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For each neN and 4,>0, Q, , is the monic polynomial of degree » that mini-
mizes the norm |q||*={ |q|2du0—|ii,,j |¢'|? duy in the class of all monic polyno-
mials of degree n. Asymptotic properties of {Q, ; } as n— oo are studied under
additional assumption that (ug, ;) is a coherent pa;ir of measures on [ —1, 1] and
the sequence {/1,} is regularly decreasing and satisfies lim,n*%,=Le[0, +o0].
The behavior of the norms and zeros of these polynomials is also studied. We show
that in some cases the sequence {Q, ;} asymptotically behaves as the monic
orthogonal polynomials sequence corresp"onding to a new measure constructed as
a combination of x, and u,; we conjecture that this result is valid in a more general
setting.  © 1999 Academic Press

Key Words: Sobolev orthogonal polynomials; asymptotics; coherent pairs of
measures.

* Partially supported by the Spanish DGES project PB96-0120-C03-02 and by project
Universidad de la Rioja, API-98/B12.

 Partially supported by the Junta de Andalucia, under the research grants FQM0229, and
by the Spanish DGES project PB95-1205. Also, support from the European project INTAS-
93-219-ext is acknowledged.

44

0021-9045/99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.



BALANCED SOBOLEV POLYNOMIALS 45

1. INTRODUCTION

Assume that y, and u, are two finite Borel measures, compactly suppor-
ted on R; in what follows, supp(uy) =[ —1, 1]. The study of orthogonal
polynomials with respect to an inner product of the type

(P, q)=quduo+fp’q’ du, (1)

has a relatively short, although rich history, which we can trace back to the
work of Lewis [ 1]. First asymptotic properties of these polynomials (as the
degree goes to infinity) were established in the so-called “discrete” case,
that is when g, is a collection of a finite number of mass points [ 2, 3]. The
“continuous” case is more subtle and needed different tools for its
investigation. One of the first results was obtained in [5] (see also [9])
and can be stated as follows: if 0, and T, denote the monic polynomials
of degree n, orthogonal with respect to (1) and u,, respectively, then

0.(2) _ 2

i 5~

) (2)
uniformly on compact subsets of C\[ —1, 1], where ¢(z)=z+./z>—1
with /z>—1>0 when z> 1.

In [5], the asymptotics (2) was established with the additional assump-
tion of a link between u, and u,, called coherence (see below). Later, (2)
was proved under much milder conditions on x, and u, (see [4]), namely,
when p, and u,; are two arbitrary Borel measures supported on the same
sufficiently smooth Jordan curve or arc, where they satisfy the well-known
Szegd condition. This result was extended to Sobolev products with higher
order derivatives in [6].

A closer look at the inner product (1) reveals that the measures u, and
i, do not play an equivalent role: differentiation makes the leading coef-
ficients of the polynomials involved in the second integral of (1) to be mul-
tiplied by their degrees. This effect is the more important the larger these
degrees are, explaining the apparent independence of the limit (2) from the
measure f.

These considerations motivate to “balance” the role of both terms in (1)
by considering only monic polynomials. In other words, we are interested
in the monic polynomials Q, of degree n, which minimize the norm

|Qn|2=jQidﬂo+j<%’>2dm
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in the class of all monic polynomials of degree n. In a more general setting,
we study orthogonality with respect to (1), where the second integral is
multiplied by a parameter which depends on the degree of the polynomial.

Thus, we proceed with some notations. In what follows, P is the space
of all polynomials with real coefficients. For u, and x; as above and 1 >0,
denote by (-, -; A) the expression

(p.q: A)= qu dug+ 2 fp’q’ duy,

where p, ¢ € P; for any fixed 4 >0 it defines an inner product in P. Further,
denote
<P q>i=qudﬂ,-, i=0,1,p,qeP.

For >0 and ne N we can consider three monic orthogonal polynomial
systems (MOPS); all the corresponding notation is gathered in the follow-
ing table:

Inner product MOPS Square of the norm

<'7'>0 Pn nn:<PnaPn>0
<'7'>1 Tn Tn:<Tn7Tn>l
(7>;‘) Qn,l Kn(/l):(Qn,}n Qn,i;;{)
In particular, Q,, o= P,, for ne N.
Let {4,} be a decreasing sequence of real positive numbers such that

lirrlnnz/ln=Le[O, +o0]. (3)

We consider only regularly decreasing sequences, which means that we
assume additionally that

!
1iinn2(,1,,_1—xn)=1i31< ';—1—1>=0. (4)

n

Notice that when 0 <L < oo, (4) follows from (3). Thus, one (and only
one) of these limits imposes a restriction on {,} only in the extremal cases
L=0and L=+ c0.

We are interested in the asymptotic behavior of the sequence {Q,, ,1"} as
n— 0.

This study will be carried out under an additional assumption that
(4o, tt1) is a coherent pair of measures. We recall the definition (see, e.g.,

[51):
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DEFINITION 1. (x4, 14;) 1s a coherent pair of measures if there exist non-
zero constants g4, g,, ..., such that

P, P,
n+1(x)_o_n n(x)’ ”21 (5)

T,(x)==—"" .

We say that (ug, 1) is a coherent pair on [ —1, 1], if suppuo=[—1,1].

Recently, Meijer [ 7] classified all coherent pairs of measures (see below).
From his work it follows that whenever (uq, ;) is a coherent pair on
[ —1,1], the limit

aef . 1,(z)
im

(6)

exists and holds locally uniformly in C\[ —1, 1] (thus, ¥ is analytic in this
domain).
The goal of this paper is to prove the following

THEOREM 1. Let (uy, 1t1) be a coherent pair of measures on [ —1, 1],
and the sequence {1,} satisfies (3)~(4). Then, with the notation introduced
above,

(1) There exists the limit

.o, )
hrrln ) =k(L)e[0,17; (7)

(ii)  Uniformly on compact subsets of C\[ —1, 1],

lim 0., ,1,,(2) _ Y(z) (8)
n P,(z) k(L) ¥(z)+(1—k(L))¢'(z)/2

where p(z) =z + /22— 1 with \/z*> —1>0 when z > 1, and V¥ is defined in (6).

Notice that for 1, =const>0, limit L in (3) is infinity; we will show
below (see (22)) that k(o0)=0, and (2) is a particular case of (8).

Since the right hand side of (6) is a non-vanishing analytic function out-
side of the set of accumulation points of zeros of 7,, using Hurwitz’
theorem the following corollary is immediate:

COROLLARY 1. The sets of accumulation points of zeros of Q, ; and T,
coincide.

Using the same techniques; similar results can be obtained for symmetri-
cally coherent pairs with compact support.
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The structure of the paper is as follows. In the next section we introduce
some preliminary and auxiliary results, necessary for establishing (in Sec-
tion 3) the asymptotics of the Sobolev norms and an explicit expression for
k(L) (see Proposition 2); the proof of Theorem 1 is concluded in Section 4.
Finally, we show that in some cases the sequence {Q,, in} asymptotically
behaves as the manic orthogonal polynomials sequence corresponding to a
new measure constructed as a combination of u, and u,; we conjecture
that this result is valid in a more general setting.

2. PRELIMINARY RESULTS

Using the result of Meijer [7], we can classify all coherent pairs of
measures on [ —1, 1] as follows. Let w,, w, be two non-negative weights
on (—1, 1) related by

wi(x) 1—x?

wo(x)  |x—¢|”

and vy, v, be the corresponding absolutely continuous measures on

[—1,1]:

CeR\(—1,1), 9)

dv;(x)=w;(x) dx, i=0,]1. (10)

Furthermore, denote p®# (x)=(1—x)*(1 + x)~

ProrosiTiON 1. Let po, p; be two measures, and the support
supp(uo) =[ —1, 1]. Then, (uy, 1) form a coherent pair of measures if and
only if one of the following cases holds:

Case 1 (absolutely continuous ).
Mo ="Vo+ Mo, My =Dy, M =0,

where either wy(x)=p®# (x) or w,(x)=p*P(x).
Moreover, M #0 if and only if

wy(x)=p %P (x) and =1,
or
wy(x)=p@®9(x) and  E=—1.
Case 2 (mass point in ).

Ho="Vo> Wo(x):p(a’ﬁ)(x),
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and
Uy =vy+ Mo, M >0.

In both cases vy and v, are related by (9), (10) and o, f € R can take any
admissible value (i.e., such that wy, w, € Li[ —1, 1]).

Thus, in the absolutely continuous case the asymptotic behavior of the
sequence {T,/P,} and of the norms =, and 7, is determined by the Szegd
function of the ratio w,/w, given in (9). In Case 2, with a mass point out-
side of [ —1, 1], analogous results can be obtained applying standard
techniques (see, e.g., [10, Sect. 7]). Furthermore, using this information
and formula (5), in [5] the asymptotics of the sequence {o,} was com-
puted. We gather all these results in the following Lemma, which we state
without proof (see [5, 9] for details):

LeMMA 1.  Under assumptions of Proposition 1, the following limits exist:

1
—, in Case 1,
o S lim g, = { 271 (11)
n ®(<) .
N in Case 2,
1
lim 24— fim L =2 im 2= g, (12)
n T, n Ty 4 n n
CT A
T 2 C 1
W(z) = lim PnEZ;: o P(&) 9(2) in gase )
n n\Z z 124} ase 2,
T (= g(&)p(2))

this last limit, locally uniformly in C\[ —1, 1]. Here we take by continuity
p(x1)=+1

Coherence of measures u, and u; has a very important consequence: the
structure of the sequence of Sobolev polynomials {Q, ,} can be described
by means of the following relation ([5], see also [ 11, Proposition 5.4.3]):

LemmA 2. For any A>0, neN,

n+1

Pn+l(x)_o-n

Pp(x) = Qi 2(%) = 2,(4) Oy 2(X), (14)

where o, are the coherence parameters introduced in (5), and

n+1l =,
«, (1) =0, P (15)
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The identity (14) is the key to the study of the sequence {Q, , }.
Nevertheless, in order to compute the limit of the parameters «,, we need
to find the asymptotic behavior of the norms x,, first.
3. ASYMPTOTICS OF THE SOBOLEV NORMS

We begin with the following elementary

LeMMA 3. With our assumptions on {1,},

) < R) <K )
(16)
uCan) 1) S22 16, 1)
a1
In particular,
fim —<n )y ) (17)

n Kn(/ln—l) n Kn()”n+1)

Proof. Using the extremal property of the norms of the monic
orthogonal polynomials and the fact that 0 </,<4,_,, we have

Kn(;°n) = <Qn,ln9 Qn,).n>0+jvn< Q;l, Ay Q;1, ln>1
< <Qn, Ap_1? Qn, ln_1>0+in< Q;, Ap_1? Q;, )“n—l>1 <Kn(;“n—l)'
On the other hand, analogous arguments lead us to

N j'n— j'n ’ ’
S (0, Qs ot i G Qi) |

Kn(/“n—l)\ ;
n ‘n—1

The second inequality in (16) follows form the first one by a simple shift
Ap > A 1. Now, (17) is a straightforward consequence of (4). |

LemMA 4. For a fixed 2> 0, the sequence {k,(1)} satisfies

Kn(}“):n-n <Bn(/1)_An Tl >> Kl()“):nl-i_}“TO’ (18)

Kn—1 (l)
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where

2
A,,=o-i—1< . >nl B,(A)=1+m>2=2 44, (19)
n—1 T n

n n

Proof. Using (14), we have that
Kn(/l) = (Qn,/la Qn,/l; /1)

ne, _
<Pn_ n— 11 P"—l +O(n_1(i) Qn—l,l’ P”

r Pnfl +an71(i) anl,j.; }'>

n—1

nag

Now, we have

<P - ni_ll Pn—l +O(n—l()V) Qn—l,}LaP

no

— 20, 1 ()~ T,y (20)

n—1

On the other hand, by (5),

(P P () QP

n

n—1 ' " ’
P,_i+a, (1) Qn1,/1>

n—1
=<nT, _1+a, ()0, 10T, 1+, (1) Qn_ 1.1
=11, +or_ (A1 20 On 11

Thus, taking into account (20), we have that

2
Kn(i):nn + <n0-”—1> Typ—1
n—1

1

nag

n—1

_Zocn—l(i) n—1+/1n 7’-n—l-1_0('71—1(")Kn—l(l)a

n—1
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and it remains to substitute the value of «
identity to obtain (18) and (19). |

n_1(A) from (15) into the last
COROLLARY 2. lim,4"[x,(4,_;)—K,(4,)]=0.
Proof. By (16),

N A e !
1

n—

Furthermore, taking into account that 4, >0, from (18) we have that

2
n
Kn(/ln—l)gnn—i_a;zg—l(n_l) nn—1+/1n—1n2‘[n—l' (21)

Thus, using (3)—(4), (21) and the well-known fact (see, e.g., [ 12, formula
(12.7.2); 10, Lemma 16, p. 132, and Lemma 2, p. 39]) that both 4"z, and
4"z, converge, we can conclude the proof. ||

Observe that we have showed additionally that for L < + oo, the
sequence {4"x,(4,)} is bounded; in fact, it converges. This follows from the
first assertion of Theorem 1, which we proceed to prove now.

ProprosITION 2. Under assumptions (3)—(4),

n 1
k(L)=lim —"—= , 22
i) " 2lel oL+ 6) .
where o was defined in (11) and
1
O=|o|+—=>1. (23)
4 |o]
Proof. For L= oo this is a trivial consequence of the inequality
Kn(/ln) = Ty + }"nnzfn—l
and (12). Assume now L < 0.
Denote s,=x,(4,)/n,; then (18) can be rewritten as
A*
Sn:Bn()”n)_ . 5 n>2) (24)
Sn—1

where A¥=A,k,_1(A,_1)/K,_1(2,). Define a new sequence {gq,} by

n*n—1

Gns1="5,4n ¢1=1. Then {g,} satisfies the three-term recurrence relation

qn+l_Bn(ln)Qn+A};kqn—lzoa (25)
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with ¢, =1, ¢, =x,(4,)/7,. By (12) and (17), its coefficients, given by (19),
converge,

lim A ¥ =lim 4, = 452, lim B,(4,)=1+4 |o| L+ 40>
For L>0 or for L=0 and &# +1 (o# +£1/2, see (11)), it is
straightforward to check that the roots of the characteristic equation
¢*—(1+4|o| L+40%) q+40>=0 (26)

are real, simple and have different absolute values. Thus, by Poincaré’s
Theorem (see, e.g., [8]), s,=¢,.1/9, converges to one of these roots. We
can choose to which one noticing that x,(4,)>n,, so that k(L) < 1.

It remains to consider the case L =0, 6*> = 1/4 (when Poincaré’s Theorem
is no longer applicable); then,

limA*=1, limB,(1,) =2,

and we can choose 1, € N large enough such that for n>n,, 4;f >0 and
B,(4,)>1. Since s, > 1, by (24),

Snan(/ln)a nZnOa

so that

Sn+l<Bn+l(/1n+l)_

Repeating this reasoning we obtain that for any fixed je N,

A*

1<8,1;< By y;(Ans)) — = A*
2 n+j—
Bij1(Anyjo1)— j*

’ _ An+l

B, (4,)

It is easy to check that when n — oo, the right hand side of this inequality
tends to (j+2)/(j+ 1). Thus,

. . +2
I <lim inf s, <lim supsn<].7,
n n ]+1

and since je N is arbitrary, we obtain that lim,, s,, = 1. The assertion of the
proposition is established. |i



54 ALFARO, MARTINEZ-FINKELSHTEIN, AND REZOLA

4. ASYMPTOTICS OF SOBOLEV POLYNOMIALS

For the time being we have obtained the asymptotics of x,(4,,); in this
way, we already know the limits of the coefficients in (14). The last
preparatory step is the following

LEMMA 5. Under assumptions (3)—(4),

(2)

n+1

. Qn+1,/1”(2)_ OQni1,2
lim

=0,
n Pn+1(Z)

uniformly on compact subsets of C\[ —1, 1].
Proof. By Proposition 1, u, satisfies the Szegé’s condition on [ —1, 1];
therefore,
. 2"P,(z)
lim —
n @"(2)

exists and holds locally uniformly in C\[ —1, 1], and defines a nonzero
analytic function there. Thus, it is sufficient to prove that
Qn+1,,1,,(z) _ Oni1a

lim 2n+1 n+1(Z)
n (anrl(Z) ¢n+1(z)

-0,

locally uniformly in this domain.
In order to simplify notation, put

Un(2) =05, (2),  Va(2)=0,,(2).
Then, by orthogonality of U, and V,,
U=V, Uy =V, 0o <(U,=V,, U,=V,; 4,)=(U,, U, =V, 4,)
=(U,, Ups 4,) = (U, V1 4)
=(Ups Ups 2y 1) = (Vips Vi 2) + Gy = 2 1)UL, Un
<w,(An—1) =1, (4). (27)

Furthermore, since |@(x)| =1 for xe[ —1, 1], from (27) we obtain that

<2n(Un_ Vn) Zn(Un_ Vn)

n 2 )

> <41, (A1) —1c,(4)],
(p 0
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and by Corollary 2, the left hand side tends to zero. But for each n,
2"(U,—V,)/e" is in the Hardy class H, , in C\[ —1, 1]. Thus, standard
arguments (see, e.g., [ 13, Corollary 7.47]) allow us to conclude that

lim 2" M: 0,
n ®"(z2)

locally uniformly in C\[ —1,1]. |

Now we are ready to prove the second assertion of Theorem 1. With the
notation

0,,(2) P
fn(z)_ Pn(Z) ’ an(Z)_an(An) Pn+1(2)’
B n+l P,z) Qn+1,zn(2)*Qn+1,,1n+l(Z)
A SN e ’
formula (14) reads as
Jui1(2)=a,(2) f,(2) +b,(2). (28)

Observe that f,, a,, and b, are analytic functions in C\[ —1, 1]. Moreover,
Lemmas 1 and 5, Proposition 2, and (15) give us the limits

a(z) €lima,(z)

_ 20k(L) def 20
n p(z)

b(z) ¥ lim b, (z) =1 ———,
n @

which hold uniformly on compact subsets of C\[ —1, 1].
If we put

_ b(z)
gn(z) _fn(Z) - 1 —a(z) 5
then we can rewrite (28) as
gns1(2)=a(z) g,(z) +&(2), (29)

with

1 _an(z)

en(z)=[a,(z) —a(z)] g,(2) + b,(z) — b(z) 1—a(z)
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Notice that |¢(z)| > 1 for z¢ [ —1, 1], and with account of (22), |a(z)| <1
in this domain. In particular, for a fixed compact set K< C\[ —1, 1] there
exist constants 0 <r<1, R>0, and n, € N such that
la, (z)| <r, |b,(z)| <R, for n=ny,zek.
Thus,
|fn+l(z)|<r|fn(z)|+R7 nZnO) ZGK,

and it is straightforward that {f,} and {g,} are uniformly bounded on
compact subsets of C\[ —1, 1]. Consequently,

lime,(z)=0,

uniformly on compact subsets of C\[ —1,1]. Using (29) it is easy to
establish the same behavior for g,(z). In other words, we have proved that

lim f,(z) = , (30)

also locally uniformly in C\[ —1, 1]. It remains to rewrite (30), in order to
obtain (8). Indeed, by (5) and (6),

2 o(z
and thus,
_2%(z)
")
Analogously,
a(z) = k(L) <1 —2%'(2))
9'(z)

Substituting these expressions into (30) we arrive at the expression in the
right bared side of (8). ||

Since the zeros of T, accumulate at the support of the measure u;, we
can sharpen the statement of Corollary 1:
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COROLLARY 3. Under assumptions of Theorem 1,

N U {z O 1(2) =0} =supp ,.
n=1 k=n
The assertions of Theorem 1 can be formulated in terms suitable for a
general conjecture on asymptotics of the balanced Sobolev polynomials.
We will restrict ourselves to the absolutely continuous case (Case 1 of
Proposition 1).
For 0 <L < oo we introduce the measure u* on [ —1, 1],

du*(x) = {po(x) + L 19" (x)]? i (x)} dx,  xe[—1,1]. (31)
Let R,(x)=x"+ --- be the sequence of monic polynomials, orthogonal on
[ —1, 1] with respect to u* and
2 ! 2
0u(L)= IR, I2m = | 1R, (¥)I” du*(x)

Then, the statement of Theorem 1 corresponding to the absolutely con-
tinuous case is equivalent to the following

COROLLARY 4. Let (ugy, 1) be a coherent pair of measures satisfying the
Szegd condition on [ —1, 1] (¢f. Case 1 of Proposition 1), and the sequence
{A,} as in (3)~(4). Then,

. 0.(L)
11'rln ) 1, (32)
and
: Qn,}. (Z) _
llrrln #‘;Rn(z) =1, (33)

locally uniformly in C\[ —1, 1].

In other words, the sequence {Q, ﬂn} asymptotically behaves as the
monic orthogonal polynomials sequence corresponding to the measure
(31).

Proof. Due to relation (9) and the definition of ¢, in our case

du*(x) :j: Wwo(x) dx, (34)

=

AN

where

n=¢&+ Lsgn.
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Thus, the problem is reduced to the asymptotic behavior of polynomials
corresponding to a rational modification of the weight w,. This situation
has been thoroughly studied; an obliged reference is the monograph [10].
In particular, from Lemma 10 of [ 10, Sect. 6.1], it is easy to obtain that

T _olE) (35)

W on(L) " o(n)

Thus, in order to prove (32) it is sufficient to show that the right hand side
of (35) coincides with the value of k(L) given in (22). This is straight-
forward if we notice that Eq. (26) for k(L) can be rewritten in this case as

(o)1 q>—2np(E) g+ 1=0.

Now we turn to formula (33); again, it is sufficient to prove that the func-
tion in the right hand side of (8) describes the ratio asymptotics of R,/P,,,
which is reduced to the computation of some simple Szegd functions. In
fact, for ae C\[ —1, 1] let

|2

lp(a)|” o(z) — pla) ®(z) (36)

T ED=00w) c=a e e@) T

Notice that Z(z;a) is analytic single-valued and non-vanishing in
C\[=1,1], #(o0;a)=1, and for xe(—1, 1),

p(a)
2(x—a)|

lim |Z(x+iy;a)| = ’
y—0

Thus, Szegd’s theory (see, e.g., [12, Theorem 12.1.2, 13, Theorem 9.1])
along with (34) yield that

im R oy (7 2
mp, ) _<ﬂf(z;é>> ’

locally uniformly in C\[ —1, 1], where the branch of the root is fixed by
the value 1 at infinity. By (6) and (8), it is sufficient to establish that

F(z; _< Y(z) >2
F(zzn) \k(L) P(z)+(1=k(L)) 9'(2)2)

This can be done by direct computation if we use the explicit expressions
(cf. (13) and (35))

1)

(37)
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the fact that &, e R\(—1, 1) and the identity

p2)—gla@) __ o(z) aeR\(—1,1).

2¢(a)(z—a) @(z) pla) -1

The corollary is proved. ||
Finally, we pose the following

Conjecture 1. The assertions of Corollary 4 hold when both u, and x,
satisfy the Szegd condition on [ —1, 1] and u* is given by (31).
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