

DESCRIPTION OF INVARIANT SUBSPACES OF $L^p(\mu)$ BY MULTIPLICATION OPERATORS

per

M. L. REZOLA

ABSTRACT

In this paper we give a description for the closed subspaces of $L^p(X, \mathcal{A}, \mu)$, $1 \leq p < \infty$, which are invariant under multiplication by a selfconjugate family of essentially bounded functions. This work is a continuation of [3] and [4] and the results obtained form part of the author's doctoral dissertation [5].

1. Introduction and Notation

In what follows, (X, \mathcal{A}, μ) will be a σ -finite measure space, $L^p(\mu)$, $1 \leq p < \infty$, the classical Banach space associated with the pair (X, μ) and E_φ the *conditional expectation* operator (or the averaging projection with respect to φ , where φ is a σ -finite sub- σ -algebra of \mathcal{A}).

S will always be a closed subspace of $L^p(\mu)$ and H a selfconjugate family of $L^\infty(\mu)$. We say that S is *H-invariant* when $\varphi S \subseteq S$ for every $\varphi \in H$. We denote by $\sigma(H)$ the smallest sub- σ -algebra of \mathcal{A} making all the functions in H measurable and by S° the *polar* of S , i.e.,

$$S^\circ = \{ g \in L^{p'}(\mu) ; \int_X f g d\mu = 0 \text{ for all } f \in S \},$$

$$\frac{1}{p} + \frac{1}{p'} = 1$$

Dedicado al Prof. L. Vigil con motivo de su 70 aniversario.

The H -invariant subspaces S of $L^p(\mu)$ are essentially determined by the σ -algebra $\sigma(H)$. More exactly, if H_1 and H_2 are two different families of $L^\infty(\mu)$ such that $\sigma(H_1) \subseteq \sigma(H_2)$, then, the H_1 -invariant subspaces and the H_2 -invariant subspaces are the same if and only if the σ -algebras $\sigma(H_1)$ and $\sigma(H_2)$ are equivalent (i.e., they have the same μ -completion). This is a consequence of the following result.

1.1 Lemma. (see [3], [5])

If S is H -invariant, then the closure of S in $L^p(\mu)$ is $L^\infty(\sigma(H))$ -invariant.

When $\sigma(H)$ is σ -finite, we have a description for the H -invariant subspaces of $L^p(\mu)$ by using the conditional expectation operator, $E_{\sigma(H)}$.

1.2 Theorem.

S is H -invariant if and only if there exist a family $(g_i)_{i \in I}$ of $L^{p'}(\mu)$ such that $S = \bigcap_{i \in I} Sg_i$ where

$$Sg_i = \{ f \in L^p(\mu) ; E_{\sigma(H)}(fg_i) = 0 \quad \mu\text{-a.e.} \}$$

See [4] for the proof. The reader can also look at Theorem 3.2 below whose proof is quite similar.

1.3 Remarks.

a) The last result contains Beurling's theorem concerning invariant subspaces of $L^2(T)$ by the bilateral shift. In fact, in this case, $H = \{e^{it}, e^{-it}\}$ and $\sigma(H)$ consists of all Borel subsets of T , so that $E_{\sigma(H)}$ is the identity operator and

$$S = \bigcap_{i \in I} Sg_i = \{ f \in L^2(T) ; f = 0 \text{ a.e. in } E \}$$

where E is the support of the family $\{g_i\}_{i \in I}$.

b) Theorem 1.2 is also true in $L^\infty(X, \mathcal{A}, \mu)$, if we consider the weak-* topology in $L^\infty(\mu)$ and the subspace S is supposed to be weak-* closed.

c) It is possible to extend theorem 1.2 to a more general situation. For example, if S is a closed subspace of $L_B^\rho(X, \mathcal{A}, \mu)$, (a Köthe function space, see [7]), where ρ is a saturated, absolutely continuous norm and B is a Banach space such that the dual space B^* verifies the Radon-Nikodym property. (Many of the important classical Banach function spaces are contained in this class for suitable ρ 's).

2. Application to shift operators.

A natural question arises from the above theorem. How many functions of $L^{p'}(\mu)$ are necessary to obtain the subspace S ? Here, this question is solved in a particular, non trivial, situation. When, $X = [0,1)$ and $\sigma(H)$ is the σ -algebra of $\frac{1}{n}$ -periodic Borel subsets of $[0,1)$, i.e. $\sigma(H)$ is the σ -algebra

$$\mathcal{B}_n = \left\{ B \subset [0,1); B \text{ is a Borel set and } \frac{1}{n} \dot{+} B = B \right\}$$

where $\dot{+}$ stands for addition (mod. 1) in $[0,1)$. We shall need the following technical lemmas.

2.1 Lemma.

Let (X, \mathcal{A}, μ) be a σ -finite measure space let \mathcal{H} be a family of measurable functions. Then, there exists a unique (μ -a.e.) measurable subset A of X , such that:

i) $f(x) = 0$ a.e. $x \notin A$, $\forall f \in \mathcal{H}$

ii) there is a countable family of functions $(f_j)_j \subseteq \mathcal{H}$ with $\sum_j |f_j(x)| > 0$ a.e. $x \in A$

(A will be the *support of \mathcal{H}* , $\text{supp } \mathcal{H}$, and $\mathcal{H}^{-1}(0)$ the set $X \setminus A$)

Proof.

We consider the family

$\mathcal{C} = \left\{ (A_j)_{j \in J}; A_j \in \mathcal{A} \text{ pairwise disjoint with } \mu(A_j) > 0 \text{ and such that for each } j \in J, \text{ there is } f_j \in \mathcal{H} \text{ with } f_j(x) \neq 0 \text{ a.e. } x \in A_j \right\}$

(each J must be countable because (X, μ) is σ -finite).

$\mathcal{C} \neq \emptyset$ and \mathcal{C} is an inductive set under the partial order:

$$(A_j)_{j \in J_1} \alpha (B_j)_{j \in J_2} \text{ if } (A_j)_{j \in J_1} \text{ is a subfamily of } (B_j)_{j \in J_2}$$

By Zorn's lemma, we have a maximal element of \mathcal{C} , $(A_j)_{j \in J}$. Let $f_j, j \in J$, be the functions corresponding to A_j and $A = \bigcup_{j \in J} A_j$. Then, if $f \in \mathcal{H}$ and $B = \{x; f(x) > 0\} \cap A^c$, necessarily $\mu(B) = 0$. $\#$

2.2 Lemma.

Let H be a selfconjugate family of essentially bounded functions on $[0,1)$ such that $\sigma(H) = \mathcal{B}_n$. If S is an invariant subspace of $L^p([0,1], m)$, (m denotes

Lebesgue measure), $0 < p < \infty$, then there exists s_1, s_2, \dots, s_n belonging to S such that

$$g(x) = \sum_{j=1}^n \alpha_j(x) s_j(x) \quad x \in [0,1)$$

for each $g \in S$ and suitable \mathcal{B}_n -measurable functions, $\alpha_1, \alpha_2, \dots, \alpha_n$. (The functions α_j , $j = 1, 2, \dots, n$ depend on g , and, in general, they are not in $L^\infty(\mathcal{B}_n)$).

Proof.

$n = 1$: By applying the above lemma to $\text{supp } S$, we obtain a countable pairwise disjoint family $(A_j)_{j \in J}$ and their corresponding functions of S , $(f_j)_{j \in J}$. These functions can be modified so that $|f_j|^p < 2^{-j}$, $j \in J$. The function $s(x) = \sum_{j=1}^{\infty} f_j(x) \chi_{A_j}(x)$, belongs to S and verifies the result.

Next, we will give only the proof for $n = 2$, because for $n \geq 3$ the ideas are the same although the notation is more complicated.

$n = 2$: We take the following families of functions on $[0,1/2)$

$$F_1 = \{g(x), g(x+1/2); g \in S\}$$

$$F_2 = \{\det \begin{pmatrix} g(x) & g(x+1/2) \\ h(x) & h(x+1/2) \end{pmatrix}; g, h \in S\}$$

and we denote by N_1 and N_2 , the sets $F_1^{-1}(0)$ and $F_2^{-1}(0)$. If A is a Borel subset of $[0,1/2)$ we define \widetilde{A} as the set $\widetilde{A} = A \cup (A + \frac{1}{2})$.

The result holds in $(N_1)^\sim$, taking $s_1(x) = 0 = s_2(x)$. As $N_2 \setminus N_1 = \bigcup_{j \in J} A_j$, by lemma 2.1 (we suppose that the corresponding functions f_j verify $|f_j|^p < 2^{-j}$) the functions

$$\begin{aligned} s_1(x) &= \sum_{j=1}^{\infty} f_j \chi_{\widetilde{A}_j}(x) \\ s_2(x) &= 0 \end{aligned} \quad \text{a.e. } x \in [0,1)$$

belong to S . Moreover, if $h \in S$,

$$\det \begin{pmatrix} h(x) & h(x+1/2) \\ f_j(x) & f_j(x+1/2) \end{pmatrix} = 0 \quad \text{a.e. } x \in A_j$$

then, there exist $c_{h,j}(x)$ such that

$$\begin{aligned} h(x) &= c_{h,j}(x) f_j(x) \\ h(x+1/2) &= c_{h,j}(x) f_j(x+1/2) \end{aligned} \quad \text{a.e. } x \in A_j$$

We can extend $c_{h,j}$ to $[0,1]$, by defining them on \tilde{A}_j as $c_{h,j}(x+1/2) = c_{h,j}(x)$. Thus, $c_{h,j}$ is \mathcal{B}_2 -measurable and calling $\alpha_1(x) = \sum_{j=1}^{\infty} c_{h,j}(x) \chi_{\tilde{A}_j}(x)$, we conclude that

$$\begin{aligned} h(x) &= \alpha_1(x) s_1(x) + \alpha_2(x) s_2(x) \quad \text{a.e. } x \in \tilde{N}_2 \setminus \tilde{N}_1 \\ &\text{for all } \alpha_2, \mathcal{B}_2\text{-measurable.} \end{aligned}$$

Likewise, $[0,1] \setminus \tilde{N}_2 = ([0,1/2] \setminus N_2)^\sim$ and $[0,1/2] \setminus N_2$ is contained in $\text{supp } F_2$, then there are two families of functions $(f_j)_{j \in J}$, $(g_j)_{j \in J}$ in S such that

$$\det \begin{pmatrix} f_j(x) & f_j(x+1/2) \\ g_j(x) & g_j(x+1/2) \end{pmatrix} \neq 0 \quad \text{a.e. } x \in A_j$$

The functions

$$\begin{aligned} s_1(x) &= \sum_{j \in J} f_j(x) \chi_{\tilde{A}_j}(x) \\ s_2(x) &= \sum_{j=1}^{\infty} s_j(x) \chi_{\tilde{A}_j}(x) \end{aligned}$$

belong to S and besides, if $h \in S$, there exist $a_{h,j}$, $b_{h,j}$ verifying

$$\begin{aligned} h(x) &= a_{h,j}(x) f_j(x) + b_{h,j}(x) g_j(x) \\ h(x+1/2) &= a_{h,j}(x) f_j(x+1/2) + b_{h,j}(x) g_j(x+1/2) \end{aligned} \quad \text{a.e. } x \in A_j$$

We define $a_{h,j}$ and $b_{h,j}$ on \tilde{A}_j , by an $\frac{1}{2}$ -periodic extension and denote

$$\begin{aligned} \alpha_1(x) &= \sum_{j \in J} a_{h,j}(x) \chi_{\tilde{A}_j}(x) \\ \alpha_2(x) &= \sum_{j \in J} b_{h,j}(x) \chi_{\tilde{A}_j}(x) \end{aligned}$$

which are \mathcal{B}_2 -measurable, Thus

$$h(x) = \alpha_1(x) s_1(x) + \alpha_2(x) s_2(x) \quad \text{a.e. } x \in [0,1] \setminus \tilde{N}_2.$$

If $n = 3$, we should consider the families of functions on $[0,1/3]$

$$\begin{aligned}
 F_1 &= \left\{ g(x), g(x+1/3), g(x+2/3); g \in S \right\} \\
 F_2 &= \left\{ \det \begin{pmatrix} g(x) & g(x+1/3) \\ h(x) & h(x+1/3) \end{pmatrix}, \det \begin{pmatrix} g(x) & g(x+2/3) \\ h(x) & h(x+2/3) \end{pmatrix}, \right. \\
 &\quad \left. \det \begin{pmatrix} g(x+1/3) & g(x+2/3) \\ h(x+1/3) & h(x+2/3) \end{pmatrix} \quad g, h \in S \right\} \\
 F_3 &= \left\{ \det \begin{pmatrix} g(x) & g(x+1/3) & g(x+2/3) \\ f(x) & f(x+1/3) & f(x+2/3) \\ h(x) & h(x+1/3) & h(x+2/3) \end{pmatrix}; \quad f, g, h \in S \right\}
 \end{aligned}$$

and we should continue in the same way as above. #

If $p = +\infty$ the last result is true. It is necessary to take the functions f_j with $|f_j| \leq 1$, so that $\sum_{j=1}^{\infty} f_j \chi_{A_j} \in S$.

2.3 Theorem.

Let p and n be fixed, with $1 \leq p < \infty$ and $n \in \mathbb{N}$. If S is an H -invariant subspace of $L^p([0,1])$, $H = \{e^{2\pi i nt}, e^{-2\pi i nt}\}$, then, there exist $h_1, h_2, \dots, h_n \in L^{p'}([0,1])$ such that

$$S = \left\{ f \in L^p; \sum_{j=1}^n f(t + \frac{j-1}{n}) h_k(t + \frac{j-1}{n}) = 0 \quad a.e. t \right.$$

$$k = 1, 2, \dots, n \right\}.$$

Proof.

Since H is selfconjugate, then S and S° are $L^\infty(\sigma(H))$ -invariant by using lemma 1.1. Now, $\sigma(H) = \mathcal{B}_n$ and by applying lemma 2.2 to S° , we obtain $h_1, h_2, \dots, h_n \in S^\circ$ such that $g(x) = \sum_{j=1}^n \alpha_j(x) h_j(x)$ for each $g \in S^\circ$ and $(\alpha_j)_{j=1}^n$

\mathcal{B}_n -measurable functions. Hence, by theorem 1.1, we have:

$f \in S$ if and only if $E_{\sigma(H)}(fg) = \sum_{j=1}^n \alpha_j E_{\sigma(H)}(fh_j) = 0$ for all $g \in S^\circ$ or equivalently, $E_{\sigma(H)}(fh_k) = 0$ $k = 1, 2, \dots, n$.

2.4 Remarks.

a) If $p = +\infty$, the theorem holds by considering the weak-* topology in $L^\infty(\mu)$ and a weak-* closed subspace S .

b) If $p = 2$, we have obtained an implicit description for the invariant subspaces by the bilateral shift of finite multiplicity, in the Hilbert space $L^2([0,1])$, because these subspaces can be seen as the invariant subspaces by the multiplication operators associated to functions $e^{\pm 2\pi i n t}$ (n is the multiplicity of the shift). If we identify the spaces $L^2([0,1])$ and $L^2_{\mathbb{C}^n}([0,1/n])$ by the map $f \rightarrow F = (f_j)_{j=1}^n$ such that $f_j(t) = f(t + \frac{j-1}{n})$, we have obtained in theorem 2.3 that

$$(*) \quad S = \left\{ f \in L^2([0,1]) ; \quad F(t) \cdot H_k(t) = 0 \quad \text{a.e. } f. \quad k = 1, 2, \dots, n \right\}$$

By denoting as $M(t)$ the subspace of \mathbb{C}^n , which is orthogonal to the family $\{H_1(t), H_2(t), \dots, H_n(t)\}$ (with $0 \leq \dim M(t) \leq n$), then $(*)$ is equivalent to the customary explicit description for these subspaces which appears for example in [2].

2.5 Theorem.

Let T^2 be the 2-dimensional torus, and let $H = \{f_1, f_2\}$ with $f_1(x, y) = e^{2\pi i x}$ and $f_2(x, y) = e^{-2\pi i x}$. If S is an H -invariant subspace of $L^p(T^2)$, $1 \leq p < \infty$, then there exist a countable family $(g_j)_{j \in N}$ of $L^{p'}(T^2)$ such that

$$S = \left\{ f \in L^p(T^2) ; \quad \int_T f(x, y) g_j(x, y) dy = 0 \quad \text{a.e. } x, \quad j \in N \right\}$$

Proof.

Since H is selfconjugate, theorem 1.2 can be applied, and it suffices to observe that $\sigma(H) = \{B \times T ; B \text{ Borel subset of } T\}$, and therefore:

$$E_{\sigma(H)} f(x, y) = \int_T f(x, y) dy \quad \#$$

If $p = 2$, we have got an implicit description for the invariant subspaces by the bilateral shift of countable multiplicity in the Hilbert space $L^2(T^2)$, because the multiplication operator by $e^{2\pi i x}$ transforms $e_{n,m} \rightarrow e_{n+1,m}$ ($(e_{n,m})_{n,m} \in N = (e^{2\pi i (nx+my)})_{n \in \mathbb{Z}}$ is an orthonormal basis of $L^2(T^2)$). Moreover, we can identify $L^2(T^2)$ with $L^2_{L^2(T)}(T)$ by the map : $f \rightarrow F$ such that $F(x)(y) = f(x, y)$ and then we have

$$S = \left\{ f \in L^2(T^2) ; \quad \langle F(x) \cdot G_j(x) \rangle = 0 \quad \text{a.e. } x, \quad j \in N \right\}$$

or equivalently $S = \{ f \in L^2(T^2) ; F(x) \in M(x) \text{ a.e. } x \}$, where $M(x)$ denotes the orthogonal complement of the family $\{ G_k(x) \}_{k \in \mathbb{N}}$, for each $x \in T$ (This characterititation can also be seen in [2]).

3. The case of non σ -finite φ

In this section we shall obtain two results similar to theorem 1.2, when $\sigma(H)$ is not supposed to be σ -finite.

Let G be a σ -compact locally compact abelian group, $d\varphi$ a Haar measure on G , m another measure on G given by $dm(\varphi) = \Delta(\varphi)d\varphi$, where the weight Δ is a multiplicative measurable homomorfisme from G to \mathbb{R}^+ , and $(X_0, \mathcal{A}_0, \mu_0)$ a σ -finite measure space. Let (X, \mathcal{A}, μ) be the product space $(X_0 \times G, \mathcal{A}_0 \otimes \mathcal{B}(G), \mu_0 \otimes m)$, ($\mathcal{B}(G)$ is the σ -algebra of Borel subsets of G), and let φ be, the sub σ -algebra of \mathcal{A} ,

$$\varphi = \{ \pi^{-1}(A_0) ; A_0 \in \mathcal{A}_0 \} = A_0 \times G ; A_0 \in \mathcal{A}_0 \}$$

(π is the canonical proyection from X to X_0). Under these hypothesis, G can be considered as a bijective transformation group on X , which carries \mathcal{A} -measurable sets to \mathcal{A} -measurable sets and dilates the measure according to Δ , i.e.:

$$\mu(\psi(A)) = \Delta(\psi)\mu(A) \quad , \quad \psi \in G, A \in \mathcal{A} \quad .$$

Moreover, the σ -algebra φ coincides with $\{ A \in \mathcal{A} ; \varphi(A) = A \text{ for all } A \in \mathcal{A} \}$ and an H -measurable function f on X is φ -measurable if and only if $f(x, \varphi) = f(x, e)$ for all $\varphi \in G$, $x \in X_0$ (e is the unit element on G).

The following lemma is an inmediate consecuence of Fubini's theorem.

3.1. Lemma.

Let f be a function in $L^1(X)$. Then the function

$$\tilde{f}(x) = \int_G f(x, \varphi) dm(\varphi)$$

exists μ_0 - a.e. and it belong to $L^1(X_0, \mu_0)$. Furthermore,

$$\int_{X_0} \tilde{f} d\mu_0 = \int_X f d\mu \quad \text{and} \quad \|\tilde{f}\|_{L^1(\mu_0)} \leq \|f\|_{L^1(\mu)}$$

The function \tilde{f} admits a natural extension to X :

$$\tilde{f}(x, \psi) = \Delta(\psi^{-1}) \tilde{f}(x, e)$$

where we identify x with (x, e) . In general \tilde{f} is not \mathcal{F} -measurable

3.2 Theorem.

If S is a closed subspace of $L^p(X, \mathcal{A}, \mu)$ and H is a selfconjugate family in $L^\infty(\mu)$ with $\sigma(H) = \mathcal{F}$, then: S is H -invariant if and only if there exists a family $(g_i)_{i \in I}$ in $L^{p'}(\mu)$ such that $S = \bigcap_{i \in I} \tilde{S}g_i$, where

$$\tilde{S}g_i = \{f \in L^p(\mu) : (fg)^\sim = 0 \quad \mu_0 - a.e.\}$$

Proof

Assume first that S is a closed subspace of $L^p(\mu)$. For each $A_0 \in \mathcal{A}$, $g \in L^{p'}(\mu)$ and $f \in L^p(\mu)$

$$\begin{aligned} \int_{A_0} (fg)^\sim(x) d\mu_0(x) &= \int_{X_0} (fg)^\sim(x) \chi_{A_0}(x) d\mu_0(x) = \\ &= \int_{X_0} (fg \chi_{\pi^{-1}(A_0)})^\sim(x) d\mu_0(x) = \\ &= \int_X (fg \chi_{\pi^{-1}(A_0)})(x, \varphi) d\mu(x, \varphi) \end{aligned}$$

By lemma 1.1, the subspaces S and S° are $L^\infty(\mathcal{F})$ -invariant and thus, $f \in S$ implies $f \in \tilde{S}g$ for all $g \in S^\circ$. On the other hand, if $f \in \tilde{S}g$ for all $g \in S^\circ$ necessarily $(fg)^\sim = 0 \mu_0 - a.e.$ for all $g \in S^\circ$ and, by lemma 3.1, $\int_X fgd\mu = 0$ for all $g \in S^\circ$, which implies $f \in S$.

To prove the converse, it suffices to show that $\tilde{S}g$ is a closed and H -invariant subspace of $L^p(\mu)$ for every $g \in L^{p'}(\mu)$. But

$$(hfg)^\sim(x) = h(x, e)(fg)^\sim(x)$$

for all $f \in L^p(\mu)$, $g \in L^{p'}(\mu)$, $h \in H$, and then, $\tilde{S}g$ is H -invariant. Furthermore if $f_n \rightarrow f$ in $L^p(\mu)$, then $f_n g \rightarrow fg$ in $L^1(\mu)$ for all $g \in L^{p'}(\mu)$ and since the operator: $f \rightarrow \tilde{f}$ is continuous from $L^1(\mu)$ to $L^1(\mu_0)$, it follows that $\tilde{S}g$ is closed. $\#$

A comparison between theorem 1.2 and 3.2 shows that the operator: $f \rightarrow \tilde{f}$ is a good substitute for the conditional expectation operator: $f \rightarrow E_{\mathcal{F}}(f)$, which cannot be defined for the general kind of σ -algebras \mathcal{F} considered here.

When $\sigma(H)$ is σ -finite, the subspace \tilde{S}_g of theorem 3.2 are the same as those appearing in theorem 1.2, i.e.:

$$\tilde{S}_g = \{ f \in L^p(\mu) ; E_g(fg) = 0 \quad \mu\text{-a.e.} \} .$$

In fact:

$$\int_{A_0} (fg)^\sim d\mu_0 = \int_X fg \chi_{\pi^{-1}(A_0)} d\mu \quad \text{for all } A_0 \in \mathcal{A}_0 .$$

3.3 Examples.

We present several examples of σ -algebras \mathcal{F} and projections: $f \rightarrow \tilde{f}$ which fall under the scope of theorem 3.2. More examples are given in [5].

1°) Let \mathcal{F} be the σ -algebra of all Borel subsets of \mathbb{R}^n , which are translation invariant with respect to a vector w and $\tilde{f}(x) = \sum_{n \in \mathbb{Z}} f(x+nw)$, $x \in \mathbb{R}^n$; then \tilde{f} is \mathcal{F} -measurable. Taking: $X_0 = \{ x \in \mathbb{R}^n ; 0 \leq x \cdot w < 1 \}$ and G as the group of translation by kw , $k \in \mathbb{Z}$, with their natural measures, theorem 3.2 can be applied in this context.

2°) Let \mathcal{F} be the σ -algebra of all Borel subsets of \mathbb{R}^n which are radial and $\tilde{f}(x) = \int_{S_{n-1}} f(rx') d\sigma(x')$, $x \in \mathbb{R}^n$, $r = \|x\|$ ($d\sigma(x')$ denotes Lebesgue measure on $S_{n-1} = \{ x \in \mathbb{R}^n ; \|x\| = 1 \}$), S_{n-1} which is \mathcal{F} -measurable. In this case, if we take: $X_0 = [0, +\infty)$ with the measure $d\mu_0(r) = \omega_{n-1} r^{n-1} dr$ (ω_{n-1} is the total measure of S_{n-1}), and as G the quotient group $O(n)/K$ ($O(n)$ is the group of all orthogonal transformation on \mathbb{R}^n and K its the normal subgroup which fixes a point x'_0 of S_{n-1}) with normalized Haar measure, then theorem 3.2 can be applied again.

3°) Let \mathcal{F} be the σ -algebra of all dilatation-invariant Borel subsets of \mathbb{R}^n and $\tilde{f}(x) = \int_0^{+\infty} f(rx)r^{n-1} dr$, $x \in \mathbb{R}^n$, $r = \|x\|$, which is not \mathcal{F} -measurable. Now, if $X_0 = S_{n-1}$ with its measure and G is the group of homotopies on \mathbb{R}^n (G can be identified with the group $(0, +\infty)$ with measure $dm(\varphi) = r^n \frac{dr}{r}$) again. we have a good situation for the application theorem 3.2. #

The following situation is not included in the theorem 3.2 and we shall now give a theorem for it. Let X be a locally compact abelian group, G a closed subgroup of X and \tilde{X} the quotient group X/G equipped with their respective Haar measures m and m_G . We can take a suitable Haar measure \tilde{m} on \tilde{X} such that Weil's formula holds: If $f \in L^1(X)$ and we define

$$\tilde{f}(\tilde{x}) = \int_G f(\varphi(x)) dm_G(\varphi)$$

then $\tilde{f} \in L^1(\tilde{X})$ and $\int_{\tilde{X}} \tilde{f} d\tilde{m} = \int_X f dm$.

Now, \mathcal{F} is the sub- σ -algebra of Borel subsets of X , then $\mathcal{F} = \{ \pi^{-1}(B) ; B \in \mathcal{B}(\tilde{X}) \}$, where π denotes the canonical projection from X onto \tilde{X} . This situation is very similar to the one described above, but, in general, it is not clear that the σ -algebras $\mathcal{B}(G) \otimes \mathcal{B}(\tilde{G})$ and $\mathcal{B}(X)$ can be identified.

3.4 Theorem.

Let S be a closed subspace of $L^p(X, \mathcal{B}(X), \mu)$ and H a selfconjugate family of $L^\infty(\mathcal{F})$ with $\sigma(H) = \mathcal{F}$. Then, S is H -invariant if and only if there exists a family $(g_i)_{i \in I} \subseteq L^{p'}(\mu)$ such that $S = \bigcap_{i \in I} \tilde{Sg_i}$, where

$$\tilde{Sg_i} = \{ f \in L^p(\mu) : (fg_i)^\sim = 0 \text{ } \tilde{m}\text{-a.e.} \} \quad \#$$

The proof is exactly as in Theorem 3.2, Weil's identity being now the substitute of Lemma 3.1. Finally, we observe that the remarks 1.3 b) and c), remains true (with a suitable formulation) in this context.

4. An application to Operator Theory in Hilbert spaces.

Let \mathcal{H} be a separable Hilbert space. We denote by $\mathcal{L}(\mathcal{H})$ the family of bounded linear operators on \mathcal{H} , by $\sigma(T)$ the spectrum of T ($T \in \mathcal{L}(\mathcal{H})$) and by $C(T)$, the algebra of operators commuting with T , $C(T) = \{ Q \in \mathcal{L}(\mathcal{H}) ; QT = TQ \}$.

If T is a normal operator on \mathcal{H} , there exists a unique resolution of the identity E on $(\sigma(T), \mathcal{B}(\sigma(T)))$ such that $T = \int_{\sigma(T)} \lambda dE\lambda$, i.e.

$$\langle Tx, y \rangle = \int_{\sigma(T)} \lambda E_{x,y}(\lambda) \text{ for all } x, y \in \mathcal{H} \text{ (see [2], [6]).}$$

Moreover, $Q \in C(T)$ if and only if $(QE(\omega)) = E(\omega)Q$ for all $\omega \in \mathcal{B}(\sigma(T))$ (see [6], pág. 308). Another version of the spectral theorem says that, if T is a normal operator on \mathcal{H} , then there is a finite measure space (X, \mathcal{A}, μ) and function $\varphi \in L^\infty(\mu)$ such that T is unitarily equivalent to the multiplication operator $M\varphi$ on $L^2(\mu)$. Furthermore, $\sigma(M\varphi) = \text{essential range of } \varphi = \sigma(T)$. We shall denote by E' the resolution of the identity on $(\sigma(T), \mathcal{B}(\sigma(T)))$ associated to $M\varphi$, which is defined by: $E'(\omega) = M\chi_{\varphi^{-1}(\omega)}$, so that E and E' will be unitarily equivalent.

In what follows, we shall identify the spaces \mathcal{H} and $L^2(X, \mathcal{A}, \mu)$, the operators T and $M\varphi$ and the resolutions of the identity E and E' .

4.1 **Theorem.**

Let S be a closed subspace of \mathcal{H} and let T be a normal operator on \mathcal{H} . Then, S is T -invariant and T^* -invariant ($TS \subseteq S$ and $T^*S \subseteq S$) if and only if S is the intersection of a family of subspaces S_y of \mathcal{H} , where, for each $y \in \mathcal{H}$: $S_y = \{x \in \mathcal{H}; E_{xy} = 0\}$.

Proof.

Since $E'_{f,g}(\omega) = \langle E'(\omega)f, g \rangle = \int_{\varphi^{-1}(\omega)} \overline{f}g d\mu$ for all $\omega \in \mathcal{B}(\sigma(T))$, by the theorem 1.2 and the above identification the result follows.

4.2 **Theorem.**

Let T be a normal operator on \mathcal{H} . The following statements are equivalent:

$$(a) \quad C(T) = \{F(T); F \in L^\infty(\sigma(T))\}$$

(b) The only subspaces S of \mathcal{H} which are T -invariant and T^* -invariant are the ranges of the spectral projections associated to E , i.e., $S = \text{Im } E(\omega)$ with $\omega \in \mathcal{B}(\sigma(T))$.

Proof.

Observe that $F(T) \in C(T)$, and if $\sigma(\varphi) = \varphi$ then, $F\varphi$ is φ -measurable for all $F \in L^\infty(\sigma(T))$.

We shall show that (a) and (b) are equivalent to (c): $\sigma(\varphi) \sim \mathcal{A}$ (i.e., they have the same μ -completion).

$$(a) \iff (c).$$

If $A \in \mathcal{A} \setminus \varphi$, then $M_{\chi_A} \in C(T)$, and it does not belong to $\{F(T); F \in L^\infty(\sigma(T))\}$. On the other hand, if $\varphi \sim \mathcal{A}$, there exists a cyclic vector of T in \mathcal{H} , because the span of $M_{\varphi^n} M_{\varphi^m} \chi_X$ ($m, n \in \mathbb{N}$) is dense in $L^2(\mu)$ (see theorem 2 in [3] or theorem 1.2 in [4]), and then, we can take, $X = \sigma(T)$ and $\varphi(z) = z$ for all $z \in \sigma(T)$, in the spectral representacion, (see [2], pág. 13). Moreover, if $Q \in C(T)$, $Q \in C(F(T))$, i.e., $Q \cdot M_F = M_F \cdot Q$ for all $F \in L^\infty(\sigma(T))$. Since $\{M_F; F \in L^\infty(\sigma(T))\}$ is a maximal abelian albegra (see [2], pág. 21), then, $Q = M_G$ for some $G \in L^\infty(\sigma(T))$ or equivalently $Q = G(T)$.

$$(c) \iff (b)$$

If S is T and T^* -invariant and $\varphi \sim \mathcal{A}$, by using theorem 1.2 of [4] it follows that $S = L^2(\varphi^{-1}(\omega_0))$, where $\varphi^{-1}(\omega_0)$ is the support of S .

Reciprocally if $A \in \mathcal{A}$, $L^2(A, \mathcal{A}, \mu)$ is a subspace of \mathcal{H} which is φ and φ -invariant, and then, there exists $\omega \in \sigma(T)$ such that $L^2(A, \mathcal{A}, \mu) = \text{Im } E(\omega) = L^2(\varphi^{-1}(\omega), \mathcal{A}, \mu)$ and thus $A = \varphi^{-1}(\omega) \mu\text{-a.e.}$, i.e., $\mathcal{A} \sim \varphi$.

REFERENCES

- [1] NACHBIN, L.: "The Haar Integral", Van Nostrand (1965).
- [2] RADJAVI, H.; ROSHENTHAL, P.: "Invariant Subspaces", Springer (1973).
- [3] REZOLA, M.L.: "Un teorema de aproximación en espacios L^p ", Rev. Mat. His. Amer. XL (5-6) (1980), 206-215.
- [4] REZOLA, M.L.: "Subespacios Invariantes en $L^p(\mu)$ ", Actualites mathematiques, Actes 6e Congr. Group. Math. Expr. Latine, Luxembourg 1981, 437-440 (1982).
- [5] REZOLA, M.L.: "Subespacios Invariantes y Aproximación en Espacios de Funciones Medibles", Dissertation (1982). Univ. Zaragoza. Fac. Ciencias, Dpto. Teoría de Funciones.
- [6] RUDIN, W.: "Functional Analysis", Mac Graw Hill (1973).
- [7] ZAANEN, A.C.: "Integration", North Holland Pu. Co. (1967).

M. L. Rezola
Departamento de Teoría de Funciones.
Facultad de Ciencias.
Universidad de Zaragoza (SPAIN)