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Abstract

It is well known that the Jacobi polynomials P,(f’ﬁ)(x) are orthogonal with respect to a quasi-definite linear
functional whenever o, f, and « + f§ + 1 are not negative integer numbers. Recently, Sobolev orthogonality
for these polynomials has been obtained for o a negative integer and f§ not a negative integer and also for
the case o = f§ negative integer numbers.

In this paper, we give a Sobolev orthogonality for the Jacobi polynomials in the remainder cases. (©) 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Sobolev orthogonality has played an important role in the study of orthogonality for some families
of classical orthogonal polynomials with non-classical parameters. For Laguerre polynomials this
problem has been completely solved. In [4], Kwon and Littlejohn established the orthogonality of
the generalized Laguerre polynomials {Lffk)}n;o, k =1, with respect to a Sobolev inner product
and later Pérez and Pifiar gave an unified approach to the orthogonality of the generalized Laguerre
polynomials {Lff) tn>o0, for any real value of the parameter o, by proving their orthogonality with
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respect to a Sobolev non-diagonal inner product, see [6]. However, this is not the situation for Jacobi
polynomials.

It is well known (see [3]) that the monic Jacobi polynomials {P,(f’ﬁ )}n satisfy, for any real value
of o and f3, the three-term recurrence relation

xP*P(x) = PAD () + *PPEP(x) 4 2#PPED (), 0> 0,

PEPy =0, PPl =1 (1.1)
where

(B p o

4 Cn+a+pRn+oa+p+2)

b dn(n+o)n+ p)n+a+p)

" Qutoa+B+DR2u+oa+ pPCn+a+p—1)

This formula holds for every n, except at most for two values depending on o and f.

Whenever o, f and a+f-+1 are not negative integers, we have 2P #0 for all » > 1 and Favard’s
theorem (see [3]) ensures that the sequence {P,(f’ﬁ )},, is orthogonal with respect to a quasi-definite
linear functional. Besides, if o, § > — 1, the functional is positive definite and the polynomials are
orthogonal with respect to the weight (1 —x)*(1+x)? on the interval [ — 1, 1]. Observe that standard
orthogonality results cannot be deduced from Favard’s theorem when either «, or f, or o + f + 1
are negative integer numbers, since 2P vanishes for some values of n.

However, in the cases when « is a negative integer, f§ being not a negative integer and when o= f§
are negative integer numbers, the Sobolev orthogonality for these polynomials has been obtained in
[1] and [2], respectively. More precisely, in [1] it has been established the orthogonality of the monic
Jacobi polynomials {P,S_N’ﬁ )}nZ()s for N a positive integer number and f not a negative integer, with
respect to a Sobolev bilinear form defined as follows:

(f>9)s = F(DAG(1)" + / 11 SOG4+ x) dx,

where F(1)=(f(1), f'(1),..., f¥=D(1)) and A is a symmetric N x N real matrix such that A =
Q'D(Q™1HT, with D any regular diagonal matrix and Q the matrix whose entries are the derivatives
of the Jacobi polynomials PSP at the point 1.

Otherwise, in [2] it is shown that the generalized Gegenbauer polynomials {C,S_NH/ 2)},,, N =1,
are orthogonal with respect to the inner product

1
(f9)s = (F(D|F(=1)AGD)|G(=1))" + /1 Vg1 =) dx,

where A is a symmetric positive definite matrix defined by A =Q~'D(Q~")", with D any diagonal
positive definite matrix of order 2N and Q the regular matrix, Q = (Q(1)|Q(—1)) € #,x(R), with

vy

.....

k=0,..,N—1 k=0,..,N—1
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The particular case of the monic Jacobi polynomials {Pf,fl’fl)}ngo had been previously considered
in [5].

For the remainder cases, nothing is known about orthogonality of Jacobi polynomials. The aim of
this paper is to fill up this gap in the literature.

Now, we describe the structure of the paper. Since the Jacobi polynomials PP (see [7])
with negative integer parameters vanish identically for some values of n, it is necessary to re-
define these polynomials in order to have a sequence of monic orthogonal polynomials. This is
done in Section 2, where some of their properties are also deduced. In Section 3, the Sobolev
orthogonality for the monic Jacobi polynomials {Pf,_k’_l)},1>0, introduced in the above section,
is given.

)

2. The monic Jacobi polynomials P, "'

For o and f arbitrary real numbers, the Jacobi polynomials 2P can be defined (see [7, p. 62])
by means of their explicit representation

» n + + x—1 n—m x+1 m
=3 (1) () (5 () as

m=0

When ao=—k and f=—1 with £k, [ positive integers, 2,757 Vanishes identically for max {k,/} <n <
k + [ and reduces its degree for (k + 1)/2 < n < max {k, 1}.

In the case o = —k, with k a positive integer, and  not a negative integer, the nth monic Jacobi
polynomial is given by (see [1])

_1 n
Pfl_k’ﬂ)(x)z (2}1 _}f+ﬁ> Z <n;1k> <Zj_f1>(x— D"+ 1)", (2.1)

m=0

with the convention (8) =1

Observe that if we take = —1/ with [ a positive integer in formula (2.1), the binomial coefficient
(zn_nk_l) vanishes for some values of n. That is the reason for which it is necessary to give a new
definition of the Jacobi polynomials.

Obviously, the expression of the Jacobi polynomial PP in the case p = —1, for [ a positive
integer, and o not a negative integer, is similar to (2.1).

We define the nth monic generalized Jacobi polynomial P,(fk’fl), for k£ and [ positive integers, by
means of the following formula:

1 . — : -
Pf,_k°_l)(x): 5 Ll_lfr_lkpi(za’ l)(x)+ﬁ1g§lpi(z k,[f)(x) , (2.2)

with h=k +1—n—1if (k+1)/2 <n <max{k [} and h = n otherwise, where the polynomials
P,(l“’_l) and P,(q_k’ﬁ ) are defined as in (2.1). Notice that deg pUETD —
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Therefore, it can be written:

pl—k=D) R (. —1) " (h+a h—1 h—m -
= im0 (7T ) (o ) 6o D T )
=0

m

h
+ Jlim (xﬁ,"””z <h N k) < ht f ) (x — D! "(x + 1)’”)] , (2.3)
m=0

with A=k +1—n—11if (k+1)/2 < n <max{k, [} and h=n otherwise. Here and in the sequel we
will put

wp [ 2h o+ B\
Kh = h

We want to point out that for 0 < n < max{k,/} and for n >k + [, the polynomials P} *~"
defined by (2.2) are the monic polynomials corresponding to those described in [7] (see Section
4.22) and that for max{k, [/} <n <k + [, taking into account (2.2), they satisfy deg PiED =y,

It is easy to proof, as a first consequence of (2.2), that the symmetry property of the classical
Jacobi polynomials 2P also holds for the polynomials PSR7D ) that is

PR D(—x) = (1P P(x), n=0 (24)

where h = degP( —h=D
From now on, without loss of generality, we suppose that / < k.

Remark. It is worthy to observe that the conservation of the symmetry property justify the definition
given in (2.2).

Next, we show the explicit representation for the monic generalized Jacobi polynomials piEh
according to the different values of n:

(a) For 0 < n </, all the binomial coefficients in (2.3) are nonzero. So, we have

PR D) = R0 (n m k) (: _ nl1> (= 1) "+ )™ (2.5)
m=0

(b) When [ < n < (k-+1)/2, from [7, Eq. (4.22.2)] and (2.4), we obtain that the polynomial pih
can be expressed in terms of the polynomial Pf,: /~ and then

PRy = (x + 1)/ ”(x)

—1
= (x+ 1)'x'” "” (”_li_k> <n_7_m>(x—1)"“"(x+1)"’. (2.6)
m=0

C + <n <k, from [7, Eq. (4.22.3)], the Jacobi polynomial Z,, "’ reduces its degree
If (k +1)/2 k, from [7, Eq. (4.22.3)], the Jacobi polynomial 2\ ™" red deg

which is precisely £ + / —n — 1. For n in this range, by definition (2.2), piETD = P,({ +’,‘ nl)l and
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then since P,(;/;’_;[_)l corresponds to the case (b), it can be concluded:

Pﬁ_k’_l)(x) =(x+ l)lP,(c:]:,’i)l (x)

i(x + I)IK(*k,l) & -n—1 k+1—-n—1 (X o l)k—n—l—m(x + l)m
- fe=n—1 —~ m k—n—1—m '

(2.7)

(d) If k <n<k+1 from [7, Eq. (4.22.4)], the polynomial 257D vanishes identically. After some
computations, it can be deduced that the limits in (2.3) exist and then

n—k m
Py = A [(—1>"—k<n oy () SR iy

m (n—m)!

m=0

n—I m
Ty (n—l) (—1) (k+l+m—n—1)!(x_1)n_m_l(x+1)m+l ,

— m (m+1)!
(2.8)
where
k1) _ n! '
" 20k+1—n—DI2n—k—1)!
(e) In the case n = k + [, all the binomial coefficients in (2.3) are nonzero, and we have
PN =+ 1) (x - 1)k'<,(fk’7”n_k (n N k) ( ! ) (x— 1)+ 1yt
o m n—m
= (x + D/(x = DFPED(0). (2.9)
Using either formula (2.2) or the above explicit representations of the polynomials PS50 it can

be shown that some of the properties of the classical Jacobi polynomials hold for the generalized
Jacobi polynomials. More precisely:

Proposition 2.1. Let k and [ be arbitrary positive integers. Then, the monic generalized Jacobi
polynomials pih satisfy the following properties:

(i) The three-term recurrence relation (1.1) with « = —k, f = —1 and n > max {k,[} + 1.
(i1) The differentiation formula
4 A o
DRI =g -)'Pi_’;*“ "), n=0, 0<i<h=degP{™, (2.10)
—1).

where D = d/dx.
(ii1) The second order differential equation

(=)W' +[k—1+Gk+1-2x1y +nn—k—14+1)y=0, n=0.
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(iv) The generalized Gegenbauer polynomials (see [2]) are a particular case of the generalized

Jacobi polynomials, that is
D) = PRI, >0,

Next, using differentiation property and formulas (2.5)—(2.9), the values of these polynomials and
their derivatives at the points 1 and —1 that will be used in Section 3, can be computed. The results
obtained are resumed in the following:

Lemma 2.2. (a) If 0<n</,

. n! e g _
DR = o l,)'z"*‘ch,_’,f*” e (’; _i‘) , 0<i<n,

DIPCED(_1) = n! - )n_](k+j—1+j)< —{>’ 0<j<n

(n =) n—j
(b)) If1<I<n<(k+1)2,
i p(—k,—1) _7“(1(1) n—k—1+i .
D'P, (1)_(1171)‘2 Ky ( " , 0<i<n
DPTED(-1) =0, 0<j<l
(c) In the case (k+ D)2 <n<k
; h! . P —
D) =g )FHJ"I’@f91<£ " a>, 0<i<h=degP{ "D,
Y n—
D'PCE=D(—1)=0, 0<, <L
(d) When k <n<k—+1,
DR = ey (T ) o<k
n J—
. n! i
D’p}(q—k,—z)(il)_(n_ﬂ A O P k1)<ln]_k1>’ 0<j<l

(e) Forn=k+1,
D'PUE=D(1)y=0, 0<i<k
DPTRD(—1) =0, 0<j<L

3. Sobolev orthogonality for {P{ “~"},-,
Next, we shall give orthogonality for the sequence {Pﬁ,_k’_l)}wo. Given k and / positive integers

with [ < k, if there exists n such that (k 4+ /)/2 < n < k then degP,(q_k’_l) < n and the polynomials
{PS%"D1, - are not orthogonal with respect to any quasi-definite bilinear form.
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So, a more general kind of orthogonality will be considered:
Given a bilinear form (.,.), by O,, n = 0, we will denote the nth monic polynomial of least degree,
not identically equal to zero, such that

(Onp)=0 peP,

where P,_; denotes the linear space of all polynomials of degree less than or equal n — 1.

Such a polynomial does exist and it is unique by minimality of degree for the polynomial solution.
If the bilinear form is positive definite then deg O, =n and thus all the Q,’s are distinct. In general,
this is not so and for different values of n the same polynomial Q, can appear.

Theorem 3.1. Let k, [ be positive integer numbers. There exists a symmetric (k+1)x (k4 1) matrix
A such that the sequence {Pf,_k’_l)}@o is orthogonal with respect to the Sobolev bilinear form in
the space of the real polynomials

1
(fs9)s =(f>9)p + /_1 SED@)gE D) (1 =)' (1 +x)" dx, (3.1)

where (f,g)p = (F(1)|F(—=1)A(G(1)|G(—1))T and
(F(OIFE(=1)=(f(1), S/, fEDA, (=1, f1(= 1), f7D(=1)).

Proof. From Lemma 2.2 (e) and formula (2.10) it follows that the polynomials PSR forn > k+1,
are orthogonal to the linear space P,_; with respect to (3.1), for any symmetric (k 4+ /) x (k + [)
matrix A.

In order to have the orthogonality of the sequence {P,S_k’_l)},1>0 it suffices to prove that there
exists a symmetric (k + /) X (k + /) matrix A such that (P,,P,)p=0for 0<m<n<k+ 1l

The existence of such a matrix follows solving the homogeneous linear system

(Pu(DIL(=1NAPD|P(=1) =0, 0<m<n<k+]

with <k T é +1 > unknowns and, at most, <k;_ l> equations. [J

Further information about the matrix A can be derived analyzing the structure of the sequence
{P,(fk’_l) ti>o. In general, the matrix A is not regular because of for every n satisfying (k + /)/2
< n < k, the polynomial PS5D reduces its degree. However, if such a positive integer n does
not exist, then for any diagonal positive definite matrix D of order (k + /), a symmetric positive
definite matrix A can be explicitely constructed by means of A =Q~'D(Q™")", where Q is the
regular matrix Q = (Q(1)|Q(—1)) € -#es1yqes1(R), with

Q)= (Dipr(z_k’_l)(l))n:o,...,k+1—1, and

.y

J=0,...,1—1

Observe that this situation can only occur when either £ =/ (generalized Gegenbauer polynomials,
see [2]) or k=1+1.
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