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UN TEOREMA DE APROXIMACION EN ESPACIOS L°

por

M. L. REZOLA

1. INTRODUCCION

El objeto de este trabajo es obtener un resultado de aproximacion
en L?-norma del tipo del teorema de Stone-Weierstrass para funciones
continuas. Nos fijaremos para ello en la siguiente version del teorema
de Stone-Weierstrass que se ve en {3], pig. 53:

TEOREMA 0.—Seca X un espacio completamentie regular, H una sub-
dlgebra de C (X)), que separa puntos (autoconjugada en cl caso com-
tlejo) v S un subespacio de C (X)), H-tnvariante (H S S §); entonces

f€5 sivsdlosif(x)=0 para todo x € F, sicndo

F=()g"©0)

ges

Denotemos por (i) la condicién: «f (+) = 0 para todo &+ € Fy, y
por (ii): «H separa puntos».

Queremos un resultado anilogo en L? (X, HA, v) (brevemente
L” (1)), con X espacio de medida y p medida positiva. Sea S un sub-
espacio de L7 (u) v H un subconjunto de L= () (para que tenga sen-
tido HS S S) no necesariamente subdlgebra; para caracterizar las
funciones f € S, la condicién (i) se traduce por: «f se anula en los
puntos en los que se anulan todas las funciones de S», y la condicion
(i) podria traducirse (teniendo en cuenta que estamos considerando
clases de equivalencia a. e.) por:

() No existe ningtin E de medida positiva (no atomo) tal que
cada ¢ € H, sea constante a. e. sobre .
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Sin embargo esto no es satisfactorio, pues basta tomar H = {fun-
ciones pares acotadas medibles en R} que cumple (x) pero S = {fun-
ciones pares medibles} © L? () no es denso.

Obsérvese que el conjunto de las funciones pares continuas reales
no cumple (ii), pues es constante en cada conjunto {— a, ¢} con a € R.
La cuestién estd en que estos conjuntos son de medida nuta.

Una traduccién mas satisfactoria de (ii) es:

(xx) No existe ninguna s-dlgebra &, contenida estrictamente en
A, tal que toda o€ H sea F-medible.

Nétese que la condicién (sx) es mas fina que (x) (basta tomar
Fe={A€A|ANE =6 6 EcC A}). El subespacio de las funciones
pares acotadas, verifica (x) pero no (x).

Los resultados fundamentales que probaremos (teorema 1 para el
caso real, teorema 2 para el caso complejo) establecen que el anilogo
del teorema 0 para L7 (p), con 0 < p << oo, es cierto si en la condi-
cion (i) se sustituye F por el soporte del subespacio y (ii) se sustituye

por (xx).

2. FEL TEOREMA FUNDAMENTAL

Sea (X, A, 1) un espacio de medida e-finito, vy 0 << p << o¢. Deno-
taremos por L% el espacio de las clases de equivalencia a. e. de fun-
ciones medibles complejas p-integrables y L? cuando nos referimos a
funciones reales. Si A es un subconjunto medible de X, L% (A) y L? (A)
seran los correspondientes subespacios de los anteriores, de las fun-
ciones que se anulan fuera de A.

LE 6 L~ serdn los espacios de las funciones medibles complejas o
reales, esencialmente acotadas.

Si f: X—C y EC X es medible, fg es la funcién, fg (x) = 0
si v @ E, fo (#) = f(x) si #€E, es decir la funcién f yg.

Si D < &P (X), la c-dlgebra engendrada por D se denota o (D).

Si B es la familia de los borelianos de R 6 C,

es la minima s-algebra contenida en &, respecto de la cual todas las
9 € H son medibles, o, equivalentemente la s-dlgebra engendrada por

e’ (B)]| B € B, ¢ € H|.
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DEFINICIONES !
1) Dada cualquier funcién medibte f: X —> C, llamamos soporte
de f al conjunto medible:

scpf=ir € X1 fix) 0L

2) Sea S una familia de funciones medibles (o de clases de equiva-
lencia a. e. de funciones medibles). Dado un conjunto medible E, dire-
mos que S se anula sobre E cuando: 2 (E) >0y fe =0 a. e. para
toda f € S.

3) Sea H una familia de funcione: medibles acotadas (o esencial-
mente acotadas). Una familia S de funciones medibles (o clases de
equivalencia a. e.) se dice H-invariante si fz €S v ¢ € H.

1) Sean ¥, G s-algebras. Diremos que F v G son equivalentes
si sus complecciones (respecto de ) coinciden.

5) Sea S un subespacio de L? con 0 < p <X sabemos que X
puede descompounerse en dos conjuntos medibles disjuntos. tales que
S ce anula en uno de ellos y no se anula en ningtin subconjunto del
otro, es decir, X = AU B con ANB =06, Snuloen By no nulo en
los subconjuntos de A (véase [6], pag. 481).

Tales conjuntos A. B quedan univocamente determinados (modulo
conjuntos de medida nula) y designaremos sop S = A.

TroREMA 1.—Sea H un subconjunto de L= v S un subespacio H-
invariante de L, con 0 <p<oc. Si sopS=A v o (H) es cquiva-
lente a A entonces la clausura de S en L7 es e (Al

3. LEMAS PREVIOS

Veamos unos lemas previos a la demostracion del teorema; el pri-
mero es un caso particular del teorema a probar.

Lema 1.—Sea S un subespacio wectorial de IP(0 <p<<xX) L=
invariante v A © X su soporte; entonces S es denso en LP (A

DenmosTrACION.—Consideremos en primer lugar el caso 1 € p < x.
Si1 g € L? (A), bastard ver que todo funcional lineal acotado que se
anula en S, se anula en g.

Sea h € L” (A) = (L7 (A)) tal que f I fdy =0 para toda f€ S.

A
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Dada f €S, por ser S L=-invariante, tenemos que f» € S para toda
5 € L=, luegof hfodp =0 para toda o€ L=, por lo que h f =0

A
a. e., para toda f € S. Entonces, S se anula en sop /i, de lo que se
deduce que S se anula en sop A N sop g y, como por hipotesis, S no
se anula en subconjuntos de A, se tendrd que

i (sop % ] sop g) =0,

por lo que f hg=0.

Sea ahora 0 << p << 1. Es claro que SN L! es L*-invariante. Vea-
mos que sop (SALY) =A. Si sop(SNL) no fuese A, tendriamos
que SN L' se anularia en algiin C, subconjunto medible de A\, con
p (C) > 0; ahora bien, como sop S = A, existe f€S tal que

wir € C:f(9) = 0i >0,
y se puede encontrar un E € C con p (E) > 0 tal que / | f1 <o
®

Tenemos pues que fyg € L' (A) y, por ser S .L=invariante, fyg €S,
con lo que fyg € SN L' y esto contradice la hipotesis de que SN L?
se anula en C.

Como SN L! es un subespacio de L! .£~-invariante y con soporte
A, por la parte anterior, sabemos que SN L' es denso en L.

En el caso de ser p (X) << oc, como L (A) es un subespacio denso
de L? (A) cumpliéndose,

-lls=1- 0yt uz)y e

con 0 << p <1, es claro que SN L' es denso en 1.7 (\) v por tanto
S es denso en L7 (A).

Veamos qué ocurre si  (A) = 00. Por ser u o-finita, A = U A,
7 ==

con los A, crecientes y de medida finita. Como S < L?, es claro que
S ya, S 12(AL)

es L= (A,)-invariante y no se anula en ningain subconjunto de A,, lo
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que implica que
Sa, = L7 (AL)

para cada 7 € N.
Probemos que (A). Dada helP(A) y ¢ o

tenemos queé

S es denso en LP

f\h\f=1imf|h\f’<oc,

A "

de donde existira g €N tal que si

> N, \/z[?<e/2.
A=A,

Por otra parte, por sef S 74, denso en LP (An)s existe f» €S tal que

| o smn — 7 Ao 54 <ef2

luego

\\f"x.n—/z\\;=f\fnxA,,~/l\»ap:

\fnxa,,-—/!l”dlx+f fogn — 17 dp=
ANA, By
=f \/z\”du+f\fnxA,,~th,,l’d11§8/2+e/2=<5-
PR A
-invariante ¥ subespacio

Ademés fn7a, € S, pues f. € S que es £~
sisopS = As

or lo tanto S es denso en L7 (A). Notese que

A por lo que g =12 (A).
a es un resultado conocido (véase

vectorial ; P
entonces sop S =

El segundo lem [1], pag. 33).
¢ X, cerrada para la forma-

de partes d
e de X, que

LiMa 2.—Sea D und familia
sea HA otra familia de part

cign de intersecciones finitas, ¥

verifica:
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a) XeH.

b) A, BEA y BSA=—>A\B€HA.
) An€HA, Al A== A€A.
Entonces si D < A se tiene ¢ (D)< HA.

4. DEMOSTRACION DEL TEOREMA

La realizaremos en tres etapas.
1°) Sea

D= B =1s"(®)|B € B, ¢ € H.

PE€H

SiELE, .. ,E. €D,y €S, veamos que

f‘/_s,a,...a,, € S.

Por simplificar, Jo demostraremos para dos conjuntos.

Como H C .£~, puede suponerse que el rango esencial de cada uno
de sus elementos esta contenido en un intervalo cerrado y acotado de
R. Asi, consideremos

E=¢7"B) y F=Y¥Y7(C

donde
(¢, ¥ € He:X—>[a,0] y ¥Y:X-[gd]

con B boreliano contenido en [a, b], C boreliano contenido en [¢, d].
Llamemos

(0, ¥)=E&:X > [q, 8] X [c, d]

Tenemos

B XC)=¢"(B) N ¥ (C),

luego ENF = £* (B x C), por lo que Year = In.c ° &
Sea « la medida imagen por £ de la medida de densidad v, dada por
dv =|f]% es decir,
a -)=[ [ f1?dn
§-10)
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Como |f|?dyp es una medida positiva finita, la medida imagen
serd una medida de Borel finita y positiva sobre [a, b] x [c¢ - d].

Dada ys,.c€ L?([a, b] x [¢, d], «), como consecuencia del teore-
ma de Lusin y del teorema de Stone-Weierstrass, es sencillo ver que

®

existe una sucesiéon de polinomios reales en dos variables, {P.}r .,

uniformemente acotados en [a, b] x [¢,d] y tal que P,— y5.¢
{2 — a. e.). En consecuencia
P,oZ—o>exco&(v—a.e) 'y |PnoE—ZBXCoE|P—>0(v—a.e.)

Como, por otra parte,

Ipn°:—ZBXC°EIP§{k+ 1,"

3

(donde k es la constante que acota uniformemente a los polinomios),
por el teorema de la convergencia dominada de Lebesgue, se tiene que
P,ot—>yp.co% en L7 (v) y, teniendo en cuenta la definiciéon de v,
(Poo8)f— (muc &) fen L7 ().
Ahora si
P,(x, y) = Z a;x'3y’y, P,» &= a; 3 ¥/

1£i,j£n 141,

N

y por ser S subespacio H-invariante tenemos que (P, = 3%)f €S, luego
(y5.c°8)f€S, es decir fygnr €S.

2.°) Fijada f€ S, sean D la familia de las intersecciones finitas de
elementos de D, y

F=EcA|fy €5S.

‘Como la familia & verifica los apartados a), b) y ¢) del lema 2 (simple
comprobacién), por 1.°), D &, luego aplicando el lema 2, s (D)= &F.
Ahora bien, D, < D, luego « (H) < &, por lo que fy, €S para todo
A€q(H).

3.°) Por {ltimo, veremos que S es [L=-invariante, con lo que apli-
.cando el lema 1, habremos concluido el teorema.

Dadas f€S y ¢ € L=, existe una sucesion de funciones simples
¢ (H)-medibles, {s.}.~;, tal que s,——> ¢ [unif.] a. e, por lo que
S.—>o0en LP(Y) y s, f—>wnf en L”(¢). Como S es subespacio vec-
torial se tiene por 2.°) s,f€S, luego ¢ f€S. Por continuidad, lo
anterior se extiende a todo f € S.



AR

UN TEOREMA DE APROXIMACION EN ESPACIOS LP 213

5. ALGUNAS VARIANTES Y EJEMPLOS

OBBSERvVACION 1.—I.a hipétesis «s (H) equivalente a #A» del teorema
no es superflua. En efecto, si & es una s-dlgebra, s-finita (respecto ),
no equivalente a A, llamando S = L? (X, &, u), es facil ver que S
es H-invariante, con H = L~ (X, &, u), sopS = X vy sin embargo
LP (X, &, p) estd contenido estrictamente en L? (X, &A, u).

OBSERVACION 2.—Si en el teorema 1 consideramos el espacio 14, sin
afladir mas hipdtesis, no es cierto, pues basta tomar el espacio L7 (T),
siendo T el toro unidimensional, y S = {polinomios analiticos en T} ;
es evidente que S es subespacio de L?(T), H-invariante para H = S
que a su vez cumple ¢ (H) = {borelianos de T} y sopS = T. Sin em-
bargo S = [I” esti estrictamente contenido en L% .

TeEOREMA 2.—Sea (X, A, p) un espacio de medida s-finito, H un
subconjunto de L5 v S un subespacio H-invariante de [.%, con
0<p<. Si sopS =A, s (H) es equivalente a A v H es auto-

conjugado, entonces S = I.% (4).

DeMosTrACION.—La finica diferencia, de la demostracion del teore-
ma 1 (caso real), aparece en la primera etapa. Al aplicar el teorema de
Stone-Weierstrass v el teorema de Lusin, utilizando la misma notacion
v teniendo en cuenta que ahora el rango esencial de las funciones de
H son bolas cerradas en C, tendremos que dada ys .., existe una su-
cesion de polinomios

. - - ' ;% —y
P r=1 (Pn (2, zw, w) = Z Cirnr & 2F Wh wl)
125 ER12Ln

tal que P, —> y5,c a. e.
Ahora,

Poob=Dcunde* ¥V y (P.o%f€S

‘por ser S H-invariante con H autoconjugada. De forma analoga al

teorema 1 se acaba la demostracion.

OBservaciOoxN 3.—La condiciéon ¢ (H) equivalente a A (¢ (H) ~ A)
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puede ser a veces dificil de comprobar. A continuacién damos una con--

dicién que es suficiente para que se cumpla la anterior.
«Se dice que H < £¢ es una familia total si separa puntos de L1
(1. e., si H engendra un subespacio #-débilmente denso en .£&)».
Veamos que si H C £¢ es total y la s-algebra o (H) es o-finita (res-
pecto p), entonces ¢ (H) ~ H. En efecto, si ¢ (H) no fuera equivalente

a A, estaria contenida estrictamente en A ; considerando el subespacio-

S = L* (X, s (H), &), que también estaria estrictamente contenido en

L2 (X, &, p), tendriamos que, dada una funcién g no nula, ortogonal.

a S, como el sop S = X, existiria alguna funcién f de S tal que f g = 0.

Ademas [f? £ dyp = 0 para toda » € H, pues el subespacio S es H-
P

invariante, y, como f g€ L¢, entonces H no seria total.

EjempLos.—Para los ejemplos siguientes entendemos que un con-

junto medible M € X es localmente nulo cuando no posee ningin sub-

conjunto de medida finita, es decir . (M N E) = 0, para todo E tal que-

0 < p (E) < oce.

1) Sean X y u cualesquiera. Si f€ L% y ! (0) es localmente nulo,.

toda funcién de L£ puede aproximarse en I.P-norma por combinaciones

lineales de la forma ?n’ fe,con ;€Cy 0<u (B <oo.
=
2) Sea X un espacio localmente compacto (Hausdorff) y p una

medida regular. Si f € L% con p < r <ooy f' (0) es localmente nulo,

el subespacio {f ¢ | % es continua de soporte compacto} es denso en L% .

3) Sea (X, A, p) un espacio de medida cualquiera. Si f€L? » es.

continua, estrictamente mondtona de £, f*(0) y ¢! (0) son local-
mente nulos, y ¢ engendra una s-algebra equivalente a &, entonces el
subespacio

S=3 S a, fo*|a, €R, n€N

es denso en L2,
4) Sea G un grupo abeliano, localmente compacto y s-compacto y

p su medida de Haar. Todo subespacio lineal no nulo S © L2 invarian-
te por traslaciones e invariante por: a) restriccién a conjuntos com-
pactos, o, b) multiplicacién por funciones continuas de soporte com-

w
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pacto, o, c¢) multiplicacion por caracteres continuos, es denso en Lf .
Este ejemplo, con la condicion c), generaliza el teorema de aproxima-
cién obtenido en [3] tnicamente para L¢.

5) Todo subespacio lineal no nulo de L? (R?), invariante por tras-
laciones y tal que el soporte de sus transformadas de Fourier sea Rr",
es denso en L?(3"). Esto es una variante para L?(K") del teorema
tauberiano de Wiener (véase [4]).

6) Todo subespacio lineal no nulo en L*(R"), invariante por con-
volucién respecto una familia de medidas, cuyas transformadas de
Fourier engendran los borelianos de R*, es denso en L* (R"). El ejem-
plo anterior es un caso particular de éste cuando se toma la familia de
las 3 de Dirac en todos los puntos de R™

OBSERVACION 4.—Los teoremas 1 y 2, en el caso de ser yu finita son
validos para espacios de Orlicz, ® (L), siendo @ una funcion no nega-
tiva definida en [0, 00], creciente, continua, convexa y que satisface la
condicion A, (véase [2]).
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