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In this paper, families of symmetric orthogonal polynomials (Q,) with respect to
the Sobolev-type inner product, (f, g> =1, fg dp+3"_o M, fY40) g'/(0) where /
is a symmetric interval and y is a symmetric positive Borel measure with infinite
support on / and whose moments are all finite, are considered. If Q,,(x) = U,(x?)
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study the zeros of Q, showing that, in some cases, (0, has two complex conjugate
zeros; moreover a partial result about separation of the zeros is given. We also
discuss the symmetrization problem for this kind of inner products. Finally, some
Sobolev-type inner products with two symmetric mass points are considered.
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1. INTRODUCTION

In the last years, topics such as algebraic and asymptotic properties,
distribution of the zeros and differential equations about orthogonal
polynomials with respect to different inner products involving derivatives
(Sobolev-type inner products) have been studied (see [1, 2, 4, 5, 10-14,
16-191]).

In some of these papers the authors, looking for a differential equation
satisfied by the orthogonal polynomials, found formulas similar to the ones
appearing in the process of symmetrization studied by Chihara for the real
line [6] and Marcellan and Sansigre for the unit circle [15].

More precisely, Marcellan and Ronveaux (see [14]) show that the
sequence (Q,) of monic orthogonal polynomials (SMOP) corresponding to
the inner product

fgy=] Jee T dx+ NS(0)£(0)  (N>0)

verifies the decomposition
Qau(x)=L;"*(x?)
Qane1(x) = xLYP(x*) + xa, L2 | (x?),

where L%(x) is the nth monic Laguerre polynomial. We point out that the
monic Hermite polynomials are the symmetric orthogonal polynomials
corresponding to (L ). (L%*') is the sequence of kernel polynomials
associated to (LZ).

Also, Alfaro and others (see [1]) have proved that the SMOP (Q,)
corresponding to the inner product

hrg>=[ Sl —x 7 dx+ MF(0) g(0)+ NF'(0) £0)

with A> —1/2 and M, N >0 verifies
Q2n(x) = S, (x?) + M, S}_1(x?)
Q2n+ l(x) = XS:(XZ) + Nnxsrffl(xz)a

where M, and N, depend on M and n, respectively, N and », and if P
denotes the nth-monic Gegenbauer polynomial,

S,(x)=PP(x)  xSHx?)=PP, (x)

(R} means the nth monic kernel polynomial corresponding to the sequence
(R,) with parameter k=0, see [6]).
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From now on we will say the polynomials R, are symmetric if they are
even or odd depending on the parity of n. The above results seem to
suggest a link between symmetric orthogonal polynomials Q, with respect
to a Sobolev-type inner product

{f g>= )fg du+ Mf(0) g(0)+ Nf'(0) g'(0)  (N>0)

(—a,a

and standard orthogonal polynomials P, with respect to the symmetric
positive Borel measure y on (—a, a).

Before showing our results we briefly mention some general properties
about the symmetrization of sequences of standard orthogonal polyno-
mials.

Let u be a symmetric positive Borel measure on an interval /=(—a, a),
where 0 < a < oo (that is, u(— A) = u(A4) for every Borel set 4 = I). Let (P,,)
denote the SMOP with respect to u. Then

Pyu(x) =S, (x*)

(1)
Py 1(x) = xSH(x?),
where S*(x) (see [6]) is the monic kernel associated with S, evaluated in
the point (x, 0), that is, SF can be expressed in terms of S, by

1S,1% & Sa(0) Sh(x)

)

Sn(o)h:() ”Slxllz

S(x)=

(I|S,] denotes the Lf‘-norm of S,). Note that, for every n,

S,,(O) = P2n(0) ¢0

(2)
S30)=P3,,,(0) #0. :
Chihara, see [6], points out that if (P, ) is a SMOP with respect to w(x) dx
on I, then (S,) is a SMOP with respect to x~?w(x"?)dx on J= (0, a?)
and (S*) is a SMOP with respect to x'?w(x'?) dx on J. This result is true
not only for the weight functions but for any positive measure u. More
precisely:

(1) (S,) is a SMOP with respect to the measure v on J, where v is
the image of the measure u under the mapping ¢(x)=x? ie,
v(B)=u(¢'(B)) for every Borel set B<J. In the sequel, we will write
v=¢(u).

(ii) (SF)is a SMOP with respect to the measure x dv(x) on J.
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(iii) Besides,

1 Ponll 22, 1y = ISull L2
anll 2200 1y = 18all L2, 1) 3)
”P2n+1|| Lu, ™ “S:”Lz(xa‘v. Iy
{The above results can be directly obtained from the definition of the image
of a measure.)

Let K,(x, ), k,(x, ¥), and x}(x, y) be the kernels associated to the
sequences (P,), (S,), and (SJ), respectively; that is, K,(x, y)=
S0 o (Pa(x) PaWVIPR),  Ka(x, ¥) = Th_o (Sa(x) Su(»)ISHI?), and

K¥(x, yy=37_o (SFk(x) S,,( )/ S¥|*). Note that, because of (2), x,(x, 0)
and x}(x, 0) are polynomials of degree n.

We denote, as usual, KU%(x, y)=37_,(PY(x) PP(y)/|Psl*). An
analogous notation will be used for the derivatives of the kernels x, and
K.

Lemma 1. The formulas
K9 (x, 0)=(j+ 1), k70 (x*, 0) (4)
KS¥*D(x,0) = (j+1),, xk3 O (%, 0), (5)

where (a), =a{a+1}---(a+n—1), ne N, and (a)o=1, hold.

Proof. Let us prove the formula (4). Taking into account (1) and using
Taylor’s formula, we obtain

PEO)=(j+1);870), j=1 (6)

Now, it suffices to consider that K%)(x, 0)= 725 (Pu(x) P(0)/[| P2l ?)
and use (1), (3), and (6). |

Remark. More general relations for the kernels X,, x,, and k} and
their derivatives can be deduced, by doing similar calculations to the
previous one. For instance,

KE2(0,0)= [(j+1),1* xY2(0, 0),

2n—1 n—1
K@ 4270(0,0) = [(+1);4,17 62470, 0),
Kon(x, y) =k, (x% ¥2) +xyrk_ (x% p%),
K2n-+- l(x’ ,V) = Kn(xz’ )’2) + xyx,’,"(xz, }'2)~
In this paper we consider families of symmetric orthogonal polynomials
(Q,) associated with some Sobolev-type inner products. For a more con-
venient presentation, the paper is structured in three sections. In the first

two, the inner product has only one mass point and in the last section, it
has two mass points symmetrically located.



364 ALFARO ET AL.

In Section 2, we obtain that the corresponding odd and even associated
polynomials to Q, (V, and U,, respectively) are orthogonal in the
Sobolev-type sense. We point out that in several particular cases U, and V,,
are standard orthogonal polynomials; this enables us to obtain some infor-
mation about separation properties for the zeros of @,. On the other hand
we study the symmetrization problem, that is, the construction of a
sequence of symmetric orthogonal polynomials from a given SMOP. In the
standard case it is well known (see [6]) that, given a SMOP (S,) with
respect to a measure v on J = (0, @”), there exist infinitely many sequences
of monic orthogonal polynomials (P,) such that P,,(x)=S,(x?), but only
one of them is a sequence of symmetric polynomials. This unique sequence
is orthogonal with respect to the measure y on /= (—a, a) where ¢(u)=v
and satisfies P,,, ;(x)=xS*(x?). We give the solution of this problem for
Sobolev-type orthogonal polynomials. Before doing this, we generalize an
analog of the Christoffel-Darboux formula.

By using the results obtained in the above section, we discuss the posi-
tion of the zeros of Q, in Section 3. In some particular cases, we show that
Q, has two complex conjugate zeros whenever r = 2 (r is the highest order
of derivatives in the inner product). Moreover, an improvement of the
separation of the zeros is obtained.

In Section 4 we consider symmetric Sobolev-type inner products with
two mass points and r=1. A seven-term recurrence relation and other
algebraic properties are given.

2. SYMMETRIC SOBOLEV-TYPE INNER PrRODUCTS WITH ONE Mass POINT

Now let us consider the inner product

f&nu=] SR dut ¥ M, £(0) g9(0)
7 iZo

where r=1, M, >0, and M, >0 for every j=0, .., r—1. Let (Q,) denote
the SMOP with respect to the inner product {, >, ,. If we consider the
representation of Q, in terms of P,,

0,(X)=Po(x) + Y 2 Pe(x)

k=0

from the orthogonality of P,

2 =Pl 7 | QuPidu=—1Pid? 3. M;01(0) PY(0),
=0

J
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and then

0,(x)=P,(x)— ¥ M,Q(0) KI(x,0).
j=0

The polynomials Q, are symmetric and thus we can write
Q2,(x) = U,(x?)
Qa1 (X) =XV, (x?).
Using Taylor’s formula, we have
Q(0)=(j+1),U(0)
QYT P0)=(j+1),,, VPA(0)

for every j=1,2, ...

365

(7)

(8)

THEOREM 2. In the above conditions, Q, is a SMOP w.r.t. {, 5, , if and

only if (U,) is a SMOP with respect to the inner product
(2] _ _
[ fedv+ Y. #,/90) 82(0)
J =0
and (V,) is a SMOP with respect to the inner product

[(r—1)/2]

[ fexav+ My S9(0) g(0),
=0

J
where v=¢(u) and
My=M,
My=[(j+1),]" My
My =[G+ 1), 07 My,

Moreover, the polynomials U, and V, satisfy the formulas

[r/2]
Uy (x)=S,(x)= 3 MuUZ(0) ;" (x,0)
Jj=0
Cr—1y21 _ _
Valx)= 83— My V7(0) kX% 7(x, 0),
j=0

where S, and S are defined by (1).
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Proof. If we compute the inner products {Qs,, Q2> {O2ni1s Comas1rs

and (Q,,,, Q.. taking into account (8) and (9), we obtain

Qs Qomdru=[ Qun Qam i+ ¥ M,04)(0) QY)(0)
I =0 -

[r/2]
=[ VU dv+ Y [G+1),12 My UY0) UDO)
J j=0
and
<Q2n+l’ Q2m+1>r,y
=] Qo1 Qomsrdut ¥ M,00.,(0)Q4),,(0)
j=0
[(r—1)/2] . )
= VaVaxdit [+ 1)1 My, VE(0) V(0)
j=0
and

(Qanetr Qamdro= [ V() Up(?)

+ Y M,0%).,(0)Q%)(0)=0.
=0

J

The expressions of U, and V, can be deduced as an easy consequence of

(1), (7), (9), and Lemma 1. [

Remark. If r=1, (U,) and (V,) are standard SMOP. More precisely
(U,) is orthogonal w.rt. v+ My, and (V,) is orthogonal w.r.t.

xdv+ Mo,

Let (P¢) denote the SMOP w.rt. the measure du,=x’>du. We next
consider the relation between U,, V,, and P;. As the polynomials P¢ are

symmetric, we get
P, (x)=R,(x?)
P51 (x)=xR¥(x?)

2n+1
then,

PROPOSITION 3. Suppose r=1. The formulas

Un(x)=Rn(x)+a2an71(x)
Vn(x):R:(x)+02n+lR:—l(x)9

(10)
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where a,=|P;_,|l.2<Q,, Q,>, hold. Hence, SMOP (U,) and (V,) are
strictly quasi-orthogonal of order 1 w.r.t. the measures v, = ¢{(u,) and x dv,,
respectively.

Proof. Since {,Q,Pix*du=(Q,,x’P{>=0 for j<n—2, we can
write Q,(x)=Pi(x)+ j"_‘,,l 2 % P (). Because of the symmetry of the
polynomials @, and P; it follows that oc,,,,;,—O and, therefore,
Q.(x)=Pi(x)+a,P;_,(x). Moreover a,=|P;_,|,>[,0.,P;_,x*du=
1P5_ 22 <@ 3PS5 = PS4l 22 <@y @) Now, it suffices to use
formulas (8) and (10). |

Remark. In a similar way, we can obtain that the sequences (U,) and
(V,) are strictly quasi-orthogonal of order s w.r.t. the measures v, = ¢(u,)
and x dv,, respectively, where du, = x* du.

Now, we are going to study the symmetrization problem.
Let (T,) be the SMOP with respect to the inner product

(fel=] , fedv+ z N, £(0) g(0) (11)

with N, >0 and r > 1 such that T,(0) #0 for every ne N. (There are poly-
nomials satisfying this condition, see [17].)

Let L,(x, y) be the nth-kernel associated with the SMOP (T,), that is,
L,(x, y)=%7_0(T)(x) T,(y)/[T;, T,]). It is known that L,(x, y) satisfies
the reproducing property: [L,(x, ), R(x)] = R(y) for every polynomial R
with degree less than or equal to n.

To study the symmetrization problem for this inner product we will give
the corresponding version of the Christoffel-Darboux formula satisfied by
T,. This formula appears in [1] for r =1 and in [9] for r > 1 whenever the
measure v is the Laguerre weight function.

PROPOSITION 4. Let y,,; be the coefficients in the Fourier expansion

h+r+1

X (x)= Y yuTi(x),

j=0

where v, 4., 1= 1. Then the formula

[x"* =y 1] L(x, )

n h+r+1
= X {Z ﬁf"’Th](T,(x)Th(y)—Mx)T,(y))} (12)

h=n—r

holds.
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Proof. First at all, let us note that y,,=0 for j=0,..,~A—r—2 by the
orthogonality of T,. On the other hand, as [x"*'P,Q]=[P, x"*'Q] for
all polynomials P, Q, we have

?hj[Tja Tj] =yl T, T,]

forj=h—r—1, .  h+r+1.
Now it suffices to handle this in the usual way (for instance [6, p.23])
and the formula follows. |

Next we obtain some symmetrization results. More precisely, we are
going to analyze a sequence (Q,) if we choose its corresponding even
(respectively odd) associated polynomials to be orthogonal w.r.t. some
Sobolev-type inner product.

THeEOREM 5. Let (T,) be the SMOP with respect to the inner product
(11) with T,(0)#0 and let (Q,) be a sequence of symmetric orthogonal
polynomials with respect to an inner product

< g>p,,,=£ ]fg du+ 3 M, f7(0) g(0), (13)
—d,a j=0

where ¢(u)=v and M,>0. Then Q,,(x)= T,(x?) holds for every ne N if
and only if (p/21=r, My=[(j+1),1*N, for j=0, .., r, and M,,=0 for
Jj>r.

Proof. Given (T,), if the sequence (Q,) verifies Q,,(x)=T,(x?) for
every ne N, then from Theorem 2, (7T,) must be orthogonal w.r.t.
[ dep2y s With ¢(u)=v, so we get [p/21=r, My=[(j+ l)j]‘zNj for
j=0,..,r and M, =0 for j>r.

The converse is an easy consequence of Theorem 2. |

Remark. Note that if p > 2r then p is odd and M,, #0.

In the standard case, if (P,) is a SMOP with respect to a measure ¥ on
(0,a%) (P,(0)#0 for all n), the kernels K,(x,0) are orthogonal with
respect to x dir. In our case, an analogous result is not true. However, we
obtain the following:

LEMMA 6. Let (T,) be the SMOP with respect to the inner product (11)
and let L,(x, y) be the nth-kernel associated with the SMOP (T,). Let
LS, g], denote the inner product [ f, g1, . 4. that is,

[fgh=]  fexd+ T mif0)g"0)

i=
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Then for every ne N there exist B§", B\", ..., B") _independent of x such that
the polynomials V,(x)=3"23 B/ L{>/(x, 0) are orthogonal with respect to
[ st ]2 .

Proof. First we remark that the polynomials L*”(x,0), j=0,1, ..,
min{r+s, n}, are linearly independent. Indeed suppose

min{r+s,n} 1
Y ALY (x,0)=0,
i=0
then

min{r+s 2} )
Y A,TY(0)=0

j=0

for all he {0, 1,..,n}. Now h=0 gives A,=0 and proceeding in this way
all 4;, j=0,.., min{r+s,n}, are zero. This implies that the lemma is

trivial if n<r+s.
Suppose now n>r+ s+ 1. Since every polynomial of degree <n—1 can

be represented by
r+s—1 ) n—r—s—1
R(X)z Z C,'x"i" Z dkx'+sTk(x)
i=0 k=0

it suffices to show that there exist B{", ..., B such that
V.. x'1,=0 for i=1,.,r+s—1 (14)
[V, x"*T,],=0 for k=0,..n—r—s—1. (15)

The Christoffel-Darboux formula (Proposition 4) implies

n+r+1
xr+1L:10'j)(x’0)2"_/[420"[7"”(»"’0)‘*' Z Bj.‘Ti(x)

i=n-—r

for j=0,..,r+s, where ¢;=0 if j<r and ¢,=;Y(j—r—D! il r+1<
j<r+s.
Since, for all polynomials P of degree <n,

[L© ) (x,0), P(x)] = PY(0) (16)

then

»
(0, a?) !

[V,,,x’“Tk]2=J. VxS T dv=[x" "V, x*T, ] =0
for k=0,..,n—r—s—1 and the condition (15) is always true.

409/184/2-12
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Assertion (14) can be rewritten as

0= V,x'*Ydv+il m, V(0)
(0, a?)
=V X1 =i+ DN, VI DO) + i m V(0).

(Here we have to take N, ,=0if i+ 1>rand m;=01if i>s.)
By using (16), we have

r+s
V. x*11= 3, B[LYAx,0), x'* ' 1= (i+1)! B{),.
j=0
Then (14) is equivalent to
r+s . .
(i+1)B" =@+ 1)N;yy ), BLET7(0,0)
j=0
r+5 o
—m,; Yy, BIWL{7(0,0), i=0,1,.,r+s—1. (17)
ji=0

The system (17) is a system of r+s homogeneous linear equations in
r+s+ 1 unknown. So it has a non-trivial solution B, ..., B . Since the
L% )(x,0), j=0,1,..,r+s, are linearly independent the corresponding
polynomial V, is not identically zero. Obviously it is possible to choose the
B{W, .., B in such a way that the leading coefficient of ¥V, is equal

tol. |

In a similar way as in Theorem 5, we get

THEOREM 7. Let (T,) be the SMOP with respect to the inner product
(11), let (Q,) be a sequence of O.P. with respect to the inner product (13),
and let (V,) be the SMOP introduced in Lemma6. Then Q,,,,(x)=
xV,(x*) holds for every neN if and only if [(p—1)2]12s, My, =
(G+1),,,17%m, for j=0,.,s and My =0 for j>s. Besides if
p>2s+1, pis even and M, ,#0.

Remark. 1In the case r=s, we have Q,,(x)=T,(x*) and Q,,,,(x)=
xV,(x*) for every ne N if and only if p=2r+ 1, M= [(j+1);]1 > N}, and
My =[(j+1);4,1 % m, for j=0, .., r. This result should be compared
to Theorem 8.1 in [6].
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3. ZEROS

Consider the special Sobolev-type inner product

S 83nu=] JEdu+ M,7(0) g0, (18)

where I=(—a, a), p is symmetric, M, >0, and r > 2. We will discuss the
position of the zeros of the corresponding SMOP (Q,).

Note that if r=1, as a consequence of the remark after Theorem 2, we
have that the positive zeros of Q,, and Q,,,, are the square root of the
zeros of U, and V,, respectively. Moreover, the positive zeros of Q,, and
0., ., » mutually separate each other (n>1); the same property is verified
by the positive zeros of Q,,_; and Q,,,, (n=1).

As before the (P,) denote the standard SMOP with respect to (18) with
M, =0.

Ifn<randje{0,1,..,n—1}, then {x’/, P,>, ,=0thus Q,= P, and the
zeros of Q,, are just the zeros of P,.

Suppose now n>r+ 1.

Meijer [17] studied the discrete Sobolev inner product

[f,g]=£0 Z)fgdz/I—l-Nf('"(O)g""(O), where N>0.  (19)

Let (7,) denote the SMOP with respect to (19) and (K,) the standard
SMOP with respect to (19) with N=0.

It is proved in [17] that T, has n simple real zeros. Moreover, for N#0,
and n =k + 1 these zeros and the zeros of K, mutually separate each other.
The smallest zero of T, is less than the smallest zero of K,,. If N is suf-
ficiently large, then the smallest zero of 7T, is negative. More precisely, it is
proved in [17] that there exists an increasing sequence (a,): .., of
positive numbers, depending on », ¥, and &, but independent of N such

that
(1) If x,N<1, then T, has n positive, simple zeros.
(i) Mfa,N=1, then T,(0)=0.
(i) If «, N> 1, then T, has a negative zero.

We apply the results of [17] to the SMOP (Q,).
THEOREM 8. Let (Q,) denote the SMOP with respect to the inner

product (18) where M, >0, r 2 2. Let (P,) denote the corresponding standard
SMOP. Then:
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(a) Ifn<rorn=r+2m+1, me{0,1,2, .}, then Q,=P,.

(b) Ifn=r+4+2m, me{l,2,..}, then between two consecutive positive
zeros of P, there is exactly one zero of Q,. Moreover there exists a positive
number o, depending on n, p, and r but independent of M, such that

(1) ifo,M, <1, then Q, has a zero in (0, x,), where x, denotes the
smallest positive zero of P,,,
(i) ife,M,.=1, then 0 is a zero of Q, of multiplicity 2 (r even) or
3 (r odd),
(iii)) if o,M,>1, then Q, has 2 complex conjugated zeros.

Proof. 1f ris even, by Theorem 2, (V,) is the SMOP with respect to the
standard inner product §, fgx dv. Hence V,=S* and Q,,,,=P,,,,. The
polynomials U,, however, are orthogonal with respect to the discrete
Sobolev inner product

fgdv+ M, f“(0) g(0),  where p=

(0, a?)

>1 (20)

o~

which is of type (19).

Let as before (S,) denote the standard SMOP with respect to (20) with
M,=0. Then for n=p+1 the zeros of U, interlace with those of S,
and the smallest zero of U, is negative if M, is sufficiently large.
Let x,<x,< --- <x, denote the positive zeros of P,,(x)=S,(x?). If
2n>r+2 then Q,,(x)= U,(x*) has one zero in every interval (x,, x,, ),
i=1,2,.,n—1

Moreover there exists a positive number o,, (22>r+ 2) such that if
g,,M,<1, then Q,, has a zero in (0, x,). If 6,,M,>1, then U, has a
negative zero and Q,, has two complex conjugated zeros. If o,, M, =1,
then Q,, has a zero of multiplicity 2 in x =0.

The case r odd is treated in a similar way. Now (U,) is orthogonal with
respect to a standard inner product and @,, = P,,. The polynomials ¥, are
orthogonal with respect to the discrete Sobolev inner product

[ fexdv+ M, (0 g”10),
(0, a?)

where p=(r—1)/2=1. If V,(0)=0, then x=0 is a zero of multiplicity 3
of Qa1 (x)=xV,(x%). 1

It is well known that the zeros of two consecutive standard orthogonal
polynomials mutually separate each other. Until now, nothing was known
about an analogous property for the zeros of Sobolev-type orthogonal
polynomials. At the beginning of this section, we pointed out a partial
result in this way for r = 1. However, this property is not true, in general,
as we will show below.
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From the symmetric character of the polynomials P and the separation
property for the zeros of standard orthogonal polynomials we can assure,
see [ 18],

LEMMA 9. Between two consecutive zeros of P; there is exactly one
positive zero of P, _,.

Now, let us consider the inner product (18) with r=1. As a consequence
of the above lemma we can derive some relations among the zeros of Q,,
P¢,and P;_,:

ProrosiTION 10.  Between two consecutive positive zeros of P, (or P;_,)
there is exactly one zero of Q,. Moreover, the largest positive zero of Q,, is
less than the largest positive zero of P¢, and greater than the largest positive
zero of P. _,.

Proof. In Proposition 3 we had
Q.(x)=P(x)+a,P,_,(x) (21)

with a, > 0. Since P _, has the opposite sign in two consecutive zeros of
Py, the same is true for Q,. Thus, if x;, j=1,.., [#/2], denotes the
positive zeros of P;, then @, has at least one, hence exactly one, zero on
each interval (x,, x; ;. ), j=1, .., [n/2]— L

(The result for P;_, can be deduced in a smilar way.)

Moreover, whenever x > x;, ,,;, it follows that Q,(x)>0.

On t;\e other hand, since P} (x;,_; [(n_2)27) <O wehave Q,(x; , 1, 2)27)
<0.

THEOREM 11. Suppose r=1. The polynomials Q, and Q,, , either have
Iwo symmetric common zeros or they have no common zeros.

Proof. Suppose that the recurrence relation satisfied by the sequence
(Py) is xP(x)=P;, (x)+ B,  P;_,(x) where B, ,>0. From (21) we
have

Qni1(x)=xPL(x)+ (@, — B}, ) P, 4(x)
a, a, (22)
Qnl(x)= (1 —EE) P (x) +F§XP"*‘(X)’

where a,, # B¢ for every n. Indeed, if there exists an #ne N such that a, = B,
then from (22) we get Q,(x}=xP;_,(x). This formula is obviously false
when n is even. If n is odd, by using (7), Q,(x)=P,(x)— (M, P,(0)/
(1+M,K1(0,0))) K& (x,0), then Q,(x)# P,(x) but, for every odd n,

n—1

P,(x)=xP;_,(x) so we have a contradiction.
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Eliminating P¢_,(x) in (22), we obtain
rax, n) Po(x)=ri(x,n) @, (x)+ro(x, n) Q,(x) (23)
with ‘
ra(x,n)=a,x*—(a, . — B; . )(B,—a,)

ri(x,n)=a,x

ro(x, n)= B, (B, Qi)

n4l

Note that r,(x, n) >0 for x (0, a) and r,(x, n) is a symmetric polynomial.

Suppose @, and @, ,, have a common positive zero £. From (23), we
have r,(¢, n) P5(£)=0. But, from (22), @,,, and P; have no common
zeros; hence & must be the only positive zero of r,(x, n). By the symmetry
of Q,, the result follows. |

Remark. Let y be a symmetric positive Borel measure on (—a, a) and
let m, denote the nth-moment of u. Note that, since p is positive,
mom,>ms3. It is not difficult to prove that, choosing M, = mom,/m, — m,,
the polynomials Q, and Q; have a common positive zero.

The question remains open if for any consecutive polynomials ¢, and
Q.. 1, a similar result is true for a suitable choice of M.

4. SYMMETRIC SOBOLEV-TYPE INNER PrRODUCTS WITH TwO MAss PoOINTS

Next, we consider the symmetric Sobolev-type inner product

frg>=] fedu+MLI(c) gle)+ f(—c) g(~c)]
+ N Q)+ 1 (=) g(=0)], (24)

where p is a symmetric positive Borel measure on I=(—a,a), M, N>0,
and 0<c< + 0.

The study of such inner products was started by Bavinck and Meijer for
Gegenbauer weight functions and ¢=1 in [2,3]. The hypergeometric
character constitutes a key element to analyze the algebraic properties and
the representation of the new polynomials. Also, the location of the mass
points plays an important role in the computation of several parameters
which appear in the Fourier expansion of orthogonal polynomials of
Sobolev type in terms of the first ones. More recently, the same authors
have generalized their results for even weight functions in [—1, 1] with
two mass points located in the ends of the interval, see [4]. We study some
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analogous problems without constraints about the interval and the location
of the mass points.

Let (Q,) denote the sequence of MOP with respect to the inner product
(24). Since the polynomials Q, are symmetric, they verify formula (8).

If we compute the inner products {Q,,, 0,,,> and <@z, .1, @21
(n, m>0) and we substitute Q,, and Q,,,, by U, and V,, respectively, we
obtain that (U,) is the SMOP with respect to the inner product

fo&>=] Jodv+2Mf() g(e?) + 8N () g'(c%)

and (V,) is the SMOP with respect to

2(c*M + N) 4c*N :
or=[ sexavecrien ren (™ ) )

where v=¢(u) and J = (0, a*).
We want to point out that letting ¢ — 0 we recover the previous results.
The above formulas suggest the interest to study the inner product

- , g(c))
B )= ] fedur stens@nm( 5.
where H=(* 1) (M, N, A€ R) is a positive semidefinite matrix. Note that
if H is diagonal we recover the Sobolev-type inner product.

There are some other reasons to study B(f, g). For instance, it provides
an example of an inner product which it is not of Sobolev-type in a strict
sense (because the terms Af(c) g'(c) and Af (c) g(c) appear) and whose
corresponding orthogonal polynomials satisfy a five-term recurrence
relation.

Because the operator multiplication by (x?—c?)? is self-adjoint with
respect to the inner product (24), the polynomials Q,, verify the formula

2

n+4

(x2_CZ)2 Qn('x)= Z canj(x)‘
Jj=n—4
We note that this relation is not minimal since the operator multiplica-
tion by x> — 3¢?x is also self-adjoint w.r.t. (24) and thus

n+3

(F*=3¢2x) Q,(x) =} ywQ(x).
Jj=n-3
This last relation is minimal This fact had already appeared in the case
studied by Bavinck and Meijer in [3] and it also appears in a more general
situation in a paper by Evans and others (see [8]).
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ProproSITION 12. The SMOP (Q,) satisfy the seven-term recurrence
relation

(x? =3¢%x) @, (x) = Q4 3(X) + 7, Q0 4 1 (%)
+Vn7lAnQn*l(x)+inin7]in-2Qn—3(x)9 (25)

where
s Qm Q0
" <Qn~l,QnAl>
and
, =30, 0001
! <Qn+l’ Qn+l> ‘
Proof. From

n+2

(x?=3¢%x) (%)= Q3 (X) + 3, 7, Q(x)
i=0

j=

it follows that

L =3¢%) 0,. 9,
i = 0.0,

By using the self-adjointness of operator multiplication by (x*—3c¢%x) we
get y,,=0for j<n—4.

Since the polynomials Q, are symmetric we have 3, ,,.=7,,=
Y. n—2=0. Finally,

_ <(X3 - 362x) Qn’ Qn+l>=

T G Or 1)
(= 3¢%) 0,1, 0,

T N S S A
(0n 0

Thn-3= =A‘n;'n7 j‘n—
T T T 1n-2

and the result follows. ||

Remark. The initial conditions are given by @ ;(x)=Q ,(x)=
O _1(x)=0, Qo(x) =1, Q)(x) = x, and Q5(x) = x*— (m,+2Mc?)/(my+2M),
where m, and m, are the moments of order 0 and 2 w.r.t. the measure u,
respectively.
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The computation of the coefficients y, and A, starting from their defini-
tion is not easy. An available way is to use the SMOP (P,) associated with
the symmetric measure dfi =du + M[6,+ 6 __], because their relation with
the sequence (P,) is known (see [7]).

First, note that

S, 8>=(f8)i+ NLS'(c) g'(c)+ f'(—~c) g'(—0)]
From (25), we get
Vn= HE+1H,§2 [((x*=3¢%) @y Pos )i —(Qsss Pui 1)zl (26)

Let us consider the representation of Q, in terms of T’j:

n—1

0u(x)=P,(x)+ 3. 4, P;(x)

j=0

Then

;nj= uf)'“jz(Qn’P')'
= ~IPA P N[L+(=1)""]Qu(c) P

and so

0,(x)= P, x) - 2ng(0) Y P,
Fer V2
where the symbol 3’ means

o, if neven

‘=, o, e ta with o, = .
L 2 ’ ’ {al, if »odd.

j=0

Hence, Q. (c)= P,(c)/s, _, where we have written

FLPT

Sp_ -—1+2NZ ||P|| .
I

;=0
Using the three term recurrence formula verified by the SMOP (P,),
xpnﬂ»l(x)zpn+2(x)+in+lijn(x)
we get
(x —3C x) n+l(x)_ n+4(r)+())n+1+yrx+2+}n+3_3c ) n+2(x)
+‘Pn+l(~l}n+})n+l+}7n+l— 4 )Pn(x)
+?n71’;n?n+11~311~2(~x)'
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Taking into account that

<(x3_3clx) Qn’ Pn+1>= <Qn’ (x3—3CZX) Fn+l>

and
0.(x)=P,(x) = 2NQ; (c) ~T|(Ff) 2\_22()‘)
—2NQ,(c ),Zo FH) 1{72():)
it follows

((x3_362x) Qn’ Pn+l)ﬁ
:(Qn’ (x3—3c2x) pn+l)ﬁ:?n+l(?n+?n+l+?n+2—3cz) ”pn”z
_ZNQ;(C) 13;,_2(6’) yn«—l?n’}7n+l

Q;(c)i’;,z(c)}

=“F)n+l”;27|::y~n+:}}'n+l+5;n+2—3cz_2N ~ 3
1P, _2ll;

Besides,

(Qns3s Pn+l)ﬂ= —ZNF':.H(C) Q5+ 3(c).

therefore, by using (26),

' FI ’ 1"5/
o 36— [ DTl GO Pte)]

1B, 12— P2
On the other side
o <Qu P
" <Qn—1!Pnﬁl>
(Qn, P,);+2NQ,(c) P, (c)
(Qn 1’ "n— 1);z+2NQn I(C)Pn I(C)
|P, I 2+ 2NQ,(c) P,(c)
I P, 11242NQ, (c) P, ,(c)

using the formula Q’,(c)= P/ (c)/s, , and the definition of 5, , we obtain
finally
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The parameters s, can be obtained explicitly because

P d .
3 L L ke v e (<17 RO =]
k=0 Jla

=RUY(e, o)+ (=1~ RENe, —e),

where K, denotes the kernel associated to the sequence (P,).

CoOROLLARY 13. The formulas
(x_362) Un(x)z Vn+l(x)+y2n Vn(x)+'}"2n~lA~‘2n Vn——l(x)
+ Agnhon_ 14202 Va_2(x)
and
x(x_3c2) Vn(x)= Un+2('x)+y2n+lUn+l(x)+'))2n12n+l Un(x)
+ Aons142mh2, 1 Uy 1(X)
hold.

Proof. Tt suffices to use (8) and the recurrence relation obtained in
Proposition 12. |

Next we show a relation between the sequences (U,), (V,), and the

sequence (P"<)) of MOP w.rt. the measure u, (dp,=(x?>—c?)?dp),

derived from the self-adjointness of operator multiplication by (x?— ¢?)°,

PROPOSITION 14. The sequence (Q,,) satisfies the formula
Q.(x)= P Hx)+ a, Py J(x) + B, P (x),
where

ty= 1P 1,7 | O, Py duy

and B, = Py 2 {Qny @n) #0.

Proof. It is a consequence of the self-adjointness of operator multiplica-
tion by (x*—c?)? and the symmetry of the sequences (P>) and (Q,). 1

If we define Y, and Y} by

PLOx)=Y,(x)) and Py (x)=xY}x?)
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from the above proposition we obtain

Un(x)= Yn(x)+a2n Yn» l(x)+ﬁ2n Yn72(x)

Vi)=Y (x) + oo, Y1 (X) 4 Bany s Y 2(x).

Then

COROLLARY 15. The sequences (U,) and (V,) are strictly quasi-

orthogonal of order 2 w.r.t. the measures v, = ¢(u,) and x dv,, respectively.

[$°)

10.

1L

12.

13.

14.

If we let ¢ — 0, we recover the remark after Proposition 3 for s = 2.
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