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bDepartamento de Estadı́stica y Matemática Aplicada, Universidad de Almerı́a, Spain
c Instituto Carlos I de Fı́sica Teórica y Computacional, Universidad de Granada, Spain

Received 14 May 2002; revised 13 November 2002; accepted 29 January 2003

Communicated by Guillermo López Lagomasino

Abstract

Let Sn be polynomials orthogonal with respect to the inner product

ð f ; gÞS ¼
Z

N

0

fg dm0 þ l
Z

N

0

f 0g0 dm1;

where dm0 ¼ xae�x dx; dm1 ¼ xaþ1e�x

x�x dx þ Mdx with a4� 1; xp0; MX0; and l40: A

strong asymptotic on ð0;NÞ; a Mehler–Heine type formula, a Plancherel–Rotach type

exterior asymptotic as well as an upper estimate for Sn are obtained. As a consequence, we give

asymptotic results for the zeros and critical points of Sn and the distribution of contracted

zeros. Some numerical examples are shown.
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1. Introduction

The asymptotic behaviour of the polynomials and their zeros is one of the central
problems of the theory of orthogonal polynomials.
In this paper we are concerned with the asymptotic properties of Sobolev

orthogonal polynomials, that is, polynomials orthogonal with respect to an inner
product involving derivatives. More precisely, we consider the Sobolev inner
product:

ð f ; gÞS ¼
Z

N

0

fg dm0 þ l
Z

N

0

f 0g0 dm1; ð1:1Þ

where

dm0 ¼ xae�xdx; dm1 ¼
xaþ1e�x

x � x
dx þ Mdx

with a4� 1; xp0; MX0; and l40: The pair of measures ðm0; m1Þ constitutes one
of the so-called coherent pairs.
The goal of coherence is the fact we can establish a relation between two

consecutive Sobolev orthogonal polynomials and two consecutive orthogonal
polynomials associated with the first measure m0: This relation plays an important
role in the study of Sobolev polynomials and was one of the properties that Iserles
et al. looked for in the new polynomials that they introduced in [4] as the solution to
an isoperimetric problem. Moreover, the existence of this kind of relation was the
reason for the introduction of the concept of coherence. Although this finite relation
between Sobolev polynomials and standard orthogonal polynomials is an important
feature of coherence, it is not exclusive of coherent pairs. This type of relation
provides another advantage: if we consider the inner product of the form

ð f ; gÞS ¼
Z

fg dm0 þ
Z

f 0g0 dm1;

both measures having absolutely continuous part non-zero, then if we have an
algebraic relation between Sobolev polynomials and standard orthogonal poly-
nomials, we can construct stable numerical algorithms to compute Sobolev
orthogonal polynomials of high degrees. Of course, it is possible to study Sobolev
orthogonal polynomials without these algebraic relations (see, for example, [7,8])
and very interesting analytic results can be obtained, but it is enough difficult to
generate Sobolev polynomials of high degrees in a stable form. An important first
step in this direction has been given in [3].
The complete characterization of all coherent pairs of measures was done in [9]. In

the case of unbounded support measures, there are two general families of
polynomials related with Laguerre polynomials. The first one, usually named as type

I, corresponds to the pair ðm0; m1Þ where either dm0ðxÞ ¼ ðx � xÞxa�1 e�x dx;
dm1ðxÞ ¼ xa e�x dx with xp0 and a40 or dm0ðxÞ ¼ e�x dx þ M d0ðxÞ with MX0
and dm1ðxÞ ¼ e�x dx: The second one (type II) is the pair described in (1.1).
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The asymptotic behaviour of Sobolev polynomials for coherent pairs of type I
has been widely studied (see, for instance, [6,11,12]) while, with respect to
type II, only the comparative asymptotics has been treated (see [11]). The aim
of this paper is to complete the study of asymptotic properties for polynomials
of type II.
The paper is organized as follows. Some properties of classical Laguerre

polynomials are exposed in this section. In Section 2, polynomials orthogonal
with respect to the measure m1 are analyzed. The interest of these polynomials
comes from the fact that the absolutely continuous part of m1 is a rational
perturbation of the Laguerre weight. Section 3 is dedicated to asymptotics of
Sobolev polynomials: a strong asymptotic on ð0;þNÞ; a Mehler–Heine type
formula and Plancherel–Rotach type exterior asymptotics are derived.
Moreover, as a consequence, asymptotics of zeros and critical points of
Sobolev polynomials as well as the distribution of contracted zeros and
the nth root asymptotic are obtained. Also, some numerical examples are
presented. Finally, in the last section an upper estimate for the Sobolev polynomials
is given.
Consider the Sobolev inner product (1.1). Denote by fSngn and fTngn the

sequences of polynomials orthogonal with respect to (1.1) and the measure m1;
respectively, normalized by the condition that Sn and Tn have the same leading

coefficient as the classical Laguerre polynomial L
ðaÞ
n ðxÞ ¼ ð�1Þn

n! xn þ?: Observe that

T0 ¼ S0 ¼ L
ðaÞ
0 ; and S1 ¼ L

ðaÞ
1 :

Throughout this paper the following notation will be used:

jjLðaÞ
n jj2m0 ¼

Z
N

0

ðLðaÞ
n ðxÞÞ2 dm0ðxÞ; jjTnjj2m1 ¼

Z
N

0

ðTnðxÞÞ2 dm1ðxÞ

and

jjSnjj2S ¼ ðSn;SnÞS:

Many of the properties of Laguerre polynomials can be seen, for example,
in the classical book of Szeg +o [13]. For the reference, we summarize in the
following proposition some of them which play an important role in
this paper:

Proposition 1.1. The following properties hold for Laguerre polynomials:

ðaÞ [13, formula (5.1.1)]:

jjLðaÞ
n jj2m0 ¼

Z
N

0

ðLðaÞ
n ðxÞÞ2 xa e�x dx ¼ Gðn þ aþ 1Þ

n!
; a4� 1: ð1:2Þ

ðbÞ [13, formula (5.1.13)]:

LðaÞ
n ðxÞ � L

ðaÞ
n�1ðxÞ ¼ Lða�1Þ

n ðxÞ; aAR: ð1:3Þ
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ðcÞ Three term recurrence relation [13, formula (5.1.10)]:

xLðaÞ
n ðxÞ ¼ �ðn þ 1ÞLðaÞ

nþ1ðxÞ þ ð2n þ aþ 1ÞLðaÞ
n ðxÞ � ðn þ aÞLðaÞ

n�1ðxÞ;
ð1:4Þ

L
ðaÞ
�1ðxÞ ¼ 0 and L

ðaÞ
0 ðxÞ ¼ 1:

ðdÞ [13, formula (5.1.14)]:

d

dx
LðaÞ

n ðxÞ ¼ �L
ðaþ1Þ
n�1 ðxÞ:

ðeÞ
The sequence fL

ðaÞ
n ðxÞ

na=2�1=4
gn is uniformly bounded on compact subsets of ð0;þNÞ

([13, Theorem (8.22.1)]).
ð fÞ It holds

L
ðaÞ
n ðxÞ
na=2

¼ ex=2x�a=2 Jað2
ffiffiffiffiffiffi
nx

p
Þ þ Oðn�3=4Þ ð1:5Þ

uniformly on compact subsets of ð0;þNÞ where Ja is the Bessel function

([13, Section 8.22 and formula (1.71.7)]).
ðgÞ Mehler–Heine formula [13, Theorem 8.1.3]:

lim
n-N

L
ðaÞ
n ðx=nÞ

na ¼ x�a=2Jað2
ffiffiffi
x

p
Þ ð1:6Þ

uniformly on compact subsets of C:
ðhÞ Ratio asymptotics for scaled Laguerre polynomials:

lim
n-N

L
ðaÞ
n�1ðnxÞ

L
ðaÞ
n ðnxÞ

¼ � 1

jððx � 2Þ=2Þ ð1:7Þ

uniformly on compact subsets of C\½0; 4
; where j is the conformal mapping of

C\½�1; 1
 onto the exterior of the unit circle given by

jðxÞ ¼ x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
; xAC\½�1; 1
; ð1:8Þ

with
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
40 when x41:

Formula (1.7) can be deduced from (4.3.5) in [14] taking into account
that the nth orthonormal Laguerre polynomial with positive leading coefficient is

lanðxÞ ¼ ð�1ÞnL
ðaÞ
n ðxÞ

jjLðaÞ
n jj

:

We want to remark that from (1.6) and (1.7) it can be shown, respectively,
that

lim
n-N

L
ðaÞ
n ðx=ðn þ jÞÞ

na ¼ x�a=2Jað2
ffiffiffi
x

p
Þ; ð1:9Þ
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holds uniformly on compact subsets of C and uniformly on jAN,f0g and

lim
n-N

L
ðaÞ
n�1ððn þ jÞxÞ

L
ðaÞ
n ððn þ jÞxÞ

¼ � 1

jððx � 2Þ=2Þ; ð1:10Þ

holds uniformly on compact subsets of C\½0; 4
 and uniformly on jAN,f0g:

2. The orthogonal polynomials Tn and the Sobolev orthogonal polynomials Sn

Polynomials Tn have an independent interest as orthogonal with respect to a
measure whose absolutely continuous component is a rational modification of the

Laguerre weight function xaþ1e�x on ½0;NÞ and possibly with a mass point (a Dirac
delta) at xp0: In fact, we use the following results established in [11].

Lemma 2.1. ðaÞ [11, Lemma 4.1]. The polynomials Tn satisfy the relation

TnðxÞ ¼ Lðaþ1Þ
n ðxÞ � cnL

ðaþ1Þ
n�1 ðxÞ; nX0; ð2:1Þ

where

cn ¼
jjTnjj2m1
jjLðaÞ

n jj2m0
; nX0: ð2:2Þ

ðbÞ Relation (2.1) can be expressed as

TnðxÞ ¼ LðaÞ
n ðxÞ � dnL

ðaþ1Þ
n�1 ðxÞ; nX0; ð2:3Þ

where dn ¼ cn � 1; nX0:
ðcÞ [11, Lemma 4.4]. It holds

lim
n

ffiffiffi
n

p
dn ¼ dðxÞ ¼

�
ffiffiffiffiffiffiffi
�x

p
if M ¼ 0;ffiffiffiffiffiffiffi

�x
p

if M40;

(
ð2:4Þ

and therefore limn cn ¼ 1: In particular,

* If x ¼ 0 and M40; we get

lim
n-N

n dn ¼ aþ 1: ð2:5Þ

* If x ¼ M ¼ 0; then dn ¼ 0 and therefore cn ¼ 1; for all n:

We have the following explicit relation between Sobolev orthogonal polynomials
and Laguerre polynomials (see [11, Lemma 4.7, 4] in a more general framework):

Lemma 2.2. It holds

LðaÞ
n ðxÞ � cn�1L

ðaÞ
n�1ðxÞ ¼ SnðxÞ � an�1Sn�1ðxÞ; nX1; ð2:6Þ
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where an ¼ cn

jjLðaÞ
n jj2m0

jjSnjj2S
: Moreover (see [11, Lemma 4.10]),

lim
n-N

an ¼ a ¼ 1

jððlþ 2Þ=2Þ; ð2:7Þ

where j is defined by (1.8).

It is clear from (2.6) that we can compute Sn in a recursive way, and we can give
even an explicit expression for Sn in terms of Laguerre polynomials and the
sequences fcng and fang: Thus, if we want to compute the polynomials Sn; calculate
its zeros or realize any numerical experiment with these polynomials, we have to
compute effectively the sequence fcng that appears in relation (2.1) and the sequence
fang:
First, we obtain a nonlinear recurrence relation for fcng:

Proposition 2.3. It holds, for nX0;

cnþ1 ¼
2n þ 2þ a� x

n þ 1
� n þ 1þ a
ðn þ 1Þ cn

; ð2:8Þ

with

c0 ¼
R
N

0
xaþ1e�x

x�x dx þ M

Gðaþ 1Þ :

Proof. We express the polynomial �x�x
nþ1 L

ðaþ1Þ
n ðxÞ in terms of the basis fTignþ1

i¼0 and

we obtain

�x � x
n þ 1

Lðaþ1Þ
n ðxÞ ¼ Tnþ1ðxÞ �

n þ 1þ a
ðn þ 1Þ cn

TnðxÞ; nX0: ð2:9Þ

Then, multiplying (2.9) by L
ðaþ1Þ
n ðxÞ and integrating with respect to the measure

xaþ1e�x dx on ½0;NÞ; we can derive the result using formulas (1.4) and (2.1). &

The sequence fcng also plays an important role for the polynomials fTng from
computational point of view as well as to obtain asymptotic properties.
It is well known (see [2]) that zeros of polynomials Tn are the eigenvalues of the

symmetric tridiagonal Jacobi matrix, whose entries are the coefficients of the three
term recurrence relation for the orthonormal polynomials tn with positive leading
coefficient:

xtnðxÞ ¼ bnþ1tnþ1ðxÞ þ gntnðxÞ þ bntn�1ðxÞ; nX0;

with t�1ðxÞ ¼ 0; t0ðxÞ ¼ jjT0jj�1m1
:
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Expanding the polynomials xTnðxÞ in the basis fTng; we get

xTnðxÞ ¼ � ðn þ 1ÞTnþ1ðxÞ þ ncn þ
n þ 1þ a

cn

þ x
� �

TnðxÞ

� ðn þ aÞ cn

cn�1
Tn�1ðxÞ; nX0;

with T�1ðxÞ ¼ 0 and T0ðxÞ ¼ 1: Since tnðxÞ ¼ ð�1Þn TnðxÞ
jjTnjjm1

; straightforward compu-

tations show that

bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn þ aÞ cn

cn�1

r
and gn ¼ ncn þ

n þ aþ 1

cn

þ x:

Now, we present several analytic properties of the polynomials Tn:

Proposition 2.4. For a4� 1; the following properties hold:

ðaÞ The sequence f TnðxÞ
na=2�1=4

gn is uniformly bounded on compact subsets of ð0;þNÞ:
ðbÞ Asymptotics on ð0;þNÞ for Tn: if xo0;

TnðxÞ
na=2

¼ ex=2x�a=2Jað2
ffiffiffiffiffiffi
nx

p
Þ þ Oðn�1=4Þ;

and, if x ¼ 0;

TnðxÞ
na=2

¼ ex=2x�a=2Jað2
ffiffiffiffiffiffi
nx

p
Þ þ Oðn�3=4Þ:

Both identities hold uniformly on compact subsets of ð0;þNÞ:
ðcÞ Mehler–Heine type formula for Tn: if xo0;

lim
n-N

Tnðx=ðn þ jÞÞ
naþ1=2 ¼ �dðxÞ x�ðaþ1Þ=2Jaþ1ð2

ffiffiffi
x

p
Þ;

if x ¼ 0 and M40;

lim
n-N

Tnðx=ðn þ jÞÞ
na ¼ �x�a=2Jaþ2ð2

ffiffiffi
x

p
Þ;

and, if x ¼ M ¼ 0;

lim
n-N

Tnðx=ðn þ jÞÞ
na ¼ x�a=2Jað2

ffiffiffi
x

p
Þ:

All the limits hold uniformly on compact subsets of C and uniformly on jAN,f0g;
where dðxÞ is given by (2.4).

ðdÞ Plancherel–Rotach type exterior asymptotics for Tn:

lim
n-N

Tnððn þ jÞxÞ
L
ðaþ1Þ
n ððn þ jÞxÞ

¼ 1þ j
x � 2

2

� ��1

uniformly on compact subsets of C\½0; 4
 and uniformly on jAN,f0g:
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Proof. If x ¼ M ¼ 0 all the results are true because of TnðxÞ ¼ L
ðaÞ
n ðxÞ; for all n:

(a) We divide (2.3) by na=2�1=4: Then, using (2.4) and Proposition 1.1(e) the result
follows.

(b) If xo0 we divide (2.3) by na=2 and using again Proposition 1.1(e) and (2.4)
we get

TnðxÞ
na=2

¼L
ðaÞ
n ðxÞ
na=2

� 1

ðn � 1Þ1=4
ffiffiffi
n

p
dn

n � 1

n

� �ðaþ1Þ=2
L
ðaþ1Þ
n�1 ðxÞ

ðn � 1Þðaþ1Þ=2�1=4

¼L
ðaÞ
n ðxÞ
na=2

þ Oðn�1=4Þ:

Thus, the result follows from (1.5). On the other hand, if x ¼ 0 and M40; we can
proceed in the same way using now (2.5).
(c) Whenever xo0; scaling the variable as x-x=ðn þ jÞ in relation (2.3) we get

Tnðx=ðn þ jÞÞ
naþ1=2 ¼ L

ðaÞ
n ðx=ðn þ jÞÞ

naþ1=2 �
ffiffiffi
n

p
dn

L
ðaþ1Þ
n�1 ðx=ðn þ jÞÞ

naþ1 :

It only remains to use (1.9) and (2.4) to reach the result.
If x ¼ 0 and M40; proceeding as above and using (2.5) it follows that

lim
n-N

Tnðx=ðn þ jÞÞ
na ¼ x�a=2Jað2

ffiffiffi
x

p
Þ � ðaþ 1Þ x�ðaþ1Þ=2Jaþ1ð2

ffiffiffi
x

p
Þ:

Now, using

2a z�1JaðzÞ ¼ Ja�1ðzÞ þ Jaþ1ðzÞ ð2:10Þ

(see, [13, formula (1.71.5)]), we have the result.
(d) In the same way as in (c), scaling the variable as x-ðn þ jÞx in relation (2.1),

dividing by L
ðaþ1Þ
n ððn þ jÞxÞ and using (1.10) and limn cn ¼ 1; the result arises. &

3. Asymptotics of Sobolev orthogonal polynomials Sn

In this section, first of all, we will obtain the strong asymptotics of Sn on the
positive semiaxis and analogues of the Mehler–Heine and Plancherel–Rotach type
asymptotic formulas for the Sobolev polynomials.
If we look for analytic properties of the Sobolev orthogonal polynomials Sn; we

have to pay attention to the polynomials on the left-hand side of (2.6), that is

VnðxÞ :¼ LðaÞ
n ðxÞ � cn�1L

ðaÞ
n�1ðxÞ ¼ Lða�1Þ

n ðxÞ � dn�1L
ðaÞ
n�1ðxÞ; nX0;

with c�1 ¼ 0 ¼ d�1; ð3:1Þ

where the last equality is a consequence of (1.3) and the relation between
the coefficients cn and dn: We can observe that the polynomials Vn are, in
some sense, close to the polynomials Tn; namely Vn is a primitive of �Tn�1; i.e.,
V 0

nðxÞ ¼ �Tn�1ðxÞ:
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First, we give the strong asymptotics of Sn on ð0;þNÞ: In order to do this, we will
use several analytic properties of polynomials Vn: Notice that, to establish
Proposition 2.4 it was only necessary to know the asymptotic behaviour of the
sequence fdng and of the corresponding Laguerre polynomials involved in the
algebraic relation: in the case of Tn they are the Laguerre polynomials with
parameter aþ 1 and in the case of Vn the Laguerre polynomials with parameter a:

Theorem 3.1. For a4� 1; we have

SnðxÞ
nða�1Þ=2 ¼ ex=2x�ða�1Þ=2Ja�1ð2

ffiffiffiffiffiffi
nx

p
Þ þ Oðn�1=4Þ

uniformly on compact subsets of ð0;þNÞ:

Proof. From (2.6) and (3.1)

SnðxÞ ¼ VnðxÞ þ an�1Sn�1ðxÞ ð3:2Þ

so,

SnðxÞ
na=2�3=4 ¼

VnðxÞ
na=2�3=4 þ an�1

n � 1

n

� �a=2�3=4
Sn�1ðxÞ

ðn � 1Þa=2�3=4
:

Dividing in (3.1) by na=2�3=4 and taking into account Proposition 1.1(e) and (2.4),

we have that fVnðxÞ=na=2�3=4gn is uniformly bounded on compact sets of ð0;þNÞ:
Since an�1ðn�1

n
Þa=2�3=4-aAð0; 1Þ; standard arguments yield that fSnðxÞ=na=2�3=4gn is

also uniformly bounded.
On the other hand, using Proposition 1.1(e) and Lemma 2.1(c), it can be deduced

that if xo0;

VnðxÞ
nða�1Þ=2 ¼

L
ða�1Þ
n ðxÞ

nða�1Þ=2 þ Oðn�1=4Þ

and if x ¼ 0

VnðxÞ
nða�1Þ=2 ¼

L
ða�1Þ
n ðxÞ

nða�1Þ=2 þ Oðn�3=4Þ;

where the bound for the remainder holds uniformly on compact subsets of ð0;þNÞ;
for all xp0:
Finally, observe that

SnðxÞ
nða�1Þ=2 ¼

VnðxÞ
nða�1Þ=2 þ

an�1

ðn � 1Þ1=4
n � 1

n

� �ða�1Þ=2
Sn�1ðxÞ

ðn � 1Þa=2�3=4

¼ VnðxÞ
nða�1Þ=2 þ Oðn�1=4Þ ¼ L

ða�1Þ
n ðxÞ

nða�1Þ=2 þ Oðn�1=4Þ

uniformly on compact subsets of ð0;þNÞ:
Using (1.5), the theorem follows. &
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As we mention in Section 2, we can express the polynomials Sn in terms of the
Laguerre polynomials with parameter a; that is, using (3.2) in a recursive way and
taking into account (3.1) we obtain

SnðxÞ ¼
Xn

i¼0
b
ðnÞ
i Vn�iðxÞ ¼

Xn

i¼0
b
ðnÞ
i ðLðaÞ

n�iðxÞ � cn�i�1L
ðaÞ
n�i�1ðxÞÞ; nX0; ð3:3Þ

where b
ðnÞ
i ¼

Qi
j¼1 an�j and b

ðnÞ
0 ¼ 1:

Moreover, from (2.7) we have

lim
n-N

b
ðnÞ
i ¼ j

lþ 2

2

� ��i

¼ ai for all i: ð3:4Þ

Next, we obtain further asymptotic results for the Sobolev orthogonal
polynomials Sn: Before, we want to remark that for the case corresponding to x ¼
M ¼ 0; that is, dm0 ¼ dm1 ¼ xae�xdx; a4� 1; Mehler–Heine type formula and
Plancherel–Rotach type exterior asymptotics were obtained in Theorem 5 of [6], in
other framework. Here, we include this case for completeness.
First, we give the following technical result:

Lemma 3.2. There exist constants C and r with C41 and 0oro1 such that the

coefficients b
ðnÞ
i in (3.3) verify 0ob

ðnÞ
i oC ri for all nX0 and 0pipn:

Proof. From Lemma 2.2 we know that an40 and limn an ¼ ao1; then there exists
rAða; 1Þ such that 0oanoro1 for all nXn0: Therefore, whenever 1pipn � n0;

b
ðnÞ
i ori and for the remaining values of i; taking M ¼ maxf1; a0; a1;y; an0�1g; we
have

b
ðnÞ
i ¼

Yn�n0

j¼1
an�j

Yi

j¼n�n0þ1
an�jorn�n0Mi�nþn0prn�n0Mn0pri M

r

� �n0

:

The result follows with C ¼ ðM
r
Þn0 : &

Theorem 3.3. Let a4� 1; the polynomials Sn orthogonal with respect to the inner

product (1.1) satisfy

ðaÞ A Mehler–Heine type formula. It holds: if xo0;

lim
n-N

Snðx=nÞ
na�1=2 ¼ � dðxÞ

1� a
x�a=2Jað2

ffiffiffi
x

p
Þ;

if x ¼ 0 and M40;

lim
n-N

Snðx=nÞ
na�1 ¼ 1

1� a
sðxÞ;

and, if x ¼ M ¼ 0;

lim
n-N

Snðx=nÞ
na�1 ¼ 1

1� a
x�ða�1Þ=2Ja�1ð2

ffiffiffi
x

p
Þ;
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where a and dðxÞ are given by (2.7) and (2.4), respectively, and

sðxÞ ¼ x�ða�1Þ=2Ja�1ð2
ffiffiffi
x

p
Þ � ðaþ 1Þx�a=2Jað2

ffiffiffi
x

p
Þ: ð3:5Þ

All the limits hold uniformly on compact subsets of C:
ðbÞ Plancherel–Rotach type exterior asymptotics. It holds

lim
n-N

SnðnxÞ
L
ðaÞ
n ðnxÞ

¼
jðx�2

2
Þ þ 1

jðx�2
2
Þ þ a

uniformly on compact subsets of C\½0; 4
 where j and a are given by (1.8) and (2.7),
respectively.

Proof. (a) From (3.3), we have

Snðx=nÞ
na�1=2 ¼

Xn

i¼0
b
ðnÞ
i

Vn�iðx=nÞ
na�1=2 ¼:

Xn

i¼0
vn;iðx=nÞ: ð3:6Þ

Whenever xo0; dividing by na�1=2 in formula (3.1) evaluated at x=ðn þ jÞ; and using
(1.9) and (2.4), we deduce that

lim
n-N

Vnðx=ðn þ jÞÞ
na�1=2 ¼ �dðxÞx�a=2Jað2

ffiffiffi
x

p
Þ; ð3:7Þ

holds uniformly on compact sets of C and uniformly on jAN,f0g and therefore

lim
n-N

Vn�iðx=nÞ
na�1=2 ¼ �dðxÞx�a=2Jað2

ffiffiffi
x

p
Þ;

holds uniformly on compact sets of C and uniformly on iAf0; 1;y; ng:
Given a compact set KCC; because of this last result and Lemma 3.2, there

exists a constant D; depending only on K ; such that jvn;iðx=nÞjoDri for i ¼ 0;y; n

and xAK : Therefore, by Lebesgue’s dominated convergence theorem, (3.7) and (3.4),
we have

lim
n-N

Xn

i¼0
vn;iðx=nÞ ¼

XN
i¼0

lim
n-N

vn;iðx=nÞ ¼ �dðxÞx�a=2Jað2
ffiffiffi
x

p
Þ
XN
i¼0

ai

uniformly on compact subsets of C and the result follows.
Whenever x ¼ 0; formula (3.7) takes the form

lim
n-N

Vnðx=ðn þ jÞÞ
na�1 ¼ x�ða�1Þ=2Ja�1ð2

ffiffiffi
x

p
Þ � ðaþ 1Þx�a=2Jað2

ffiffiffi
x

p
Þ; M40;

lim
n-N

Vnðx=ðn þ jÞÞ
na�1 ¼ x�ða�1Þ=2Ja�1ð2

ffiffiffi
x

p
Þ; M ¼ 0:

Now we can conclude the proof in the same way as we did in the case xo0:
(b) From (3.3) we can write

SnðnxÞ
L
ðaÞ
n ðnxÞ

¼
Xn

i¼0
b
ðnÞ
i

Vn�iðnxÞ
L
ðaÞ
n ðnxÞ

; xAC\½0; 4
:
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The polynomials Vn satisfy the following Plancherel–Rotach type exterior
asymptotics

lim
n-N

Vnððn þ jÞxÞ
L
ðaÞ
n ððn þ jÞxÞ

¼ 1þ j
x � 2

2

� ��1
ð3:8Þ

uniformly on compact subsets of C\½0; 4
 and uniformly on jAN,f0g: This is a
simple consequence of (1.10) and (3.1).
Now, handling in the same way as in (a) and using (1.7), we can deduce

lim
n-N

Xn

i¼0
b
ðnÞ
i

Vn�iðnxÞ
L
ðaÞ
n ðnxÞ

¼ lim
n-N

Xn

i¼0
b
ðnÞ
i

Vn�iðnxÞ
L
ðaÞ
n�iðnxÞ

L
ðaÞ
n�iðnxÞ

L
ðaÞ
n ðnxÞ

¼
XN
i¼0

lim
n-N

b
ðnÞ
i

Vn�iðnxÞ
L
ðaÞ
n�iðnxÞ

L
ðaÞ
n�iðnxÞ

L
ðaÞ
n ðnxÞ

 !

¼ 1þ j
x � 2

2

� ��1
 !XN

i¼0

�a

jðx�2
2
Þ

 !i

;

uniformly on compact subsets of C\½0; 4
; and thus, the result follows. &

The above theorem allows us to obtain additional results about asymptotic
properties of zeros and critical points of Sobolev polynomials Sn: First, recall that Sn

has n different, real zeros, and at most one of them is outside ð0;þNÞ; they interlace
with those of L

ðaÞ
n and the zeros of S0

n with those of Tn�1 (for more information about
location of these zeros, see [10]). Moreover, from Theorem 4.11 in [11], it follows that
they accumulate on fxg,½0;þNÞ when M40 and in ½0;þNÞ when M ¼ 0:

Corollary 3.4. For a4� 1; denote with ja;i the ith positive zero of the Bessel function

JaðxÞ: Let fxn;ign
i¼1 be the zeros in increasing order of the polynomial Sn orthogonal

with respect to the inner product (1.1) and fx̃n;ign�1
i¼1 be the critical points of Sn: Then,

ðaÞ If xo0; we have

lim
n-N

nxn;i ¼
j2a;i

4
and lim

n-N

nx̃n;i ¼
j2aþ1;i
4

:

ðbÞ If x ¼ 0 and M40; we have

lim
n-N

nxn;i ¼ sa;i;

lim
n-N

nx̃n;1 ¼ 0 and lim
n-N

nx̃n;i ¼
j2aþ2;i�1

4
; iX2;

where sa;i denotes the ith real zero of function sðxÞ defined in (3.5).

ðcÞ If x ¼ M ¼ 0; we have

lim
n-N

nxn;i ¼
j2a�1;i
4

and lim
n-N

nx̃n;i ¼
j2a;i

4
;

where three cases are possible:

M. Alfaro et al. / Journal of Approximation Theory 122 (2003) 79–9690



* If �1oao0; (that is �2oa� 1o� 1) ja�1;1 is any of the two purely imaginary

zeros of Ja�1ðxÞ and, for iX2; ja�1;i is the ði � 1Þth positive real zero of Ja�1ðxÞ:
* If a ¼ 0; ja�1;1 ¼ j�1;1 ¼ 0 and, for iX2; j�1;i is the ði � 1Þth positive real zero of

J�1ðxÞ:
* If a40; ja�1;i is the ith positive real zero of Ja�1ðxÞ:

Proof. (a) The result for the zeros is a consequence of Theorem 3.3(a) and Hurwitz’s
theorem. Concerning the critical points, since we have uniform convergence in the
Mehler–Heine type formula (Theorem 3.3(a)), taking derivatives and using proper-
ties of Bessel functions ([13, Section 1.7]) we get

lim
n-N

S0
nðx=nÞ
naþ1=2 ¼ dðxÞ

1� a
x�ðaþ1Þ=2Jaþ1ð2

ffiffiffi
x

p
Þ;

uniformly on compact subsets of C; which yields the result.

(b) Denote gaðxÞ ¼ x�a=2Jað2
ffiffiffi
x

p
Þ ¼

P
N

i¼0
ð�xÞi

i!Gðiþaþ1Þ; xAC: From the definition of

sðxÞ (see (3.5) and (2.10)), we can write

sðxÞ ¼ �gaðxÞ � x gaþ1ðxÞ ¼
XN
i¼0

ði � 1Þ
i!

ð�xÞi

Gði þ aþ 1Þ;

for a4� 1 and xAC:
Observe that, if xAð�N; 0Þ; then gaðxÞ40; limx-�N gaðxÞ ¼ þN and

limx-�N sðxÞ ¼ þN:
Using formula (1.71.5) in [13] we have s0ðxÞ ¼ xgaþ2ðxÞ; xAC and therefore sðxÞ is

a decreasing function on ð�N; 0Þ: Since sð0Þo0; we have that sðxÞ has only one
negative zero. Moreover, because the positive zeros of JaðxÞ interlace with those of
Jaþ1ðxÞ; we can deduce that there is precisely one zero of sðxÞ between two

consecutive positive zeros of Jaþ1ð2
ffiffiffi
x

p
Þ:

Now, again by Hurwitz’s theorem the result for the zeros follows. Finally, we have

lim
n-N

S0
nðx=nÞ

na ¼ 1

1� a
s0ðxÞ ¼ 1

1� a
x�a=2 Jaþ2ð2

ffiffiffi
x

p
Þ

uniformly on compact subsets of C; which implies the result.
(c) It can be obtained in a similar way as we did in (a) (see also Proposition 4 and

Remark 2 in [6]). &

Remark. The existence of a negative zero of Sn is an interesting problem (see, for
example, [10, Section 5]). Here, we have found the range of values of the parameters
a; x; and M for which the polynomials Sn have a negative zero for n sufficiently
large, i.e.:

* The polynomials Sn have one negative zero for n sufficiently large if and only if
either a4� 1; x ¼ 0; andM40 or �1oao0 and x ¼ M ¼ 0:

* Moreover, the critical points of Sn for n sufficiently large lie on ½0;þNÞ:
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Finally, observe that, i a fixed positive integer, the zeros of Sn satisfy limn xni ¼ 0;
more precisely xni ¼ Oð1=nÞ: Even, whenever Sn has a negative zero xn1; limn xn1 ¼ 0:
In order to illustrate these analytic results, we show numerically the behaviour of

the first zero, xn1; of Sn in the cases of Corollary 3.4 where the nonlinear
recurrence relation satisfied by cn (formula (2.8)) and an (formula (4.7) in [11]) have
been used.
For better reading we have rounded the numerical results in the case (c) to six digits
and we also eliminated the column xn;1 for a ¼ 0; see Table 1.

Using the zero distribution of the orthonormal Laguerre polynomials l
ðaÞ
n and the

nth root asymptotics for the scaled l
ðaÞ
n ðnxÞ polynomials (see [14,15]), and Theorem

3.3, the asymptotic distribution of the contracted zeros and the nth root asymptotics
for the scaled Sobolev polynomials can be derived:

Corollary 3.5. ðaÞ The contracted zeros of Sn;
xni

n
; accumulate on ½0; 4
 and they have

the same asymptotic distribution as the contracted zeros of the orthonormal Laguerre

polynomials l
ðaÞ
n ; that is, it has density dnðxÞ ¼ 1

2p

ffiffiffiffiffiffiffi
4�x

x

q
dx:

ðbÞ The formula

lim
n

jSnðnxÞj1=n ¼ exp 1þ
Z 4

0

log jx � yj dnðyÞ
� �

is true uniformly on compact subsets of C\½0; 4
:

Remark. For monic Sobolev polynomials cSnSn we have

lim
n

1

n
jcSnSnðnxÞj1=n ¼ exp

1

2p

Z 4

0

log jx � yj
ffiffiffiffiffiffiffiffiffiffiffi
4� y

y

s
dy

( )
uniformly on compact subsets of C\½0; 4
 or, equivalently,

lim
n

1

2n
jcSnSnð2nxÞj1=n ¼ exp

1

p

Z 2

0

log jx � yj
ffiffiffiffiffiffiffiffiffiffiffi
2� y

y

s
dy

( )
uniformly on compact subsets of C\½0; 2
:
Observe that this is exactly the result for monic Laguerre–Sobolev polynomials of

type I obtained in [12, Theorem 2.2], using potential theory. (In all the results in [12]
concerned with nth root asymptotic, the locally uniformly convergence holds in
C\½0; 2
 instead of in ½0; 2
).

4. Upper bound for Sobolev orthogonal polynomials Sn

To obtain an upper bound for Sobolev orthogonal polynomials our starting point
will be formula (3.3). A global estimate for classical Laguerre polynomials with
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respect to n; x; and a is known (see formulas (22.14.13) and (22.14.14) in [1]): For
xX0; nX0 and a4� 1; the inequality

jLðaÞ
n ðxÞjpAðn; aÞ ex=2; ð4:1Þ

Table 1

(a) a ¼ �0:5; x ¼ �10; l ¼ 1:

M ¼ 0 M ¼ 2

n nxn;1 xn;1 nxn;1 xn;1

50 0.5985025263 0.0119700505 0.6560458759 0.0131209175

100 0.6022670343 0.0060226703 0.6421427906 0.0064214279

150 0.6042891938 0.0040285946 0.6366175985 0.0042441173

200 0.6056173146 0.0030280866 0.6335134224 0.0031675671

250 0.6065803700 0.0024263219 0.6314766976 0.0025259068

0.6168502751 0.6168502751
j2a;1
4

j2a;1

4

(b) x ¼ 0; M ¼ 2; l ¼ 1:

a ¼ �0:5 a ¼ 2:5

n nxn;1 xn;1 nxn;1 xn;1

50 �0:9995290524 �0:0199905810 �4:4617547547 �0:0892350951
100 �1:0118720710 �0:0101187207 �4:3961517653 �0:0439615177
150 �1:0191664985 �0:0067944433 �4:3745120007 �0:0291634133
200 �1:0240655338 �0:0051203277 �4:3637453016 �0:0218187265
250 �1:0276502314 �0:0041106009 �4:3573033494 �0:0174292134

�1:066582516 �4:3325842295
sa;1 sa;1

(c) x ¼ M ¼ 0; l ¼ 1:

a ¼ �0:5 a ¼ 0 a ¼ 2:5

n nxn;1 xn;1 nxn;1 nxn;1 xn;1

50 �0:366308 �0:007326 1:41153 10�19 4.98876 0.09978

100 �0:362992 �0:003630 3:56416 10�40 5.01701 0.05017

150 �0:361917 �0:002413 6:74969 10�61 5.02696 0.03351

200 �0:361384 �0:001807 1:13621 10�81 5.03204 0.02516

250 �0:361066 �0:001444 1:79310 10�102 5.03512 0.02014

�0:359807 0 5.04768
j2a�1;1
4

j2a�1;1
4

j2a�1;1
4

M. Alfaro et al. / Journal of Approximation Theory 122 (2003) 79–96 93



where

Aðn; aÞ ¼

Gðn þ aþ 1Þ
n!Gðaþ 1Þ if aX0;

2� Gðn þ aþ 1Þ
n!Gðaþ 1Þ if � 1oap0;

8>><>>: ð4:2Þ

holds.

Therefore, we need upper estimates for the coefficients b
ðnÞ
i (that is, for an) and cn:

This is done in the next lemma.

Lemma 4.1. For nX1; the coefficients cn and an in Lemma 2.2 satisfy

n þ 1þ a
2ðn þ 1Þ þ a� x

ocno2þ a� x
n

; nX1; ð4:3Þ

and

ano 2þ a� x
n

� �
2n þ a� x

ð2þ lÞn þ a� x
; nX1: ð4:4Þ

Proof. From recurrence relation (2.8) for the parameters cn; since cn40 for every n;
we get inequalities (4.3).
On the other hand, recall that the coefficients an in formula (2.6) are defined by

an ¼ cn

jjLðaÞ
n jj2m0

jjSnjj2S
: As a consequence of the extremal property of the norms of the monic

orthogonal polynomials, we have

jjSnjj2SXjjLðaÞ
n jj2m0 þ ljjTn�1jj2m1 ; nX1;

which, by the definition of cn; (see (2.2)), and (1.2) leads to

jjSnjj2S
jjLðaÞ

n jj2m0
X1þ l

jjTn�1jj2m1
jjLðaÞ

n jj2m0
¼ 1þ l

n

n þ a
cn�1: ð4:5Þ

Thus, from (4.3) and (4.5), we obtain
jjLðaÞ

n jj2m0
jjSnjj2S

pð1þ ln
2nþa�xÞ

�1 and so (4.4) holds. &

A global estimate for Sobolev orthogonal polynomials is now deduced:

Theorem 4.2. For xX0; a4� 1 and nX1 we have

jSnðxÞjpCfnðrÞAðn; aÞ ex=2;
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where

C ¼
3þ a� x if aXx;

3 if apx;

(
r ¼

ð2þa�xÞ2
2þlþa�x if aXx;
4

2þl if apx:

(

fnðrÞ ¼
n if r ¼ 1;
1�rn

1�r
if ra1

(
and Aðn; aÞ is given by ð4:2Þ:

Proof. Observe that, using b
ðnÞ
n ¼ a0b

ðnÞ
n�1; formula (3.3) can be written in the form

SnðxÞ ¼
Xn�2
i¼0

b
ðnÞ
i ðLðaÞ

n�iðxÞ � cn�i�1 L
ðaÞ
n�i�1ðxÞÞ þ b

ðnÞ
n�1ðL

ðaÞ
1 ðxÞ � c0 þ a0Þ:

Then, as a0 ¼ c0;

jSnðxÞjp
Xn�2
i¼0

b
ðnÞ
i ðjLðaÞ

n�iðxÞj þ cn�i�1jLðaÞ
n�i�1ðxÞjÞ þ b

ðnÞ
n�1jL

ðaÞ
1 ðxÞj: ð4:6Þ

It is easy to prove that, for a4� 1 and i ¼ 0; 1;y; n; Aðn � i; aÞpAðn; aÞ and

therefore, by (4.1), jLðaÞ
n�iðxÞjpAðn; aÞex=2 which leads to

jSnðxÞjp
Xn�2
i¼0

b
ðnÞ
i ð1þ cn�i�1Þ þ b

ðnÞ
n�1

" #
Aðn; aÞex=2:

From (4.3), analysing separately the cases a� xo0 (that is, �1oaoxp0) and a�
xX0; we get

cnoc ¼
2þ a� x if aXx;

2 if apx

(
:

In a similar way, from (4.4) we deduce that

anor ¼
ð2þa�xÞ2
2þlþa�x if aXx;
4

2þl if apx

(
:

It suffices to write C ¼ 1þ c and the result follows. &

In some particular cases the upper estimate for the Sobolev polynomials Sn can be

improved. One of them occurs when M ¼ 0 in the inner product (1.1), that is dm1 ¼
xaþ1 e�x

x�x dx: In this situation, integrating in formula (2.1) with respect to the measure

m1; we have

cn

Z
N

0

L
ðaþ1Þ
n�1 ðxÞ dm1ðxÞ ¼

Z
N

0

Lðaþ1Þ
n ðxÞ dm1ðxÞ; nX1:
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Using Rodrigues’ formula for Laguerre polynomials and after integration by parts
n � 1 times, it can be derived, see ([11]),Z

N

0

L
ðaþ1Þ
n�1 ðxÞ dm1ðxÞ ¼

Z
N

0

xnþa e�x

ðx � xÞn dx:

This implies that, for every nX1; cnp1: (Observe that cn ¼ 1 only if x ¼ 0).
As a consequence, we have anp1 and bn

i p1 for every nX1 and i ¼ 0;y; n � 1:
Thus, the upper estimate for Sn in Theorem 4.2 becomes

jSnðxÞjpð2 n � 1ÞAðn; aÞex=2:

Improvements of the estimates for jLa
nðxÞj lead to improvements of the ones for

jSnðxÞj; according to formula (4.6) (see for instance [5]).
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[8] A. Martı́nez-Finkelshtein, J.J. Moreno-Balcázar, Asymptotics of Sobolev orthogonal polynomials for

a Jacobi weight, Methods Appl. Anal. 4 (1997) 430–437.

[9] H.G. Meijer, Determination of all coherent pairs, J. Approx. Theory 89 (1997) 321–343.

[10] H.G. Meijer, M.G. de Bruin, Zeros of Sobolev orthogonal polynomials following from coherent

pairs, J. Comput. Appl. Math. 139 (2002) 253–274.
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