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Abstract

It is well known that the Jacobi polynomials P(�;�)
n (x) are orthogonal with respect to a quasi-de6nite linear

functional whenever �; �; and � + � + 1 are not negative integer numbers. Recently, Sobolev orthogonality
for these polynomials has been obtained for � a negative integer and � not a negative integer and also for
the case �= � negative integer numbers.
In this paper, we give a Sobolev orthogonality for the Jacobi polynomials in the remainder cases. c© 2001

Elsevier Science B.V. All rights reserved.
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1. Introduction

Sobolev orthogonality has played an important role in the study of orthogonality for some families
of classical orthogonal polynomials with non-classical parameters. For Laguerre polynomials this
problem has been completely solved. In [4], Kwon and Littlejohn established the orthogonality of
the generalized Laguerre polynomials {L(−k)n }n¿0; k¿ 1, with respect to a Sobolev inner product
and later P+erez and Piñar gave an uni6ed approach to the orthogonality of the generalized Laguerre
polynomials {L(�)n }n¿0, for any real value of the parameter �, by proving their orthogonality with
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respect to a Sobolev non-diagonal inner product, see [6]. However, this is not the situation for Jacobi
polynomials.

It is well known (see [3]) that the monic Jacobi polynomials {P(�;�)
n }n satisfy, for any real value

of � and �, the three-term recurrence relation

xP(�;�)
n (x) = P(�;�)

n+1 (x) + c(�;�)n P(�;�)
n (x) + 
(�;�)n P(�;�)

n−1 (x); n¿ 0;

P(�;�)
−1 (x) = 0; P(�;�)

0 (x) = 1 (1.1)

where

c(�;�)n =
�2 − �2

(2n+ �+ �)(2n+ �+ � + 2)
;


(�;�)n =
4n(n+ �)(n+ �)(n+ �+ �)

(2n+ �+ � + 1)(2n+ �+ �)2(2n+ �+ � − 1)
:

This formula holds for every n, except at most for two values depending on � and �.
Whenever �, � and �+�+1 are not negative integers, we have 
(�;�)n �=0 for all n¿ 1 and Favard’s

theorem (see [3]) ensures that the sequence {P(�;�)
n }n is orthogonal with respect to a quasi-de6nite

linear functional. Besides, if �, �¿− 1, the functional is positive de6nite and the polynomials are
orthogonal with respect to the weight (1− x)�(1+ x)� on the interval [−1; 1]. Observe that standard
orthogonality results cannot be deduced from Favard’s theorem when either �, or �; or � + � + 1
are negative integer numbers, since 
(�;�)n vanishes for some values of n.
However, in the cases when � is a negative integer, � being not a negative integer and when �=�

are negative integer numbers, the Sobolev orthogonality for these polynomials has been obtained in
[1] and [2], respectively. More precisely, in [1] it has been established the orthogonality of the monic
Jacobi polynomials {P(−N;�)

n }n¿0, for N a positive integer number and � not a negative integer, with
respect to a Sobolev bilinear form de6ned as follows:

(f; g)S = F(1)AG(1)T +
∫ 1

−1
f(N )(x)g(N )(x)(1 + x)�+N dx;

where F(1) = (f(1); f′(1); : : : ; f(N−1)(1)) and A is a symmetric N × N real matrix such that A =
Q−1D(Q−1)T, with D any regular diagonal matrix and Q the matrix whose entries are the derivatives
of the Jacobi polynomials P(−N;�)

n at the point 1.
Otherwise, in [2] it is shown that the generalized Gegenbauer polynomials {C(−N+1=2)

n }n, N¿ 1,
are orthogonal with respect to the inner product

(f; g)S = (F(1)|F(−1))A(G(1)|G(−1))T +
∫ 1

−1
f(2N )(x)g(2N )(x)(1− x2)N dx;

where A is a symmetric positive de6nite matrix de6ned by A=Q−1D(Q−1)T; with D any diagonal
positive de6nite matrix of order 2N and Q the regular matrix, Q= (Q(1)|Q(−1))∈M2N (R); with

Q(1) = (DkC(−N+1=2)
n (1)) n=0; :::;2N−1;

k=0; :::;N−1

Q(−1) = (DkC(−N+1=2)
n (−1)) n=0; :::;2N−1;

k=0; :::;N−1

:
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The particular case of the monic Jacobi polynomials {P(−1;−1)
n }n¿0 had been previously considered

in [5].
For the remainder cases, nothing is known about orthogonality of Jacobi polynomials. The aim of

this paper is to 6ll up this gap in the literature.
Now, we describe the structure of the paper. Since the Jacobi polynomials P

(�;�)
n (see [7])

with negative integer parameters vanish identically for some values of n, it is necessary to re-
de6ne these polynomials in order to have a sequence of monic orthogonal polynomials. This is
done in Section 2, where some of their properties are also deduced. In Section 3, the Sobolev
orthogonality for the monic Jacobi polynomials {P(−k;−l)

n }n¿0; introduced in the above section,
is given.

2. The monic Jacobi polynomials P(−k;−l)
n

For � and � arbitrary real numbers, the Jacobi polynomials P
(�;�)
n can be de6ned (see [7, p. 62])

by means of their explicit representation

P(�;�)
n (x) =

n∑
m=0

(
n+ �
m

)(
n+ �
n− m

)(
x − 1
2

)n−m(x + 1
2

)m
; n¿ 0:

When �=−k and �=−l with k; l positive integers, P(−k;−l)
n vanishes identically for max {k; l}6 n¡

k + l and reduces its degree for (k + l)=26 n¡max {k; l}.
In the case �=−k, with k a positive integer, and � not a negative integer, the nth monic Jacobi

polynomial is given by (see [1])

P(−k;�)
n (x) =

(
2n− k + �

n

)−1 n∑
m=0

(
n− k
m

)(
n+ �
n− m

)
(x − 1)n−m(x + 1)m; (2.1)

with the convention
( 0
0

)
= 1.

Observe that if we take �=−l with l a positive integer in formula (2.1), the binomial coePcient(
2n−k−l

n

)
vanishes for some values of n. That is the reason for which it is necessary to give a new

de6nition of the Jacobi polynomials.
Obviously, the expression of the Jacobi polynomial P(�;�)

n in the case � = −l, for l a positive
integer, and � not a negative integer, is similar to (2.1).

We de6ne the nth monic generalized Jacobi polynomial P(−k;−l)
n , for k and l positive integers, by

means of the following formula:

P(−k;−l)
n (x) =

1
2

[
lim
�→−k

P(�;−l)
h (x) + lim

�→−l
P(−k;�)
h (x)

]
; (2.2)

with h = k + l − n − 1 if (k + l)=26 n¡max{k; l} and h = n otherwise, where the polynomials
P(�;−l)
h and P(−k;�)

h are de6ned as in (2.1). Notice that degP(−k;−l)
n = h.
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Therefore, it can be written:

P(−k;−l)
n (x) =

1
2

[
lim
�→−k

(
�(�;−l)h

h∑
m=0

(
h+ �
m

)(
h− l
h− m

)
(x − 1)h−m(x + 1)m

)

+ lim
�→−l

(
�(−k;�)h

h∑
m=0

(
h− k
m

)(
h+ �
h− m

)
(x − 1)h−m(x + 1)m

)]
; (2.3)

with h= k + l− n− 1 if (k + l)=26 n¡max{k; l} and h= n otherwise. Here and in the sequel we
will put

�(�;�)h =
(
2h+ �+ �

h

)−1

:

We want to point out that for 06 n¡max{k; l} and for n¿ k + l, the polynomials P(−k;−l)
n

de6ned by (2.2) are the monic polynomials corresponding to those described in [7] (see Section
4:22) and that for max{k; l}6 n¡k + l, taking into account (2.2), they satisfy degP(−k;−l)

n = n.
It is easy to proof, as a 6rst consequence of (2.2), that the symmetry property of the classical

Jacobi polynomials P
(�;�)
n also holds for the polynomials P(−k;−l)

n , that is

P(−k;−l)
n (−x) = (−1)hP(−l;−k)

n (x); n¿ 0 (2.4)

where h= degP(−k;−l)
n

From now on, without loss of generality, we suppose that l6 k.

Remark. It is worthy to observe that the conservation of the symmetry property justify the de6nition
given in (2.2).

Next, we show the explicit representation for the monic generalized Jacobi polynomials P(−k;−l)
n

according to the diQerent values of n:

(a) For 06 n¡l, all the binomial coePcients in (2.3) are nonzero. So, we have

P(−k;−l)
n (x) = �(−k;−l)n

n∑
m=0

(
n− k
m

)(
n− l
n− m

)
(x − 1)n−m(x + 1)m: (2.5)

(b) When l6 n¡ (k+l)=2, from [7, Eq. (4:22:2)] and (2.4), we obtain that the polynomial P(−k;−l)
n

can be expressed in terms of the polynomial P(−k; l)
n−l and then

P(−k;−l)
n (x) = (x + 1)lP(−k; l)

n−l (x)

= (x + 1)l�(−k; l)n−l
n−l∑
m=0

(
n− l− k

m

)(
n

n− l− m

)
(x − 1)n−l−m(x + 1)m: (2.6)

(c) If (k + l)=26 n¡k, from [7, Eq. (4:22:3)], the Jacobi polynomial P(−k;−l)
n reduces its degree

which is precisely k + l − n − 1. For n in this range, by de6nition (2.2), P(−k;−l)
n = P(−k;−l)

k+l−n−1 and
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then since P(−k;−l)
k+l−n−1 corresponds to the case (b), it can be concluded:

P(−k;−l)
n (x) = (x + 1)lP(−k; l)

k−n−1(x)

= (x + 1)l�(−k; l)k−n−1

k−n−1∑
m=0

(−n− 1
m

)(
k + l− n− 1
k − n− 1− m

)
(x − 1)k−n−1−m(x + 1)m:

(2.7)

(d) If k6 n¡k+l, from [7, Eq. (4:22:4)], the polynomial P(−k;−l)
n vanishes identically. After some

computations, it can be deduced that the limits in (2.3) exist and then

P(−k;−l)
n (x) =A(k; l)

n

[
(−1)n−k(n− l)!

n−k∑
m=0

(
n− k
m

)
(−1)m(l− m− 1)!

(n− m)!
(x − 1)n−m(x + 1)m

+ (n− k)!
n−l∑
m=0

(
n− l
m

)
(−1)m(k + l+ m− n− 1)!

(m+ l)!
(x − 1)n−m−l(x + 1)m+l

]
;

(2.8)

where

A(k; l)
n =

n!
2(k + l− n− 1)!(2n− k − l)!

:

(e) In the case n¿ k + l, all the binomial coePcients in (2.3) are nonzero, and we have

P(−k;−l)
n (x) = (x + 1)l(x − 1)k�(−k;−l)n

n−k∑
m=l

(
n− k
m

)(
n− l
n− m

)
(x − 1)n−k−m(x + 1)m−l

= (x + 1)l(x − 1)kP(k; l)
n−k−l(x): (2.9)

Using either formula (2.2) or the above explicit representations of the polynomials P(−k;−l)
n it can

be shown that some of the properties of the classical Jacobi polynomials hold for the generalized
Jacobi polynomials. More precisely:

Proposition 2.1. Let k and l be arbitrary positive integers. Then; the monic generalized Jacobi
polynomials P(−k;−l)

n satisfy the following properties:

(i) The three-term recurrence relation (1:1) with �=−k; � =−l and n¿max {k; l}+ 1.
(ii) The di7erentiation formula

DiP(−k;−l)
n (x) =

h!
(h− i)!

P(−k+i;−l+i)
n−i (x); n¿ 0; 06 i6 h= degP(−k;−l)

n ; (2.10)

where D = d=dx.
(iii) The second order di7erential equation

(1− x2)y′′ + [k − l+ (k + l− 2)x]y′ + n(n− k − l+ 1)y = 0; n¿ 0:
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(iv) The generalized Gegenbauer polynomials (see [2]) are a particular case of the generalized
Jacobi polynomials; that is

C
(−k+1

2 )
n (x) = P(−k;−k)

n (x); n¿ 0:

Next, using diQerentiation property and formulas (2.5)–(2.9), the values of these polynomials and
their derivatives at the points 1 and −1 that will be used in Section 3, can be computed. The results
obtained are resumed in the following:

Lemma 2.2. (a) If 06 n¡l;

DiP(−k;−l)
n (1) =

n!
(n− i)!

2n−i�(−k+i;−l+i)n−i

(
n− k
n− i

)
; 06 i¡n;

DjP(−k;−l)
n (−1) =

n!
(n− j)!

(−2)n−j�(−k+j;−l+j)n−j

(
n− l
n− j

)
; 06 j¡n:

(b) If 16 l6 n¡ (k + l)=2;

DiP(−k;−l)
n (1) =

n!
(n− i)!

2n−i�(−k; l)n−l

(
n− k − l+ i

n− l

)
; 06 i¡n:

DjP(−k;−l)
n (−1) = 0; 06 j¡ l:

(c) In the case (k + l)=26 n¡k

DiP(−k;−l)
n (1) =

h!
(h− i)!

2k+l−n−1−i�(−k; l)k−n−1

(
i − n− 1
k − n− 1

)
; 06 i¡h= degP(−k;−l)

n ;

DjP(−k;−l)
n (−1) = 0; 06 j¡ l:

(d) When k6 n¡k + l;

DiP(−k;−l)
n (1) =

n!
(n− i)!

2n−i−1(−1)n−l�(k;−l)n−k

(
k − i − 1
n− l

)
; 06 i¡ k;

DjP(−k;−l)
n (−1) =

n!
(n− j)!

2n−j−1(−1)k−j�(−k; l)n−l

(
l− j − 1
n− k

)
; 06 j¡ l:

(e) For n¿ k + l;

DiP(−k;−l)
n (1) = 0; 06 i¡ k:

DjP(−k;−l)
n (−1) = 0; 06 j¡ l:

3. Sobolev orthogonality for {P(−k;−l)
n }n¿0

Next, we shall give orthogonality for the sequence {P(−k;−l)
n }n¿0. Given k and l positive integers

with l6 k, if there exists n such that (k + l)=26 n¡k then degP(−k;−l)
n ¡n and the polynomials

{P(−k;−l)
n }n¿0 are not orthogonal with respect to any quasi-de6nite bilinear form.
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So, a more general kind of orthogonality will be considered:
Given a bilinear form (:; :), by Qn, n¿ 0, we will denote the nth monic polynomial of least degree,

not identically equal to zero, such that

(Qn; p) = 0 p∈Pn−1

where Pn−1 denotes the linear space of all polynomials of degree less than or equal n− 1.
Such a polynomial does exist and it is unique by minimality of degree for the polynomial solution.

If the bilinear form is positive de6nite then degQn= n and thus all the Qn’s are distinct. In general,
this is not so and for diQerent values of n the same polynomial Qn can appear.

Theorem 3.1. Let k; l be positive integer numbers. There exists a symmetric (k+l)×(k+l) matrix
A such that the sequence {P(−k;−l)

n }n¿0 is orthogonal with respect to the Sobolev bilinear form in
the space of the real polynomials

(f; g)S = (f; g)D +
∫ 1

−1
f(k+l)(x)g(k+l)(x)(1− x)l(1 + x)k dx; (3.1)

where (f; g)D = (F(1)|F̃(−1))A(G(1)|G̃(−1))T and

(F(1)|F̃(−1)) = (f(1); f′(1); : : : ; f(k−1)(1); f(−1); f′(−1); : : : ; f(l−1)(−1)):

Proof. From Lemma 2.2 (e) and formula (2.10) it follows that the polynomials P(−k;−l)
n ; for n¿ k+l;

are orthogonal to the linear space Pn−1 with respect to (3.1); for any symmetric (k + l) × (k + l)
matrix A.

In order to have the orthogonality of the sequence {P(−k;−l)
n }n¿0 it suPces to prove that there

exists a symmetric (k + l)× (k + l) matrix A such that (Pn; Pm)D = 0 for 06m¡n¡k + l.
The existence of such a matrix follows solving the homogeneous linear system

(Pn(1)|P̃n(−1))A(Pm(1)|P̃m(−1))T = 0; 06m¡n¡k + l

with
(
k + l+ 1

2

)
unknowns and, at most,

(
k + l
2

)
equations.

Further information about the matrix A can be derived analyzing the structure of the sequence
{P(−k;−l)

n }n¿0. In general, the matrix A is not regular because of for every n satisfying (k + l)=2
6 n¡k, the polynomial P(−k;−l)

n reduces its degree. However, if such a positive integer n does
not exist, then for any diagonal positive de6nite matrix D of order (k + l), a symmetric positive
de6nite matrix A can be explicitely constructed by means of A = Q−1D(Q−1)T, where Q is the
regular matrix Q= (Q(1)|Q̃(−1))∈M(k+l)×(k+l)(R); with

Q(1) = (DiP(−k;−l)
n (1)) n=0; :::; k+l−1;

i=0; :::; k−1

and

Q̃(−1) = (DjP(−k;−l)
n (−1)) n=0; :::; k+l−1;

j=0; :::; l−1

:

Observe that this situation can only occur when either k= l (generalized Gegenbauer polynomials,
see [2]) or k = l+ 1.
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