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1. Introduction and basic definitions

Given a linear functional u on the linear space PP of polynomials with real coefficients, a sequence of monic polynomials
{Pn}n>0 with deg P, = n s said to be orthogonal with respect to u if (u, P,P,) = 0 for every n # mand (u, Pf) # 0 for every
n=0,1,....

A linear functional u is said to be quasi-definite (respectively positive definite) if the leading principal submatrices H,
of the Hankel matrix H = (uj4;)ij>o associated with u, where u, = (u, x¥), k > 0, are nonsingular (respectively positive
definite) for every n > 0 (see [1]).

Avery well known result (Favard’s theorem, see [ 1] for instance) gives a characterization of a quasi-definite (respectively
positive definite) linear functional in terms of the three-term recurrence relation that the sequence {P,},>¢ satisfies, i.e.

XPp(X) = Ppy1(X) + BnPn(X) + ynPno1(%), (1)
Po(x) =1, Pi(x) = x — By,
with y;, # 0 (respectively y, > 0).

In particular, if u is a positive definite linear functional then there exists a positive Borel measure p supported on an
infinite subset of R such that (u, q) = f]R qgdu for every q € P. In such a situation, the zeros of P, are real, simple, and they
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are located in the convex hull of the support of the measure . Furthermore, the zeros of P,_; interlace with those of P,,.
Actually, this is a relevant fact in numerical quadrature, i.e. in the discrete representation

/ qdu ~ Y q(c), qeP. 2)
R

k=1

If we choose (cx);_; as the zeros of P, then (2) is exact for every polynomial of degree at most 2n — 1 and, as a consequence
of the interlacing property aforementioned, the Christoffel-Cotes numbers ();_, are positive real numbers.

In general, given the pair (q, i) with q(x) = ]_[,Z‘:1 (x —c) and letting A = (A, ..., Ap) where A, = [ % du(x),
1 < k < n, there exists an integer number d(q, u) withn —1 < d(q, u) < 2n — 1, so that (2) is exact for the polynomials of
degree <d(q, ) but not for all polynomials of degree d(q, t) 4+ 1. The number d(q, ) is said to be the degree of precision
of (g, ).

Shohat, in [2], proved that (g, «) has degree of precision 2n — 1 — kif and only if g = P, + a;P,_1 + - - - + axPp_k, where
ax # 0 and {P,},>0 is the sequence of monic polynomials orthogonal with respect to the measure p.

Moreover, when supp u = (—1, 1), Peherstorfer addresses in [3] sufficient conditions on the real numbers {g; j’-‘zl under
which the polynomial ¢ = P, + a{P,—1 + - - - + agPn_i has n simple zeros in (—1, 1) and whose Christoffel-Cotes numbers
are positive.

In [2] a discussion about the zeros of the polynomial ¢ = P, + a;P,_; is given in terms of sign a;: they are real and simple
and at most one of them lies outside supp . Moreover, the zeros of the polynomial ¢ = P, + a;P,;,_1 + a;P,_, were studied.
Ifa, < 0, all the zeros are real and simple and at most two of them do not belong to the supp . In addition, in [4] it is proved
thatif a, < 0 then the zeros of P,_ interlace with the zeros of q. The position of the smallest and greatest zero of g in terms
of the smallest and greatest zero of P, is also analyzed.

In [5] the positivity of Christoffel-Cotes numbers and the distribution of zeros of linear combinations R = Py, +- - - +asPs,
wherea; # 0,1 < s <m < nandm < d(q, i), are analyzed. Here q(x) = ]_[;321 (x — cp) withcy < --- < ¢, If all the
Christoffel-Cotes numbers are positive, then either R is a non-zero scalar multiple of g or at least N of the intervals (¢, Cx+1)
contain a zero of R where N = min{s, d(q, u) + 1 — m} > 1.

Grinshpun, in [6], studied the orthogonality of special linear combinations of polynomials orthogonal with respect to a
weight function supported on an interval of the real line. Such families of orthogonal polynomials come up in some extremal
problems of Zolotarev-Markov type as well as in problems of least deviating from zero. He proved that the Bernstein-Szegé
polynomials can be represented as a linear combination of the Chebyshev polynomials of the same kind. Nevertheless, the
special feature of this representation is that the coefficients do not depend on n. The relevant question is if this property
characterizes Bernstein-Szegd polynomials. Theorem 3.1 in [6] gives a positive answer in the sense that Bernstein-Szeg6
polynomials and just them can be represented as a linear combination of Chebyshev polynomials with constant coefficients
independent of n and fixed length. In other words, {Qn}n>0 With Qu = Py + a1Pq—1 + - - - 4+ axPn—i, n > k, where {Pp},>0 is
the Chebyshev sequence of j-th kind (j = 1, 2, 3, 4) and a; # 0, is a sequence of orthogonal polynomials with respect to a
weight @ if and only if ®(x) = Z;gg , where hy is a polynomial of degree k positive on (—1, 1) and u; is the Chebyshev weight
of j-th kind (j = 1, 2, 3, 4).

The aim of this work is to analyze linear combinations with constant coefficients Q, = P, + a1P,_1 + - -+ + @ Pp_y,
n > k, of a sequence of orthogonal polynomials {P,},>¢. In Section 2 we find necessary and sufficient conditions so that
the sequence {Q,}n>0 is orthogonal with respect to a linear functional v. Moreover, we discuss the matrix representation
for the multiplication operator in terms of the bases {P,},>0 and {Qn},>0, respectively. Such a matrix is a monic tridiagonal
(Jacobi) matrix. We prove that the leading principal submatrix associated with {Q, },>0 is similar to a rank-one perturbation
of the leading principal submatrix associated with {P;},>0. Also, we give a simple algorithm to compute the polynomial hy
of degree k appearing in the relation between the two functionals, u = hyv.

In Section 3, the case k = 2 is addressed, describing all the families {P, },>o orthogonal with respect to a linear functional
such that the corresponding {Q; },>0 is also orthogonal, obtaining explicit expressions for the recurrence parameters {8, }n>0
and {yy}n>1 of the sequence {P, },>o. Finally, in Section 4 we present some remarks and examples of such sequences {Py};>0.

2. Orthogonality and Jacobi matrices

From now on, {P,},>0 denotes a sequence of monic orthogonal polynomials (SMOP) with respect to a quasi-definite linear
functional u.
Let {Qu}n>0 be a sequence of monic polynomials with deg Q, = n such that, forn > k+ 1,k > 1,

Qu(x) = Pp(x) + aiPp_1 () + - - - + apPr_r (%), (3)

where the coefficients {aj}J’-‘Zl are independent of n and a;, # 0.

Here we give necessary and sufficient conditions in order for the sequence {Q,},>0 to be orthogonal with respect to a
quasi-definite linear functional v. In addition, the relation between the linear functionals u and v, via Jacobi matrices, is
obtained.
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Theorem 1. Let {P,} >0 be a sequence of monic orthogonal polynomials with recurrence coefficients {Bn}n>0 and {yn}n>1
(va # 0) and let {Qn}n>0 be a sequence of monic polynomials such that, forn > k + 1,

Qu(X) = Py(®) + a1Py1(X) + - - - + aPr_i (%),

where {aj}}‘z] are constant coefficients and ai # 0. Then {Qn}n>0 is orthogonal with respect to a quasi-definite linear functional if
and only if the following conditions hold:

(i) Foreachj, 1 < j < k, the polynomials Q; satisfy a three-term recurrence relation xQj(x) = Qj+1(x) + E;Qj(x) + YiQi-1(x),
with y; # 0.

(ii) Forn >k +2
Yn + a1(Bn—1 — Bn) = Yn—ks
G 1(Vn—k — Yn—j+1) = G(Bn—j — Bn), 2=j=k

(iii)
Ye+1 + a1(Bk — Brr1) # 0,
@GYk—j+1 + it1 (Br—j — Biw1) = a;k)[l/kﬂ +a1(Be— Ber1)l, 1=j=<k-1,

a1 = 0P Vs + @ (B — B,

where aj(k),j =1,..., k, denotes the coefficient of P_; in the Fourier expansion of Qy in terms of the orthogonal system {Pj}j’.‘zo.

Moreover, denoting by ﬁ; and y, the coefficients of the three-term recurrence relation for the polynomials Q,, we have, for
n>k+1,
Bo=Br  Fa=rata(Bar — B0 (4)

Proof. According to Favard’s theorem, the sequence {Q,},>0 is orthogonal with respect to a quasi-definite linear functional
if and only if, for every n, it satisfies a three-term recurrence relation

XQu(®) = Qui1(®) + BrQu(X) + 7nQur (1),

where 7, # 0, n > 1. Thus, condition (i) follows.
Letn > k 4 2. From xQ, (x) = xP,(x) + Zjl.‘:l a;xP,_j(x), expression (3), and the recurrence relation for the polynomials
P, one gets

XQu(0) = Qup1(X) + BaQu(X) + [¥n + @1(Ba-1 — B)1Qu-1(X)
k
+ D {a(Bay — B2) — @1 lvn — Va1 + @1 (Bt — B} Pay(®)

=2
— Vo — Yk + a1(Ba—1 — Brn) P 1y (%).
Then, whenever n > k + 2, Q, satisfies a three-term recurrence relation if and only if

Yn + a1(Bn—1 — Bn) # 0, (5a)
ai—1[Vn — Yo—jr1 + @ (Bno1 — Bl = aj(,Bn—j —Bu), i=2,...,k (5b)
Yn + a1(Bn—1 — Bn) = Yn—k- (5¢0)

Notice that, since y, # 0,n > 1,(5a) is a consequence of (5c). Moreover, using (5c), the formula (5b) can be rewritten in the
form

ajfl(ynfk - yn7j+l) = aj(ﬁnfj - B, Jj=2,...,k

Thus, (ii) holds.
Next, we study the case n = k + 1. Let Qi (x) = Pr(x) + Z};l a;k) P_j(x) be the Fourier expansion of Q, in terms of the
orthogonal system {P,},>0. Handling in the same way as above we have

XQr1(%) = Qi2(®) + Brr1Qer 1) + [Vier1 + a1(Bk — Brr 1)1 (%)
k-1
+ Z I:aj+l(,3k7j = Bra1) — aj(k)[yk+l + a1(Bk — Brr )] + aj)’kfj+l] Pr_j(x),
=
+ @ — 4 Vet + a1 (Be — Bre1))1Po().

Thus, (iii) holds.
Finally, (4) is a consequence of the obtained results. O
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Remark. Let us to point out that, because of (iii), the coefficients {a;k) }j’.< , are determined by the recurrence parameters

{Bn}n=0 and {yn}n>1 as well as the constants {g; }]’-‘:1. So, the relation (3) and the orthogonality of {Q,}n>k+1 fix the polynomial
Q- As a consequence, in the particular case k = 1, the sequence {Q,};>0 is completely determined by (3) and the
orthogonality property.

Now, we consider two families of monic orthogonal polynomials {P,},>0 and {Q,}n>0 with respect to the quasi-definite
linear functionals u and v, respectively, satisfying the condition (3). It is well known (see, e.g., [7]) that the relation between
the two linear functionals is u = hyv, where hy, is a polynomial of degree k.

Writing P = (P, Py, ..., Py, ..)Tand Q = (Qo, Qq,...,Qy,,...)T for the column vectors associated with these
orthogonal families, and J, and J,, for the corresponding Jacobi matrices, we get
xP=J]P,  xQ=],Q (6)

If M denotes the matrix associated with the change of bases Q = MP, then M is a lower triangular matrix with diagonal
entries equal to 1 and zero subdiagonals from the (k + 1)-th one.
From (6) it follows that MJ, P = xMP = J, MP, and, therefore,
MJP = JQ M. (7)

From this simple relation the entries of the matrix J, follow straightforwardly.
Moreover, from Eq. (6), we get

X(P)n = (JP)n(P)n + Pn+1en+]v (8)
X(Q,)n = (.'Q)n(Q)n + Qn+1en+lv (9)
where e,;1 = (0, ...,0, 1)T € R™!. Here, the symbol (A), stands for the truncation of any infinite matrix A at level n + 1.

Using the relation (3), the representation of the change of bases (Q), = (M),, (P),, and (9), we deduce
x(M),(P), = GQ)n(M)n(P)n + Prrieni1 + Ly(P)y

where
o ... 00 ... 0
L=|o ... 00 ... 0[ermtn
0 ... 0 a ... m
Thus,

X(P)y = (M), " [J)n(M)n + Ly ] (P)n + Pry1eni1.
Comparing this formula with (8), we get

Up)n = M), " [Jo)n(M)y + Ly ] ;
that is,

Jn = M)y [(p)n — L] (M),

This last expression means that (J, ), is similar to a rank-one perturbation of the matrix (Jp), and this perturbation is given
by the matrix L,. In particular, the zeros of the polynomial Q, are the zeros of the characteristic polynomial of the matrix
(JP)n - Ln-

Next, we are going to describe an explicit algebraic relation between the Jacobi matrices Jp and J,, keeping in mind
basically the relationship between the linear functionals u and v; that is, u = hyv.

To do this, we first observe that QQ" = MPP"M". Writing Dp = (u, PP") and D, = (v, QQ") we have

(v, QQ") = (h, QQ") = (u, QQ") = M(u, PP")M" = MD,M".
Since (v, QQ") = (v, h(Jo)QQ") = hk(Jo)Dq, then

h(Jo) = MD;M'D . (10)
On the other hand, from (7), it follows that
he(Jo) = My (Jp)M ™. (11)

From (10) and (11), we deduce
he(Jp) = DpM'D,'M. (12)

Thus, we have a simple algorithm to compute the polynomial h.
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(1) From the data M and J,, we have (7) and we can deduce J,.
(2) FromJp and J, we deduce Dp and Dy, respectively.

(3) Using (12) and taking into account that hy is a polynomial of degree k, hy(x) = co + c1x + - - - + Xk, we get
he(p) = col + ci)p + -+ - + iy = DpM'D,'M,

which is a system of linear equations with k + 1 unknowns. Notice that the matrices of the first and second terms are
2k + 1 diagonal.

If~the monic polynomials {P,},>0 and {Q,},>0 were replaced by the corresponding orthonormal polynomials {ﬁ;}nzo and
{Qn}n>0, similar computations would have led to

~T~ ~ ~T
hd)=MM, h(z) =MM,

where M denotes the matrix of the change of bases; that is, 6 = MP. This gives us an interesting interpretation of the matrix
operation involving the linear combination of the orthogonal polynomials: Q,(x) = P,(x) +a1Py_1(X) +- - - + axPp_y(x), n >
k+1.

3. Thecasek =2

Among the classical orthogonal polynomial families, the Chebyshev polynomials are unique families such that the
sequence of polynomials {Q,},>0 defined by (3) is orthogonal (see for example [8]). But, what happens if the sequence
{Pn}n>0 is not a classical one?

In this Section, our main goal will be to describe, for the case k = 2, all the families of monic polynomials {P,};>0
orthogonal with respect to a quasi-definite linear functional such that the new families {Q,},>0 are also orthogonal.

Theorem 2. Let {P,},>0 be an SMOP with respect to a quasi-definite linear functional. Assume that a, and a, are real numbers
with a, # 0 and Q, the monic polynomials defined by

Qn(x) = Py(%) + a1Py_1(%) + a2Py2(x), n > 3. (13)

Then the orthogonality of the sequence {Q,},>0 depends on the choice of a; and a,. More precisely, {Qu}n>0 is an SMOP if and
only if y3 +a1(B2 — B3) # 0, and

(i) if a; = 0,forn > 4, B, = Bn—z and Yy = Yu_2.
(i) if a; # 0 and a? = 4ay, then, for n > 2,
Bn=A+Bn+Cn*  y,=D+En+ Fn? (14)

with a;C = 2F, ;B = 2E — 2F, (A,B,C,D,E,F € R).
(iii) if a; # 0 and a2 > 4ay, then, forn > 2,

Bn=A+BA\"+CA",  y,=D+EA"+FA",

with a;C = (14 A)F, a;AB = (1+ M)E, (A,B,C, D, E, F € R), where A is the unique solution in (—1, 1) of the equation
ar = a(1+ A)2%

(iv) if a1 # 0and a? < 4ay, and we let A = e be the unique solution of the equation a2} = a,(1+ X)? with 6 € (0, rr), then,
forn=>2,

,Bn —A +Bein9 _}_Eefine’ Yo = D +Eein9 _'_Eefine7
withaiAB= (1+X)E, (A,D € R,B,E € R).

Proof. Applying Theorem 1 to the particular case k = 2, we have that {Q, },>0 is an SMOP ifand only if y3 +a; (8, — B3) # 0
and, for n > 4,

a1(Yn—2 — Yn—1) = G2(Bn—2 — Bn), (15)
Yn — Ya—2 = @1(Bn — Bn-1)- (16)

Observe that (i) follows directly.
In what follows, we will assume that a; % 0. From (15) and (16), we deduce that 8, and y, are solutions of the difference
equation with constant coefficients

ai a
yn+ 1-— Yn—1— 1—— }’n—z—Yn—3=0, TlZS. (17)
a) ap
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According to the solutions of the associated characteristic equation

(x-1)[k2+<2—‘ﬁ>x+1]=0 (18)

az
we can analyze three cases (see, for instance, [9]).
(ii) If a% = 4a,, then A = 1 is a root with multiplicity 3 and therefore
Bn=A+ Bn+Cn?, yo=D+En+Fn®, n>5.

Note that the obtained expressions for 8, and y, also hold for n > 2, just applying (17) for n equal to 7, 6, and 5.
Inserting these expressions of 8, and y, in (15) and (16), we have

n[2a:F — a%C] = %afB —aE+atF, n=>4,

n[4F — 2a:C] = a1B—a,C — 2E +4F, n >4,
which is equivalent to

a;C —2F =0, a;B—2E 4+ 2F = 0.

Moreover, since 8, y, € R,n > 1,itis easy to check thatA, B, C,D,E,F € R.

Conversely, the values of 8, and y;, given by (14) and the above relations lead, through (15) and (16), to the orthogonality
of the sequence {Q,}.

(iii) and (iv) If a3 # 4ay, then

Bn=A+BA\"+CA™",  y,=D+EA"+FA", n>-5,

where A is the unique solution of the Eq. (18) such that A € (—1, 1) if a% > 4a, and 1 = e with 0 € (0, 7), if af < 4a,.
By applying the procedure described in case (ii) we get that the previous formulas hold for n > 2.
Inserting these values of 8, and y, in both formulas (15) and (16), we have

A2 [aiE — B0+ 1)] = a1FA — a,C(L + 1), n > 4,
A2 [@1Bh — (L + DE] = a;C — (A + DF, n> 4.

Then, since A is a solution of the equation a%)» = a,(1 + 1)?, we have that the above both formulas are equivalent to the
following system:

a;C = (A + DF, a;AB = (A + 1)E.

Again, since B, and y,, n > 1, are real numbers, one gets that in case (iii) that A,B,C, D, E, Fﬁare reil numbers.
Nevertheless, in case (iv), A and D are real numbers and B, C, E, F could be complex numbers withC =B, F = E. 0O

4. Further remarks and comments

Based on the results of Section 3 it is natural to ask us the following question: It is possible to give explicitly the SMOP
{Pn}n>0,as well as their orthogonality measure, such that the sequence {Q, },>o defined by (13) is also an SMOP? This problem
might be quite difficult. In this Section we make some remarks concerning it, and we show some examples.

First, we point out a difference between the cases k = 1 and k = 2. Let Q, be the monic polynomials defined by

Qu(x) = Py(x) + a1Pp—1(x), n > 2,

with a; # 0. From Theorem 1 written for k = 1, it follows that {Q,}n>0 is an SMOP (see [10] in a more general setting) if
and only if

v2 +a1(B1 — B2) #0, (19)
Yo—Y2=a1(By — B2), n=3.

Thus, in the case k = 1, for any sequence of {y;,},>1 with y, # 0, if we take By, B1 € R, and B, (n > 2) satisfying (19),
we obtain all the SMOP {P,},>¢ such that {Q,},>0 is also an SMOP. However, in the case k = 2, Theorem 2 implies that the
recurrence coefficients y, and 8, have to be solutions of Eq. (17). Therefore, although in both cases we get that 8, and y,
have a similar asymptotic behaviour, roughly speaking, for k = 2, there are much fewer families {Pp}n>0.

Examples. According to Theorem 2, all the SMOP {P; },,>¢ such that the sequence {Q,};>0, Where Q, = Py + a;Py—5,n > 3
with a; # 0 is again an SMOP, satisfy, forn > 4, 8, = B,—2 and Y, = Yn_a.

The families of monic orthogonal polynomials which fulfill these conditions were explicitly given in terms of Chebyshev
polynomials in [11, Example 2, p. 109]. Observe that this situation corresponds to the case a; = 0. However, in the case
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a; # 0, the explicit description of all sequences {P,},>¢ still remains open. Besides the four Chebyshev families, we have
identified some explicit solutions, for instance, the continuous big g-Hermite polynomials (see [12]).

Whenever k = 1, an interesting case arises when 8, = By, for all n and y, = y;, n > 2. In particular, it follows that
the only symmetric orthogonal polynomials {P,} such that the sequence P,, + aP,_1 is also an SMOP are the Chebyshev
polynomials (up to a linear change in the variable).

Acknowledgement

The first, third and fourth authors were partially supported by MEC of Spain under Grant MTM2006-13000-C03-03,
FEDER funds (EU), and the Diputacién General de Aragdn project E-64 (Spain). The second author was partially supported
by MEC of Spain under Grant MTM2006-13000-C03-02, INTAS Research Network NeCCA 03-51-6637 and Comunidad de
Madrid/Universidad Carlos IIl de Madrid under Grant CCG 07-UC3M/ESP.3339.

References

[1] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[2] J.A. Shohat, On mechanical quadratures, in particular, with positive coefficients, Trans. Amer. Math. Soc. 42 (1937) 491-496.
[3] F.Peherstorfer, On orthogonal polynomials with perturbed recurrence relations, J. Comput. Appl. Math. 30 (1990) 203-212.
[4] C.Brezinski, K.A. Driver, M. Redivo-Zaglia, Quasi-orthogonality with applications to some families of classical orthogonal polynomials, Appl. Numer.
Math. 48 (2004) 157-168.
[5] A.F.Beardon, K.A. Driver, The zeros of linear combinations of orthogonal polynomials, J. Approx. Theory 137 (2005) 179-186.
[6] Z. Grinshpun, Special linear combinations of orthogonal polynomials, J. Math. Anal. Appl. 299 (2004) 1-18.
[7] P.Maroni, Une théorie algébrique des polyndmes orthogonaux. Application aux polynémes orthogonaux semi-classiques, in: C. Brezinski, et al. (Eds.),
Orthogonal Polynomials and their Applications, IMACS Ann. Comput. Appl. Math. 9 (1991), 95-130.
[8] E. Berriochoa, A. Cachafeiro, J.M. Garcia-Amor, A characterization of the four Chebyshev orthogonal families, Int. J. Math. Math. Sci. 13 (2005)
2071-2079.
[9] S. Elaydi, An Introduction to Difference Equations, Springer, New York, 2005.
[10] F. Marcellan, J. Petronilho, Orthogonal polynomials and coherent pairs: The classical case, Indag. Math. (N.S.) 6 (1995) 287-307.
[11] F. Marcellan, J. Petronilho, Orthogonal polynomials and quadratic transformations, Portugal. Math. 56 (1999) 81-113.
[12] R. Koekoek, R. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its g-analogue, Report 98-17, Delft University of
Technology, Delft, 1998.



	When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials?
	Introduction and basic definitions
	Orthogonality and Jacobi matrices
	The case  k = 2 
	Further remarks and comments
	Acknowledgement
	References


