DESCRIPTION OF INVARIANT SUBSPACES OF LP(u) BY
MULTIPLICATION OPERATORS
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ABSTRACT

In this paper we give a description for the closed subspaces of LP(X, # ,u),
1 < p <o, which are invariant under multiplication by a selfconjugate family of
essentially bounded functions. This work is a continuation of [3] and [4] and the
results obtained form part of the author’s doctoral dissertation {5].

1. Introduction and Notation

In what follows, (X, + ,u) will be a o-finite measure space, LP(1), 1 <p <eo,
the classical Banach space associated with the pair (X,u) and Ey the conditional
expectation operator (or the averaging projection with respect to , where ¢ is a
o-finite subo-algebra of .

S will always be a closed subspace of LP(u) and H a selfconjugate family of
L™(u). We say that S is H-invariant when ¥S C S for every ¥ e H. We denote by
o(H) the smallest subg-algebra of A making all the functions in H measurable
and by S° the polar of S | i.e.,

$°={gel? W); x fgdu=0forallfeS},
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The H-invariant subspaces S of LP(u) are essentially determined by the
o-algebra o(H). More exactly, if H; and H, are two different families of L™(u)
such that o(H;) € o(H,), then, the H, -invariant subspaces ant the H,-invariant
subspaces are the same if and only if the o-algebras o(H;) and o(H,) are equiva-
lent (i.e., they have the same u-complection). This is a consequence of the follo-
wing result.

1.1 Lemma. (see [3],[5])
If S is H-invariant, then the closure of S in LP(u) is L™(o(H) J-invariant.

When o(H) is o-finite, we have a description for the H-invariant subspaces of
LP(w) by using the conditional expectation operator, Es)-

1.2 Theorem.

S is H-invariant if and only if there exist a family (g;);er of LP (1) such that
S= ﬂ[ Sg; where

le

Sei={rfelP(u); Eqpy) (fei)= 0 pae}

See [4] for the proof. The reader can also look at Theorem 3.2 below whose
proof is quite similar.

1.3 Remarks.

a) The last result contains Beurling’s theorem concerning invariant subspa-
ces of L2(T) by the bilateral shift. In fact, in this case, H = {eit, e’it} and o(H)
consists of all Borel subsets of T, so that Eg(yy is the identity operator and

$= N Sgi={fel’(T);f=0ac.ink )
le

where E is the support of the family {gi} i€l -

b) Theorem 1.2 is also true in L™(X, +t ,u), if we consider the weak-* topo-
logy in L™(u) and the subspace S is supposed to be weak- closed.

c) It is possible to extend theorem 1.2 to a more general situation. For
example, if S is a closed subspace of L%(X, st u), (a Kothe function space, see
[7]), where p is a saturated, absolutely continuous norm and B is a Banach space
such that the dual space B* verifies the Radon-Nikodym property. (Many of the
important classical Banach function spaces are contained in this class for suitable

0's).
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2. Application to shift operators.

A natural question arises from the above theorem. How many functions of
LP'(u) are necessary to obtain the subspace S? Here, this question is solved in a
particular, non trivial, situation. When, X =[0,1) and o(H) is the o-algebra of

111 —periodic Borel subsets of {0,1), i.e. o(H) is the o-algebra
By= {BC [0,1); B is a Borel set and—rll— 3 B=B }

where + stands for addition (mod. 1) in [0,1) . We shall need the following
tecnichal lemmas.

2.1 Lemma.

Let (X, 4 u) be a o-finite measure space let 3C be a family of measurable
functions. Then, there exists a unique (u-a.e.) measurable subset A of X, such
that:

i) fix)=0ae x ¢ A Vel

ii) there is a countable family of functions (f;); © ¥ with ? hG(x)1 >0

ae xeA

(A will be the support of ¥, supp ¥, and H~'(0) the set X \ A)

Proof.

We consider the family

C= {(Aj)jej; Aj e 4 pairwise disjoint with #(A;) > 0 and such that for each
jeJ, there is fj € 3 with fj(x) # 0 a.e. x € A;j }

(each J must be countable because (X,u) is o-finite).

C # ¢ and C is an inductive set under the partial order:

(Aj)jer, o (Bjjer, if (Ajjel; is a subfamily of (Bj)jes,

By Zorn’s lemma, we have a maximal element of C, (Aj)jes. Let fj,jeJ, be
the functions corresponding to Aj and A = U Aj. Then, if f € 3 and
jel
B = {xf(x)>0}N AS, necessarily u(B) =0.  #

2.2 Lemma.
Let H be a selfconjugate family of essentially bounded functions on [0,1)
such that ofH) = B,. If S is an invariant subspace of LP([0,1),m), (m denotes
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Lebesgue measure), 0 < p < o, then there exists sy, Sy, . . ., S, belonging to S
such thar

n

gx) = Z ax)sj(x) xef{0,1)

j=l
for each g e S and suitable B,-measurable functions, oy, o, . . . . oy,. (The
functions o, j = 12,...,n depend on g , and, in general, they are not in
Lo By)).
Proof.

n =1 : By applying the above lemma to supp S, we obtain a countable
pairwise disjoint family (Aj)jey and their corresponding functions of S , (f; el
These functlons can be modified so that |fj|P < o] , i € J. The function
s(x) = E f(x)xAJ(x) belongs to S and verifies the result.

Next we will give only the proof for n =2, because for n > 3 the ideas are
the same although the notation is more complicated.
n=2: We take the following families of functions on [0,1/2)

={e(x).g(x+1/2); g €S}

_ g(x)  g(x+1/2), |

Fo = {det ( b h(xe172) (BREST

and we denote by Ny and N,, the sets F1*(0) and F3'(0). If A is a Borel subset
of [0,1/2) we define & as the set A = A U (A + %).

The result holds in (N;)™, taking s;(x) =0 =5,{x) . AsN, \N, = U Aj
j€J

by lemma 2.1 (we suppose that the corresponding functions fj verify If; P < 2‘1)
the functions

s1(x) = ?3 fiX7;(x)

= .. 0,1
)= o=l a.e. x €[0,1)
belong to S. Moreover, ifhe S,
det ( h(x)  h(x+1/2) )=0 ae. X€A

fi(x)  fi(x+1/2)
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then, there exist cp j(x) such that

h(x) = cp j(x) fj(x)

h(x+1/2) = Chj(X) fj(X+l/2) ae. X €A

We caf extend cpj to [0,1), by defining them on Kj as cpj(x+1/2) = Chj(x) -
Thus, chj is % ,-measurable and calling oy (x)= T cp(x)XRj(x), we conclude
that j=1

h(x) = (x)s1(x) + @ (x)s2(x) ae. xeN, \N,
for all a,, 9 ,-measurable.

Likewise, [0,1) \ N, =([0,1/2) \N;) " and [0,1/2) \'N, is contained in supp
F, , then there are two families of functions (fj)jey » (gjes in S such that

fj(x) fj(X+l/2) "

el gx+1/2)

a.e. XE€ Aj

The functions
(0= T 00X
j€l

200= I S0 ()
j=l )

belong to S and beasides, if h € S, there exist ap; , by verifiying

h(x) = anj()fj(x) + bnj(x)gj(x)

h(x+1/2) = anj(x)fj(x+1/2) + bn;(x)g;(x+1/2) ae. X EA;

We define anj and bpj on Kj, by an%-periodic extension and denote
6= T ani(x) X5
j€l
o(x)= T bpj(x) X’;;j(x)
j€J
which are 3, -measurable, Thus

h(x) = o (x)s3(x) + @ (X)s2(x) ae. xel[0,D\ N, .
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If n =3, we should consider the families of functions on [0,1/3)
Fu={ . g1/, 6029 g

g(x) 8(x+2/3)
Vo Gy hxe/3) )

_ g(x)  g(x+1/3)
F2 = { et (i) hxe1/3)

g(x+1/3)  g(x+2/3)
e 1/3) h(x+2/3) g’hes}

N g(x)  g(x+1/3)  g(x+2/3)
Fy = l det f(x) f(x+1/3) f(x+2/3) fghe s]
h(x) h(x+1/3) h(x+(2/3)

and we should continue in the same way as above. #
If p = + oo the last result is true. It is necessary to take the functions fj
with [fj/ <1, so that b2 'ij;g'j €S .
1=1

2.3 Theorem.

Let p and n be fixed, with 1 <p<ecagndneN.IfS is an H-invariant subs-
pace of LP([0,1) ), H = {¢* mint 6'2"i"t} , then, there exist
hihy, ... by e LP'([0,1)) such that

n P i
s={fer?; = m+ =L imu+i=L -0 ge:
j=1 n n

k=12,...n}.

Proof.

Since H is selfconjugate, then S and S° are L™(o(H) )-invariant by using
lemma 1.1. Now, o(H) = $, and b};1 applying lemma 2.2 to S§°, we obtain
hyha, ... hy € S° such that g(x) = Ell o(x)hj(x) for each g e S° and (aj)j"=1

i=

& -measurable functions. Hence, by theorem 1.1, we have:
f e S if and only if Eqy) (fg) = 'El o Eg(yy (fh)) =0 forallg € S° or
i=

equivalently, Eg(yyy (fhg) =0k =12, ... .n .
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2.4 Remarks.

a) If p = + oo,the theorem holds by considering the weak-* topology in
L*(u) and a weak-* closed subspace S.

b) If p =2 , we have obtained an implicit description for the invariant subs-
paces by the bilateral shift of finite multiciplicity, in the Hilbert space L2([0,1)),
because these subspaces can be seen as the invariant subspaces by the multiplica-
tion operators associated to functions ¢t2 it () s the multiplicity of the shift).
If we identify the spaces L?([0,1)) and LZn ([0,1/n) ) by the map f > F =(f)t1
such that f(t) =f(t + j — 1 ), we have obtained in theorem 2.3 that

n

(* s= {fel?(0,1)) ; F() . Hx(t) =0 ae. f.
k =1,2,...,n}

By denoting as M(t) the subspace of @" , which is orthogonal to the family
{ H, (1), H, (1), . . ., Hn(t)} (with 0 < dim M(t) < n), then (*) is equivalent to
the customary explicit description for these subspaces which appears for example
in{2].

2.5 Theorem.

Let T? be the 2-dimensional torus, and let H = {fl ,f2} with fi(x,y)=e
and fy(x,y) = e*"*_If S is an H-invariant subspace of LP(T?), 1 < p <<,
then there exist a countable family (gj)jen of LP'(T?) such that

2 Tix

S={relP(T?); [; fix.y)g(xyjdy=0 ge. — x,jeN}

Proof.
Since H is selfconjugate, theorem 1.2 can be applied, and it suffices to ob-
serve that o(H) = { B x T ; B Borel subset of T } , and therefore:

EU(H) f(x7y) = fT f(xyy)dy #

If p = 2, we have got an implicit description for the invariant subspaces by the
bilateral shift of countable multiplicity in the Hilbert space L%(T?), because the
multiplication operator by e*™* transforms €n m > €n+1,m ((én,m)n,m eN =
= (e2M(nx*+my) 3y - is an orthonormal basis of L*(T?) ). Moreover, we can
identify L?(T?) with L? L2 (1) (T) by the map : f = F such that F(x) (y) = f(x,y)
and then we have

S={feL*(T?);<F(x).Gj(x)>=0 ae. x,jeN}
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or equivalently S = { feL?(T?); F(x) e M(x) ae. x} , where M(x) denotes the
orthogonal complement of the family {Gk(x) } «eN » for each x € T (This
characteritation can also be seen in [2]).

3. The case of non o-finite ¥

In this section we shall obtain two results similar to theorem 1.2, when o(H)
is not supposed to be o-finite.

Let G be a o-compact locally compact abelain group, d¥ a Haar measure on
G, m another measure on G given by dm(¥) = A(¥)d¥ , where the weight A is a
multiplicative measurable homomorfisme from G to R*, and (Xo, +# o.Ho) 2
o-finite measure space. Let (X, st ,u) be the product space (Xo x G, £, &
B(G) , 4o ® m),( B (G) is the o-algebra of Borel subsets of G) , and let ¥ be,
the subg-algebra of 4 ,

f={7r‘1(A0);AoeA = AoxG:Age s o)

(7 is the canonical proyection from X to Xy). Under these hypothesis, G can be
considered as a bijective transformation group on X, which carries st -measura-
ble sets to .t -measurable sets and dilates the measure according to A ,ie.

u(P(A) ) = A(W)Hu(A) , VeG,Aet

Moreover, the g-algebra f coincides with
{A € «t ;P(A) = A forall A e } and an H-measurable function f on X is
¥-measurable if and only if f(x,©) = f(x,e) for all ¥ € G |, x € X, (e is the unit
element on G) .

The following lemma is an inmediate consecuence of Fubini’s theorem.

3.1. Lemma.
Let f be a function in L' (X ). Then the function

fix)= [, fixeldm(¥)
exists uy- a.e. and it belong to L' (X, u,) . Furthermore,

on deuo =y fdu and WAt ey < WFllp1
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The function f admits a natural extension to X :

T xy) =20 T (xe)

where we identify x with (x,e) . In general T is not f-measurable

3.2 Theorem.

If S is a closed subspace of LP(X, # u) and H is a selfconjugate family in
L=(u) with ofH) = 4 , then: S is I:I\-Jinvariant if and only if there exists a family
(8&i)ier in LP'( ) such that S = ﬂl Sg;, where

1€

Sgi={felP(u); (f2)”=0 po-ae}

Proof.
Assume first that S is a closed subspace of LP(u). For each A, € 4,
g e LP'(u) and f e LP(w)

Iy (0™ (ot =1, (1) (X)X, ()dbo(x) =

= i

Xo (fgX ;-1 (Ao) )T ()dpo(x) =

= I, (fgX, -1 (Ag) ) (x,¥)du(x,¥)

By lemma 1.1, the subspaces S and S° are L“(f_l—invariant and thus, f € S
implies f € Sg for all g € S°. On the other hand, if f € Sg for all g € S° neccesarily
(fg)™ =0 po—a.e. for all g € S° and, by lemma 3.1, fx fgdu =0 forallg e S°,
which implies f e S .

To prove the converse, it suffices to show that Sg is a closed and H-invariant
subspace of LP(u) for every g € LP'(u). But

(hfg)™ (x) = h(x.e) (fg)~ (x)

for all f € LP(u) , g € LP'(w) , h € H, and then, Sg is H-invariant. Furthermore if
fn = £ in LP(u), then fog — fgin L' (u) for all g € LP'(u) and since the operator:
f 5T is continuous from L' (1) to L (o), it follows that Sg is closed. 3
A comparison between theorem 1.2 and 3.2 shows that the operator:
f>Tisa good substitute for the conditional expectation operator: f > Ep (N,
which cannot be defined for the general kind of c-algebras f considered here.
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When o(H) is o-finite, the subspace SE of theorem 3.2 are the same as those
appearing in theorem 1.2, i.e.:

Sg = {felP(u); Epfg) =0 p—ae.} .
In fact:

S

N (fe)~ due = fx»- ngﬂ-l(Ao) du forall Age 4 4.

3.3 Examples. -

We present several examples of o¢-algebras { and projections: f - f which
fall under the scope of theorem 3.2. More examples are given in [5}.

1°) Let { be the o- -algebra of all Borel subsets of R", which are translation
invariant with respect to a vector w and f (%)= E f(x+nv) , x e R" ; then fis

Y-measurable. Taking: Xo = {x e R"; 0<x . w < 1 } and G as the group of
translation by kw , k € Z , with their natural measures, theorem 3.2 can be
applied in this context.

2°) Let ¥ be the o-algebra of all Borel subsets of R™ which are radial and
fx) = fSn~1 f(rx")do(x"), x e R" , r =1 x || (do(x") denotes Lebesgue measure

on Sp.p ={ xeR" ;I x|l=1 } ), Sn-1 which is -measurable. In this case, if we
take: X, =[O0, + o0} with the measure duo(r) = wn.g M ldr (wnp.1 is the total
measure of Sy.1), and as G the quotient group 0(n)/K (O(n) is the group of all
orthogonal transformation on R" and K its the normal subgroup which fixes
a point xo of Sp.;) with normalized Haar measure, then theorem 3.2 can be
applied again.

3°) Let ¥ be the o-algebra of all dilatation-invariant Borel subsets of R™ and
F(x) = f;"f(rx)r"'ldr, x € R"r = x ||, which is not {-measurable. Now, if
Xo = Sp.1 with its measure and G is the group of homotecies on R™ (G can be
identified with the group (0,4 =) with measure dm( p ) =" %) again. we have
a good situation for the application theorem 3.2. #

The following situation is not included in the theorem 3.2 and we shall now
give a theorem for it. Let X be a locally compact abelian group, G a closed sub-
group of X and X the quotient group X/G equipped with the1r respective Haar
measures m and mg. We can take a suitable Haar measure m on X such that
Weil’s formula holds: If f € L!(X) and we define

f(X)= J, 4 )dmg(®)

then f eL'(X)and e Tdm = [ fdm,
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Now, f is the subo-algebra of Borel subsets of X, then ¥ = {n‘l(B)
Be & (X) } where 7 denotes the canonical projection from X onto X. This
situation is very similar the one described above, but, in general it is not clear
that the g-algebras $(G) = :B(G) and B (X) can be identified.

3.4 Theorem.

Let S be a closed subspace of LP(X, B (X),m) and H a selfconjugate family
of L ¢ ) wzth ofH) = Y. Then, S is H-invariant if and only if there exists a
family (g;)ier S LP'(m) such that S = ﬁl Sg;, where

Sgi={felP(m); (fg/~ =0 m-ae} #

The proof is exactly as in Theorem 3.2, Weil’s identity being now the substi-
tute of Lemma 3.1. Finally, we observe that the remarks 1.3 b) and c), remains
true (with a suitable formulation) in this context.

4. An application to Operator Theory in Hilbert spaces.

Let JC be a separable Hilbert space. We denote by L (3() the family of boun-
ded linear operators on ¥, by o(T) the spectrum of T (T e £ (¥() ) and by C(T),
the algebra of operators commuting with T , C(T) = {Q eL(H);QT=TQ } :
If T is a normal operator on ¥, there exists a unique resolution of the iden-

tity E on (o(T), B (o(T) )such that T = fa(T) MEX |, e

<Txy>= [

o(T) AEx y(N) forall x,y € 3 (see [2], [6]).

Moreover, Q € C(T) if and only if (QE(w) = E(w)Q for all w e B (a(T))
(see [6], pdg. 308). Another version of the spectral theorem says that, if T is a
normal operator on X, then there is a finite measure space (X, -t ,u)and func-
tion ¥ € L™(w) such that T is unitarily equivalent to the multiplication operator
My on L*(u). Furthermore, o(My) = essential range of ¢ = o(T). We shall denote
by E' the resolution of the identity on (o(T), & (o(T))) associated to My,
which is defined by: E'(w) = My, 1 (o) > SO that E and E’ will be unitarily equi-
valent.

In what follows, we shall identify the spaces 3 and L?(X, + ,u), the opera-
tors T and My and the resolutions of the identity E and E' .
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4.1 Theorem.

Let S be a closed subspace of ¥ and let T be a normal operator on }. Then,
S is T-invariant and T*-invariant (TS < S and T*S € S} if and only if S is the in-
tersection of a family of subspaces Sy of ¥, where, for each y e ¥(: Sy = {x e ¥,
Exy=0} .

Proof.
Since Ef g(w) =< E'(w)f,g > = f¢-1(w) fgdu for all w e B (a(T)), by
the theorem 1.2 and the above identification the result follows.

4.2 Theorem.
Let T be a normal operator on ¥ . The following statements are equivalent:

(a) C(T)={F(T); FeL™(o(T))}

(b) The only subspaces S of 3 which are T-invariant and T*-invariant are
the ranges of the spectral projections associated to E, ie, § =ImEfw) with
we B (ofT) )

Proof.

Observe that F(T) € C(T) , and if o(¥) = ¢ then, Fo¥ is ¥-measurable for
all F e L™(o(T)).

We shall show that (a) and (b) are equivalent to (c): o(¥) ~ +
(i.e., they have the same u-complection).

(@ = (o).

If Ae 4 \¥, then My, € C(T), and it does not belong to {F(T) ;
F € L”(o(T) )}. On the other hand, if £~ s | there exists a ciclic vector of T
in JC , because the span of My My™ Xx (m,n e N) is dense in L2 (1) (see theo-
rem 2 in [3] or theorem 1.2 in [4]), and then, we can take, X = o(T)and ¥(z) =z
for all z € o(T), in the spectral representacion, (see [2]. pag. 13). Moreover, if
Qe C(T), Q e C(F(T) ), i.e., QM =Mg.Q for all F € L™(o(T). Since { M :
F e L™(o(T) )} is a maximal abelian albegra (see [2]. pdg. 21). then, Q = Mg
for some G € L™(o(T) ) or equivalently Q = G(T) .

(c) = (b)

If Sis T and T*-invariant and ¥ ~ | by using theorem 1.2 of [4] it
follows that S =L (™! (wo) ), where ¥™!(wo) is the support of S .

Reciprocally if A e 4 | L*(A, < pu)isa subspace of J€ which is ¥ and
$-invariant, and then, there exists w e o(T) such that L*(A, - ) =Im E(w) =
=L*(¢71(w), 4 ) and thus A =0 N w)pae. ie., +~¥
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