.
(iii) B = b.
From (3.21) and (3.19) we have

B = B3 =
a3γ2

t3
+ t3 − a3 − γ2 + (s3 − β2)


s3γ2

t3
− β3 − s3 + s4


,

and using the definition ofβn (see (3.2)), and the fact already proved A3 = awe obtain

B =
γ2 − t3

t3
a3 + (t3 − γ2) + (r3 − β2 + s2 − r2)(a + β2 − r3 + r2 − s2).

Hence, taking into account the expression of b in terms of λ, a and c given by (3.30), we have to prove

B = −γ1 + λ(β0 − c) − β0(β0 + a).

Observe that by the definition ofβn andγn (see (3.2) and (3.3)) we can write

t3 − γ2 = t2 − r2(s1 − r1) − γ2 + (s2 − r2)(r3 − β2 + β1) (3.37)

and then by Eq. (3.33) we get

γ2 − t3
t3

a3 = −γ1 + (s1 − r1)
r3γ2

t3
+ a3

γ2

t3
−

a3(s2 − r2)(r3 − β2 + β1)

t3
. (3.38)

Next, we analyze the last term in the expression of B, that is (r3 − β2 + s2 − r2)(a + β2 − r3 + r2 − s2).
In the sequel of the proof, we will use the following identity

β0 − β0 − β1 + β1 + r2 − s2 = 0,

which is a direct consequence of the definition ofβ1 andβ0; see (3.2). This relation together with the first equality in (3.36)
and the initial condition (3.5) leads to

a + β2 − r3 + r2 − s2 =
r3γ2

t3
+

a3(s2 − r2)
t3

− β1.

Then

(r3 − β2 + s2 − r2)(a + β2 − r3 + r2 − s2) = (r3 − β2 + β1 + β0 − β0 − β1)(a + β2 − r3 + r2 − s2)

= (r3 − β2 + β1)


r3γ2

t3
+

a3(s2 − r2)
t3

− β1


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+ (β0 − β0 − β1)(a + β2 − r3 + β0 + β1 − β1 − β0)

= (r3 − β2 + β1)


r3γ2

t3
+

a3(s2 − r2)
t3

− β1 + β1 − β0 + β0


+ (β0 − β0 − β1)(a + β0 + β1 − β0). (3.39)

Now, we add the formulas (3.37)–(3.39). Thus, by the relationβ0 − β0 + s1 − r1 = 0 and the definition ofγ1 (see (3.3))
we deduce

B = −γ1 − β0(a + β0) + (s1 − r1)
r3γ2

t3
+

a3γ2

t3
− γ2 + (r3 − β2 + β1)

r3γ2

t3
+ (β0 − β1)(a + β0 + β1).

Therefore, since C = c that isβ2 − r3 −
a3
r3

= c we get

B = −γ1 − β0(a + β0) − γ2 +
r3γ2

t3
(β1 − c + s1 − r1) + (β0 − β1)(a + β0 + β1)

= −γ1 − β0(a + β0) − γ2 +
λγ1γ1

(β1 − c + s1 − r1 + β0 − β1) +
λγ1

(β0 − c)(β0 − β1)(s1 − r1),

where in the second equality we have used λ =
r3
t3

γ1γ2
γ1

and the relation (3.31). Finally, it is sufficient to observe (3.32) and
the definition ofγ1 to conclude that B = b. �

4. Example

A new example of a non-degenerate 2–3 type relation (1.1) is presented.
From some rational transformations of the Jacobi weight function we construct two regular functionals u and v such that

(1 + x)2v = (1 − x)u, in the distributional sense. Moreover we analyze when their corresponding MOPSs (Pn)n and (Qn)n
satisfy a non-degenerate 2–3 type relation (1.1), and in this case we give explicitly the parameters involved in this relation.
The construction will be done in several steps.

Let w = w(α,β) be the positive definite linear functional defined by the weight function (1 − x)α (1 + x)βχ(−1,1) where
α > −1 and β > −1, and χE represents the characteristic function of a set E. Denote by (Wn)n its corresponding MOPS (we
have chosen this notation instead of the classical one (P (α,β)

n )n to avoid confusions with the notation (Pn)n used along all this
paper). It is well known (see for instance [6]) that the recurrence coefficients (βn, γn) of (Wn)n are given by

βn =
β2

− α2

(2n + α + β)(2n + α + β + 2)
, n ≥ 0,

γn =
4n(n + α)(n + β)(n + α + β)

(2n + α + β − 1)(2n + α + β)2(2n + α + β + 1)
, n ≥ 1.

Besides

w0 = ⟨w, 1⟩ =
2α+β+1Γ (α + 1)Γ (β + 1)

Γ (α + β + 2)
,

and for n ≥ 1

⟨w,W 2
n ⟩ =

22n+α+β+1Γ (n + 1)Γ (n + α + 1)Γ (n + β + 1)Γ (n + α + β + 1)
Γ (2n + α + β + 1)Γ (2n + α + β + 2)

. (4.1)

First, we consider a functional w such that (1 − x)w = w, that isw = (1 − x)−1w + w0δ1.

If the functional w is regular and (Wn)n is the corresponding MOPS, then there exists a sequence of complex numbers (an)n
with an ≠ 0 for every n ≥ 1, such thatWn(x) = Wn(x) + anWn−1(x), n ≥ 1. (4.2)
The regularity of the functional w is equivalent to the parameters an in (4.2) being the solution of the nonlinear difference
equation

βn − an+1 −
γn

an
= 1, n ≥ 1, (4.3)

(see Theorem 2 in [11] and its proof). Observe that there is only a free parameter, namely a1.
Besides sincew0(1 − β0 + a1) = w0

it follows that 1 − β0 + a1 ≠ 0 and using the value of β0 we obtain
2(α + 1) + a1(α + β + 2) ≠ 0. (4.4)
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Now, the main goal is to characterize under which conditions the functional w is regular and to obtain the expression of
the parameters an.

Through clever calculations, we can deduce that if we take a1 ≠ 0 satisfying the above condition (4.4), then for α ≠ 0
the functional w is regular if and only if

An := Γ (α + 1)Γ (α + β + 2)Γ (n)Γ (n + β) + MΓ (β + 1)Γ (n + α)Γ (n + α + β) ≠ 0, n ≥ 2, (4.5)

where

M :=
2αw0

w0
− (α + β + 1) = −

2(β + 1) + a1(α + β + 1)(α + β + 2)
2(α + 1) + a1(α + β + 2)

,

and moreover, we can deduce by induction that the parameters

an =
−2

(2n + α + β)(2n + α + β − 1)
An+1

An
, n ≥ 2, (4.6)

are the solution of Eq. (4.3). Note that when α + β > −1, (4.6) is valid for n ≥ 1.
Whenever α = 0, the functional w is regular if and only if the condition (4.4) holds and

An :=
2w0

w0
− (β + 1)

n−1
i=1


1
i

+
1

β + i


≠ 0, n ≥ 2. (4.7)

Besides it can be proved by induction (empty sum equals zero) that

an =
−2n(n + β)

(2n + β)(2n + β − 1)

An+1An
, n ≥ 1. (4.8)

From (4.2) and the relation (1 − x)w = w, we obtain

⟨w, W 2
n ⟩ = −an⟨w,W 2

n−1⟩, n ≥ 1, (4.9)

and so we have an explicit expression for ⟨w, W 2
n ⟩ in terms of the parameter a1.

In a second step, we consider the functional u verifying (1 + x)w = u. Then,
u = (1 − x)−1w(α,β+1)

+ u0 δ1,

where u0 = 2w0 − w0 =
1+β0−a1
1−β0+a1

w0. Indeed, for any polynomial p

⟨(1 + x)w, p(x)⟩ = ⟨w, (1 + x)p(x)⟩

=


w,

(1 + x)p(x) − 2p(1)
1 − x


+ 2w0p(1)

=


w, (1 + x)

p(x) − p(1)
1 − x


+ (2w0 − w0)p(1)

= ⟨(1 − x)−1 (1 + x)w(α,β)
+ (2w0 − w0)δ1, p(x)⟩.

Observe that the value of u0 yields 1 + β0 − a1 ≠ 0, that is

2(β + 1) − a1(α + β + 2) ≠ 0. (4.10)
Since the expression of the functional u is similar to the one of w, taking in mind the previous study of the regularity of

the functional w and exchanging β for β + 1 andM for M whereM :=
2α u0

w
(α,β+1)
0

− (α + β + 2) =
α + β + 2

β + 1
M,

we can ensure that for α ≠ 0 the functional u is a regular functional whenever we also impose that the conditions

Bn := Γ (α + 1) Γ (α + β + 3) Γ (n) Γ (n + β + 1) + M Γ (β + 2) Γ (n + α) Γ (n + α + β + 1) ≠ 0,
n ≥ 1, (4.11)

hold. For α = 0, these conditions should be replaced by

Bn :=
2 u0

w
(0,β+1)
0

− (β + 2)
n−1
i=1


1
i

+
1

β + 1 + i


≠ 0, n ≥ 1, (4.12)

(empty sum equals zero).
Denoting by (Pn)n the MOPS associated with this regular functional u, then the following linear relationWn(x) = Pn(x) + bnPn−1(x), n ≥ 1, (4.13)

holds, where bn = ⟨w, W 2
n ⟩/⟨u, P2

n−1⟩.
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Furthermore, from the value of ⟨w, W 2
n ⟩ given in (4.9) and exchanging β for β + 1 and w0 for u0, we can obtain the value

of ⟨u, P2
n ⟩. Thus, from (4.1), (4.6) and (4.8) and straightforward computations we obtain

b1 = −a1
w0

u0

bn = −an(n − 1)(n + α − 1)
Bn−1

Bn
, n ≥ 2, α ≠ 0

bn = −an
n − 1
n + β

Bn−1Bn
, n ≥ 2, α = 0.

Notice that we have obtained the following 2–2 relation
Wn(x) + anWn−1(x) = Pn(x) + bnPn−1(x), n ≥ 1, (4.14)

and the corresponding functionals satisfy
(1 + x)w = (1 − x)u.

In the last step, we consider a new functional v defined by (1 + x)v = w, that is
v = (1 + x)−1w + v0δ−1.

Again, if the functional v is regular and (Qn)n is the corresponding MOPS, there exists a sequence of complex numbers (cn)n
with cn ≠ 0, n ≥ 1, such that

Qn(x) = Wn(x) + cnWn−1(x), n ≥ 1. (4.15)
The functional v is regular if and only if the parameters cn satisfy

βn − cn+1 −
γn

cn
= −1, n ≥ 1, (4.16)

(see Theorem 2 in [11]). Moreover,
v0(1 + β0 − c1) = w0

hence 1 + β0 − c1 ≠ 0, and using the value of β0 we obtain

2(β + 1) − c1(α + β + 2) ≠ 0. (4.17)
Now, working in the same way as we have done before with the functional w, we can prove (by induction) that for β ≠ 0 if
we take c1 ≠ 0 satisfying the above condition (4.17) and

Cn := Γ (β + 1)Γ (α + β + 2)Γ (n)Γ (n + α) + NΓ (α + 1)Γ (n + β)Γ (n + α + β) ≠ 0, n ≥ 2, (4.18)
where

N :=
2β v0

w0
− (α + β + 1) = −

2(α + 1) − c1(α + β + 1)(α + β + 2)
2(β + 1) − c1(α + β + 2)

,

then the functional v is regular and the parameters cn in the relation (4.16) are given by

cn =
2

(2n + α + β)(2n + α + β − 1)
Cn+1

Cn
, n ≥ 2. (4.19)

For β = 0, the functionalv is regular if and only if the condition (4.17) holds and

Cn :=
2v0

w0
− (α + 1)

n−1
i=1


1
i

+
1

α + i


≠ 0, n ≥ 2, (4.20)

and besides it can be proved by induction that

cn =
−2n(n + α)

(2n + α)(2n + α − 1)

Cn+1Cn
, n ≥ 2.

Summarizing: if we take a1 ≠ 0 and c1 ≠ 0 satisfying the conditions (4.4), (4.5) or (4.7) if α = 0, (4.10), (4.11) or (4.12)
if α = 0, (4.17), and (4.18) or (4.20) if β = 0, then the functionals

u = (1 − x)−1w(α,β+1)
+

1 + β0 − a1
1 − β0 + a1

w0 δ1,

and

v = (1 + x)−1w(α,β)
+

1
1 + β0 − c1

w0δ−1,

are regular and they are related by
(1 − x)u = (1 + x)2v.
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In general, the above relation does not imply the existence of a non-degenerate 2–3 type relation (1.1) between the
sequences (Pn)n and (Qn)n associated with the functionals u and v, respectively. More precisely we can ensure that a
necessary and sufficient condition to get this type of relation is

an ≠ cn, n ≥ 2. (4.21)
Indeed, if there exists a non-degenerate 2–3 type relation (1.1), since the functional (1− x)u is regular, from Proposition 2.2
we have tn ≠ rn(sn−1 − rn−1) for all n ≥ 2. Now, Theorem 5.1 in [14] yields

⟨v,Q 2
n ⟩ ≠ −⟨u,QnPn−1⟩, n ≥ 2.

From (4.13)–(4.15) we have
⟨u,QnPn−1⟩ = (bn + cn − an)⟨u, P2

n−1⟩,

and

⟨v,Q 2
n ⟩ = cn⟨w,W 2

n−1⟩ = −
cn
an

⟨w, W 2
n ⟩ = −

cn
an

bn⟨u, P2
n−1⟩.

Therefore, we get

bn + cn − an ≠
cn
an

bn, n ≥ 2,

and then (4.21) holds.
Conversely, from (4.14) and (4.15) we obtain

Q1(x) = P1(x) + b1 + c1 − a1,
Q2(x) + (a2 − c2)Q1(x) = P2(x) + b2P1(x) + (a2 − c2)c1 (4.22)

and straightforward computations lead us to the following explicit non-degenerate 2–3 type relation
Qn(x) + rnQn−1(x) = Pn(x) + snPn−1(x) + tnPn−2(x),

where

rn = an−1
an − cn

an−1 − cn−1
≠ 0, n ≥ 3,

sn = bn + cn−1
an − cn

an−1 − cn−1
, n ≥ 3,

tn = bn−1cn−1
an − cn

an−1 − cn−1
≠ 0, n ≥ 3.

Observe that the condition t2 ≠ r2(s1 − r1) is satisfied because a1 ≠ b1.
We want to remark that in the case a1 ≠ c1, the above relation for n = 2 is equivalent to the relation (4.22).
Finally, by the sake of completeness, we show that there are a wide spectrum of free parameters a1 and c1 which allows

us to build these examples.
For instance, taking α = β = 1/2, a1 ∉ (−1/2, 0] ∪ {±1}, and c1 = −a1, the conditions (4.4), (4.10) and (4.17) are

trivially satisfied, and besides, it is not difficult to verify that An ≠ 0, Bn ≠ 0, Cn = An ≠ 0, for every n ≥ 1. So the
functionals

u = w(−1/2,3/2)
− π

1 + 2a1
1 + a1

δ1,

and

v = w(1/2,−1/2)
−

π

2
1 + 2a1
1 + a1

δ−1,

are regular and satisfy
(1 − x)u = (1 + x)2v.

Furthermore since c1 = −a1, from (4.6) and (4.19) we deduce cn = −an, n ≥ 1. In this case the values of the parameters
of the 2–3 type relation are given by

rn = an, n ≥ 2,
sn = bn − an, n ≥ 2,
tn = −bn−1an, n ≥ 2,

with

an = −
1
2

1 − (1 + 2a1)n
1 − (1 + 2a1)(n − 1)

, n ≥ 2,

and

bn = −an
(2n − 1)(1 + a1) − (1 + 2a1)(n − 1)n
(2n + 1)(1 + a1) − (1 + 2a1)n(n + 1)

, n ≥ 1.
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