
Chapter 11
The inverse problem for linearly related
orthogonal polynomials: General case

A. Peña and M. L. Rezola

Abstract We study the inverse problem in the theory of (standard) orthogonal poly-
nomials involving two polynomials families (%=)= and (&=)= which are connected
by a linear algebraic structure such as

%= (G) +
#’
8=1

A8,=%=�8 (G) = &= (G) +
"’
8=1

B8,=&=�8 (G),

for all = = 0, 1, . . . where # and " are arbitrary nonnegative integer numbers.

11.1 Introduction

We had the honor and pleasure of collaborating with Zé Carlos. He was distinguished
by his bonhomie, good work and knowledge and we will never forget how wonderful
it was to work with him. His memory will remain with us.

The idea to address the general case in the framework of the inverse problem for
linearly related orthogonal polynomials arose after our joint work [3] . We share
with him how to do it. Unfortunately for us, he was unable to participate in its
development, although he was aware of everything we achieved and encouraged us
to continue.

The analysis of linear structure relations involving two monic orthogonal polyno-
mial sequences (MOPS), (%=)= and (&=)=, such as
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%= (G) +
#’
8=1

A8,=%=�8 (G) = &= (G) +
"’
8=1

B8,=&=�8 (G), = � 0, (11.1)

where # and " are fixed nonnegative integer numbers, and (A8,=)= and (B8,=)= are
sequences of complex numbers (and empty sum equals zero), has been a subject of
research interest in the last decades. In the literature, many works can be found where
this type of relations is studied from different points of view. About the interest and
importance of the study of these structure relations we refer to the introduction given
in [10] and [3], as well as the references therein.

In many of these works the main problem stated and solved therein was the
following inverse problem: assuming that (%=)= is a MOPS and (&=)= only a
simple set of polynomials (&= is a polynomial of degree =), verifying (11.1), to find
necessary and sufficient conditions so that (&=)= is also a MOPS and to obtain the
relation between the corresponding regular linear functionals. We want to notice
that most of these papers deal with relations considering concrete values for # and
" (see [1], [2], [3], [4], [5], [7], [8]). In this contribution we analyze the inverse
problem for any values of # and " .

A classical tool for working with algebraic properties of orthogonal sequences of
polynomials is the use of recurrence relations. Any MOPS (%=)= is characterized by
a three-term recurrence relation

G%= (G) = %=+1 (G) + V=%= (G) + W=%=�1 (G), = = 0, 1, . . .

with initial conditions %�1 (G) = 0 and %0 (G) = 1, where (V=)= and (W=)= are
sequences of complex numbers such that W= < 0 for all = = 1, 2, . . . . This is known
as Favard’s theorem (see, e.g., [6]).

However this tool can be replaced by the use of dual basis which produces a natural
way for studying the algebraic properties of sequences of orthogonal polynomials.
Any simple set of polynomials (%=)= has a dual basis (a=)=, that is

ha=, % 9i := X=, 9 , =, 9 = 0, 1, . . .

being X=, 9 the usual Kronecker symbol. Moreover, if (%=)= is a MOPS with respect
to the linear functional u, then the associated dual basis is

a= =
%=

hu, %2
=
i

u, = = 0, 1, . . .

see [9]. A more detailed description can be seen in Section 2 of [10].
This is the main tool used by Petronilho in [10] to solve part of the inverse problem

for general relations as (11.1) assuming the orthogonality of both sequences (%=)=
and (&=)= with respect to u and v, as well as some additional assumptions which we
will call initial conditions. More precisely, he obtains that the rational transformation
between the linear functionals u and v is

�"u =  #v,
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where �" and  # are polynomials of degrees " and # , respectively. In Section 2,
we make an exhaustive study about these initial conditions. We obtain, in Theorem
11.2, that these initial conditions characterize the existence of such rational trans-
formation and the non existence of another relationship with degrees less than or
equal to " and # , respectively. Moreover these initial conditions allow us to prove
important facts like:

(a) All the coefficients A# ,= and B" ,= in (11.1) are not zero for = � # + " .

(b) There exist constant sequences whose values are the coefficients of the poly-
nomials �" and  # . It is important to note that the existence of such constant
sequences was already obtained in [7] for # = 1," = 0, in [1] for # = 1," = 1,
in [4] for # = 2," = 0 and in [3] for # = 2," = 1, in terms of the recurrence
coefficients. Here, for arbitrary values of # and " , we obtain this property in a
compact form by using linear functionals and determinants.

On the other hand, in Section 3 we get necessary and sufficient conditions in
order to the sequence (&=)= defined recursively by (11.1) becomes also a MOPS.
The main advance in this line is to introduce some auxiliary polynomials '=, which
are precisely the linear combinations of the polynomials %= that appear in the
relation (11.1). These polynomials do not necessarily have to be orthogonal, but
they are interesting in two senses. First, they allow to simplify the computations in
the problem of characterizing the orthogonality of the sequence (&=)=. And second
and more important, is that the conditions which characterize the orthogonality of
(&=)= correspond to most of the conditions (= � # + " + 1) that characterize the
orthogonality of two simpler problems. More precisely, assuming that (%=)= is a
MOPS, to characterize the orthogonality of ('=)= and then, assuming that ('=)= is a
MOPS, to characterize the orthogonality of (&=)=. In some way the problem # �"

can be divided in two simpler problems # � 0 and 0 � " but always keeping in
mind that not all the conditions of regularity (orthogonality) appear, the first ones are
different. This is because, as we have already mentioned, these auxiliary polynomials
('=)= do not have to be orthogonal.

11.2 Relation between the regular functionals and consequences

Let (%=)= and (&=)= be two sequences of monic polynomials orthogonal with respect
to the regular functionals u and v, respectively, normalized by hu, 1i = 1 = hv, 1i.
Suppose that these families of polynomials are linearly related by (11.1), that is

%= (G) +
#’
8=1

A8,=%=�8 (G) = &= (G) +
"’
8=1

B8,=&=�8 (G), = � 0.

Consider the following auxiliary polynomials, namely '=,
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'= (G) := %= (G) +
#’
8=1

A8,=%=�8 (G) = &= (G) +
"’
8=1

B8,=&=�8 (G).

Denote by (c=)=, (a=)= and (b=)= the dual basis corresponding to ('=)=, (%=)= and
(&=)=, respectively. Expanding (a=)"�1

==0 and (b=)#�1
==0 in terms of (c=)=, we can

write
A(c0, . . . , c"+#�1)) = (a0, . . . , a"�1, b0, . . . , b#�1)) , (11.2)

where A is a (" + #) ⇥ (" + #) matrix whose elements are the coefficients that
appear in the relation (11.1). Its explicit expression can be seen in [10, Theorem 1.1].
There, it was proved that the initial conditions

det A < 0, A# ,#+" < 0, and sM,N+M < 0, (11.3)

yield the following relation between the linear functionals u and v

�"u =  #v, (11.4)

where �" and  # are polynomials of (exact) degrees " and # , respectively.

In the sequel we will use the following notations:

%= (G) =
%= (G)
hu, %=

2i
, and &

=
(G) = &= (G)

hv,&=

2i
.

For = � # � 1, we introduce the # ⇥ # matrices Bn and B8

=
, 8 = 0, . . . , # � 1,

where

B= :=

©≠≠≠≠≠
´

h&
#�1v, %=i · · · h&0v, %=i

h&
#�1v, %=�1i · · · h&0v, %=�1i

.

.

.

.
.
.

.

.

.

h&
#�1v, %

=� (#�1)i · · · h&0v, %
=� (#�1)i

™ÆÆÆÆÆ
¨#⇥#

and B8

=
:= the matrix obtained replacing in B= the 8-th column by the vector

(h&
#

v, %=i, . . . , h&#
v, %

=� (#�1)i)) .
In a similar way for = � " � 1, we introduce the " ⇥ " matrices eB= andeB8

=
, 8 = 0, . . . ," � 1, where

eB= :=
©≠≠≠≠
´

h%"�1u,&=i · · · h%0u,&=i
h%"�1u,&=�1i · · · h%0u,&=�1i

.

.

.

.
.
.

.

.

.

h%"�1u,&
=� ("�1)i · · · h%0u,&

=� ("�1)i

™ÆÆÆÆ
¨
"⇥"

and eB8

=
:= the matrix obtained replacing in eB= the 8-th column by the vector⇣

h%"u,&=i, . . . , h%"u,&
=� ("�1)i

⌘
)

.
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Next, we show a property about the determinants of the matrices Bn andeB= which
plays an important role in this work.

Lemma 11.1 Let (%=)= and (&=)= be two sequences of monic polynomials linearly
related by (11.1).
(a) If the polynomials &= are orthogonal with respect to the functional v, then

det B= = (�1)# A# ,= det B=�1, f>A = � " + # .

(b) If the polynomials %= are orthogonal with respect to the functional u, then

det eB= = (�1)" B" ,= det eB=�1, f>A = � " + # .

Proof (a) First we get that det B#+" = (�1)# A# ,#+" det B#+"�1. Indeed, taking
into account that

%#+" (G) = &#+" (G) +
"’
8=1

B8,#+"&#+"�8 (G) �
#’
8=1

A8,#+"%#+"�8 (G),

by (11.1) for = = # +" , using the orthogonality of the polynomials &= with respect
to v and developing the determinant of B#+" by the first row, it can be derived that

det B#+" = � (�1)#�1
A# ,#+" det B#+"�1.

To conclude the proof of (0) it suffices to observe that the same argument works for
any fixed = > # + " .

(b) This property can be similarly derived with the appropriate changes. É

Now, we will see that the polynomials  # and �" which satisfy the relation
(11.4) can be written as:

 # (G) = A# ,"+# &
#
(G) +

#�1’
8=0

_8 &8
(G), (11.5)

and

�" (G) = B" ,"+# %" (G) +
"�1’
8=0

`8 %8 (G). (11.6)

Indeed, if  # is a polynomial of degree # it can be written as

 # (G) = _# &
#
(G) + _#�1 &#�1 (G) + · · · + _1 &1 + _0,

with _# < 0. Then, using the dual basis of (%=)= we have

 #v =
"’
9=0

h #v, % 9i % 9u, (11.7)
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because h #v, % 9i = h�"u, % 9i = 0, for 9 � " + 1. Moreover, by (11.1)
A# ,#+" h #v, %"i = B" ,#+" h #v,&# i = _# B" ,#+" , and from (11.7) we get
the expressions (11.5) and (11.6) for the polynomials  # and �" , respectively.

Next, we obtain a characterization of the initial conditions (11.3) in terms of the
relations between the linear functionals u and v.

Theorem 11.2 Let (%=)= and (&=)= be two MOPSs with respect to the regular
functionals u and v, respectively, normalized by hu, 1i = 1 = hv, 1i. Assume that
they are related by (11.1) where # ," � 1.

Then, the following statements are equivalent:
(a)

det A < 0, A# ,#+" < 0, and sM,N+M < 0.

(b) There exist polynomials�" , # of degrees " , # , respectively, such that�" u =
 # v, and there is no other relationship e�" u = e # v, with degrees of polynomialse�" and e # less than or equal to " and # respectively.

Proof (0) =) (1)
First we prove that the polynomials  # and �" defined by (11.5) and (11.6)

such that �" u =  # v are unique. Indeed, using the dual basis (a=)= and (b=)=
corresponding to (%=)= and (&=)=, respectively, we have

 # v = A# ,"+# b# + _#�1 b#�1 + · · · + _1 b1 + _0 b0,

and
�" u = B" ,"+# a" + `"�1 a"�1 + · · · + `1 a1 + `0 a0,

since a= = %= u and b= = &
=

v for = � 0.
So, by the relation between the functionals (11.4) and the definition (11.2) of the

matrix A, we get

A# ,"+# b# � B" ,"+# a" =

(`0, . . . , `"�1,�_0, . . . ,�_#�1) (a0, . . . , a"�1, b0, . . . , b#�1)) =

(`0, . . . , `"�1,�_0, . . . ,�_#�1) A (c0, . . . , c"+#�1)) .

Thus, since (c=)= is a basis and there exists A�1 the inverse matrix of A, the vector
(`0, . . . , `"�1,�_0, . . . ,�_#�1) is unique. Therefore there exist unique polynomi-
als  # and �" of degrees respectively # ," such that �" u =  # v.

Now, we suppose that there exist another polynomials e # and e�" satisfyinge�" u = e # v, with deg e #  # and deg e�"  " . Thus, we have

(�" � e�" ) u = ( # � e # ) v,

so it is not possible that deg e # < # and deg e�" < " hold simultaneously.
To conclude, it suffices to observe that from the two relations between the func-

tionals u and v, we also obtain the following relation
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e # �" v = e�"  # v,

which yields a contradiction if either deg e�" = " and deg e # < # or deg e�" <

" and deg e # = # .

(1) =) (0)
Consider the systems

h #v, %=i = 0, = = " + 1, . . . , # + " , (11.8)

and
h�"u,&=i = 0, = = # + 1, . . . , # + " ,

where the unknowns are, respectively, (_8)#�1
8=0 and (`8)"�1

8=0 . Notice that, by hy-
pothesis, the solutions of these systems are unique. Thus, the respective coefficient
matrices B#+" and eB#+" have maximum rank that is

d4C B#+" < 0, and d4C eB#+" < 0.

So, by Lemma 11.1 we obtain A# ,"+# < 0 and B" ,"+# < 0.
Now, it remains only to prove that det A < 0. To do this, we consider the system

with two equations, one of which is the expansion of b# as a linear combination of
(c8)"+#

8=0 and the other one is the corresponding expansion of a" . Then, multiplying
the first of these equations by A# ,"+# and the second one by B" ,"+# , and subtracting
the resulting equations (this will eliminate c"+# ) we get

A# ,"+# b# � B" ,"+# a" =
"+#�1’

8=0
-8 c8 ,

(see the proof of Theorem 1.1 in [10], for instance). On the other hand, we know

A# ,"+# b#�B" ,"+# a" = (`0, . . . , `"�1,�_0, . . . ,�_#�1)A(c0, . . . , c"+#�1)) .

Thus,
A) (`0, . . . , `"�1,�_0, . . . ,�_#�1)) = (-0, . . . -"+#�1)) ,

and then det A = det A) < 0 because the system has a unique solution. É

In the following theorem we prove that the initial conditions (11.3) allow us to
assure that the lengths of the linear combinations of (%=)= and (&=)= in (11.1) are
exactly # + 1 and " + 1 respectively. Moreover, we can find constant sequences
whose values are precisely the coefficients of the polynomials  # and �" .

Theorem 11.3 Let (%=)= and (&=)= be two MOPSs with respect to the regular
functionals u and v, respectively, normalized by hu, 1i = 1 = hv, 1i. Assume that
they are related by (11.1) where # ," � 1 and the coefficients satisfy the initial
conditions (11.3). Then, the following properties hold:
(a) All the coefficients A# ,= and B" ,= in (11.1) are not zero, for every = � # + " .
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(b) There exist constant sequences (_8,=)=�#+" and (`8,=)=�#+" such that _8,= =
_8 , 8 = 0, . . . , #�1 and `8,= = `8 , 8 = 0, . . . ,"�1, where (_8)#�1

8=0 and (`8)"�1
8=0 are

the coefficients which appear in the expressions (11.5) and (11.6) of the polynomials
 # and �" .

Proof (a) First we observe that for = � # + " we have

B" ,#+"

hu, %2
"
i
A# ,= hu, %2

=�# i = h�"u, (%= +
#’
8=1

A8,=%=�8)&=� (#+" )i

= h #v, (&= +
"’
8=1

B8,=&=�8)&=� (#+" )i =
A# ,#+"

hv,&2
#
i
B" ,= hv,&2

=�"i,

taking into account the hypothesis (11.1), (11.4), the expressions (11.5)-(11.6) and
the orthogonality of the polynomials %= and&= with respect to the functionals u and
v, respectively. Thus, since A# ,#+" B" ,#+" < 0, it is enough to prove that either
A# ,= < 0 or B" ,= < 0, for = � # + " + 1.

Here, we will prove that A# ,= < 0, for = � # + " + 1.
Assume that there exists = � #+"+1 such that A# ,= = 0 and let =0 := min{=; = �

# +" + 1, A# ,= = 0}. Then Lemma 11.1 gives det B=0 = 0, so the coefficient matrix
associated with the system

h #v, %=i = 0, = = =0 � (# � 1), . . . , =0,

has not maximum rank and therefore there exists another solution, namely, (_̃8)#�1
8=0

such that
he #v, %=i = 0, = = =0 � (# � 1), . . . , =0,

where

e # (G) = A# ,"+# &
#
(G) + _̃#�1 &#�1 (G) + · · · + _̃1 &1 + _̃0.

Moreover he #v, %=0�# i < 0. Indeed, if he #v, %=0�# i = 0 then the system

he #v, %=i = 0, = = =0 � # , . . . , =0 � 1,

has two solutions which yields a contradiction since the coefficient matrix of this
system, B=0�1, has maximum rank by definition of =0.

Hence, using the relation (11.1), we have

h( # � e # )v, %=i = �he #v, %=i = 0, = � =0 � (# � 1),

and
h( # � e # )v, %=0�# i = �he #v, %=0�# i < 0.

Denote by ⌘#�1 the polynomial  # � e # of degree less than or equal to # � 1.
Then, writting ⌘#�1v in the dual basis of (%=)=, we have
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⌘#�1v =
=0�#’
9=0

h⌘#�1v, % 9i
hu, %2

9
i

% 9u,

so there exists a polynomial i=0�# of degree =0 � # such that ⌘#�1v = i=0�#u.
Finally observe that since the functionals u and v satisfy the two relations

⌘#�1v = i=0�# u and  #v = �"u,

it can be obtained
⌘#�1�"v = i=0�# #v,

which leads to a contradiction, taking into account the degrees of the polynomials
⌘#�1�" and i=0�# # .

(b) From the previous theorem, we already know that the system (11.8)

h #v, %=i = 0, = = " + 1, . . . , # + " ,

has a unique solution, namely (_8)#�1
8=0 , which are the coefficients of the polynomial

 # . So, since det B#+" < 0 by Cramer’s rule

_8 = �A# ,#+"
det B8

#+"
det B#+"

, for 8 = 0, . . . , # � 1.

On the other hand, since �"u =  #v, it is obvious that

h #v, %=i = 0, = � " + 1.

Now, for each = fixed, = � # + " , we can consider the system

h #v, %8i = 0, 8 = = � (# � 1), . . . , =,

whose matrix of coefficients B= has maximum rank, because we know

det B= = (�1)# A# ,= . . . (�1)# A# ,#+"+1det B#+" < 0,

by (a) and Lemma 11.1. Then, for every = � # +" , this system has a unique solution
for (_8)#�1

8=0 , namely (_8,=)#�1
8=0 , and again by Cramer’s rule we have

_8,= = �A# ,#+"
det B8

=

det B=

, for 8 = 0, . . . , # � 1,

for all = � # + " .

Thus, we can assure there exist # constant sequences, namely (_8,=)#�1
8=0 , such

that for every = � # + " we have _8,= = _8 that is the value of these constants
coincide with the coefficients of the polynomial  # .

To conclude the proof of (1) , we work in the same way with the polynomial�" .
So, we have
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h�"u,&=i = 0, = � # + 1.

Thus, for each n fixed, = � # + " we can consider the system

h�"u,&8i = 0, 8 = = � (" � 1), . . . , =,

where the unknowns are (`8)"�1
8=0 , that is the coefficients of the polynomial �" ,

see (11.6). The uniqueness of the polynomial �" obtained in the previous theorem
leads us to state that det eB= < 0, for all = � # +" . Then, in the same way as before,
we obtain that there exist " constant sequences, namely (`8,=)"�1

8=0 , such that for
every = � # + " , we have `8,= = `8 , where

`8,= = �B" ,#+"
det eB8

=

det eB=

.

Note that the values of these constants coincide with the coefficients of the polynomial
�" . É

Observe that the notation used before Lemma 11.1 does not work for either # = 0
or " = 0. So we conclude this section, for the sake of completeness, showing the
analogous results for these particular situations. We will show only the case " = 0
and # � 1, that is

%= (G) +
#’
8=1

A8,=%=�8 (G) = &= (G), = � 0, (11.9)

where # � 1 and A8,= (8 = 1, . . . , #) are complex numbers. The other case is totally
analogous with the appropriate changes.

Theorem 11.4 Let (%=)= and (&=)= be two sequences of monic polynomials with
respect to the regular functionals u and v, respectively, normalized by hu, 1i = 1 =
hv, 1i. Suppose that these families of polynomials are linearly related by (11.9) with
the initial condition A# ,# < 0. Then, the following properties hold:

(a) The exists a unique polynomial  # of degree # such that u =  # v, where
 # is defined by (11.5) with " = 0.

(b) All the coefficients A# ,= in (11.9) are not zero, for every = � # .

(c) There exist constant sequences (_8,=)=�# such that _8,= = _8 , 8 = 0, . . . , #�1,
where (_8)#�1

8=0 are the coefficients which appear in the expression (11.5) of the
polynomial  # .

Proof The proof follows the same ideas of the previous theorems. In any case, for
the sake of completeness, we briefly expose the arguments used.

Observe that hu,&=i = hu, %= +
Õ

#

8=1 A8,=%=�8i = 0, for = � # + 1. Then, using
the dual basis of (&=)= we get u =

Õ
#

==0 hu,&=i&=
v, where hu,&# i = A# ,# < 0

and therefore there exists a unique polynomial of degree # such that

u =  # v,
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where  # is defined by (11.5).
On the other hand, we can check that d4C B#�1 = 1 and that (0) of the Lemma 11.1

holds with " = 0. Thus, the coefficient matrix B# of the system

h # v, %=i = 0, = = 1, . . . , # ,

has maximum rank and the coefficients (_8)#�1
8=0 of the polynomial  # are

_8 = �A# ,#

det B8

#

det B#

, for 8 = 0, . . . , # � 1.

Moreover, in the same way as in the previous theorem, it can be proved that

A# ,# < 0 =) A# ,= < 0, = � # .

Thus, det B= < 0, for = � # and

_8 = _8,= = �A# ,#

det B8

=

det B=

, for 8 = 0, . . . , # � 1, = � # .

É

11.3 Orthogonality characterizations

Let (%=)= and (&=)= be two sequences of monic polynomials linked by a structure
relation as (11.1), with the conventions A# ,=B" ,= < 0, for all = � # + " .

In this section, we want to find necessary and sufficient conditions in order to
(&=)= be a MOPS if (%=)= is a MOPS. As we have mentioned in the introduction, to
get this general case, we introduce some auxiliary polynomials '= and so, in some
way, the problem # � " can be divided in two simpler problems # � 0 and 0 � " .
So, we previously study these particular situations that correspond to consider in the
relation (11.1) either " = 0 or # = 0.

From now on, (%=)= denotes a MOPS with respect to a regular functional u and
(V=)= and (W=)= the corresponding sequences of recurrence coefficients, that is

%=+1 (G) = (G � V=)%= (G) � W=%=�1 (G), = � 0, (11.10)
%0 (G) = 1, %�1 (G) = 0,

with W= < 0 for all = � 1.

Proposition 11.5 Let (%=)= be a MOPS with recurrence coefficients (V=)= and
(W=)=. Fixed # � 1, we define a sequence ('=)= of monic polynomials by



246 A. Peña and M. L. Rezola

'= (G) := %= (G) +
#’
8=1

A8,=%=�8 (G), = � 0, (11.11)

where A8,= are complex numbers such that A8,= = 0, if 8 > = and A# ,= < 0, for all
= � # .

Then ('=)= is a MOPS with recurrence coefficients (V⇤
=
)= and (W⇤

=
)= where

V
⇤
=
= V= + A1,= � A1,=+1, = � 0, (11.12)

W
⇤
=
= W= + A1,= (V=�1 � V

⇤
=
) + A2,= � A2,=+1, = � 1, (11.13)

if and only if W⇤
8
< 0, 8 = 1, . . . , # , and the following formulas hold:

�8,= = 0, = � 8, 2  8  # � 1, # � 3, (11.14)

�# ,= = 0, = � # , # � 2, (11.15)

�#+1,= = 0, = � # + 1, # � 1, (11.16)

where

�8,= := A8+1,=+1 � A8+1,= + A8,= (V⇤= � V=�8) + A8�1,=�1W
⇤
=
� A8�1,=W=+1�8 ,

�# ,= := A# ,= (V⇤= � V=�# ) + A#�1,=�1W
⇤
=
� A#�1,=W=+1�# ,

�#+1,= := A# ,=�1W
⇤
=
� A# ,=W=�# .

Proof We will characterize when the sequence ('=)= is a MOPS, that is when it
satisfies a three-term recurrence relation as

'=+1 (G) = (G � V
⇤
=
)'= (G) � W

⇤
=
'=�1 (G), = � 0, (11.17)

with W
⇤
=
< 0, = � 1.

Inserting formula (11.10) in (11.11) and applying (11.11) to G%= (G) and again
(11.10) to G%=�8 , 8 = 1, . . . , # , and (11.11) to %= (G) and next to %=�1 (G) we have
for = � 1

'=+1 (G) = (G � V
⇤
=
)'= (G) � W

⇤
=
'=�1 (G)

+
#�1’
8=2

[A8+1,=+1 � A8+1,= � A8,= (V=�8 � V
⇤
=
) � A8�1,=W=+1�8 + A8�1,=�1W

⇤
=
]%=�8 (G)

+ [A# ,= (V⇤= � V=�# ) � A#�1,=W=+1�# + A#�1,=�1W
⇤
=
]%=�# (G)

+ [�A# ,=W=�# + A# ,=�1W
⇤
=
]%=�1�# (G),

using (11.12) and (11.13).
As a first consequence for = = 1 and any # � 1, we realize that (11.17) is true

with W
⇤
1 < 0 if and only if W⇤1 < 0.
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Now, taking into account that the sequence (%=)= is a basis, we have that (11.17)
with W

⇤
=
< 0, for = � 2 holds if and only if W⇤

8
< 0, 2  8  # , and the conditions

(11.14), (11.15) and (11.16) are satisfied. É

Remark. Observe that the condition (11.16) assures that W⇤
=
< 0, for = � # + 1.

In the following proposition, we change the hypothesis and assume now that ('=)=
is a MOPS and characterize the orthogonality of the others polynomials which appear
in the linear combination.

Proposition 11.6 Let ('=)= be a MOPS with recurrence coefficients (V⇤
=
)= and

(W⇤
=
)=. Fixed " � 1, we define a sequence (&=)= of monic polynomials recursively

by

'= (G) := &= (G) +
"’
8=1

B8,=&=�8 (G), = � 0, (11.18)

where B8,= are complex numbers such that B8,= = 0, for 8 > = and B" ,= < 0, for all
= � " .

Then (&=)= is a MOPS with recurrence coefficients ( Ṽ=)= and (W̃=)= where

Ṽ= = V
⇤
=
+ B1,=+1 � B1,=, = � 0, (11.19)

W̃= = W
⇤
=
+ B1,= (V⇤= � Ṽ=�1) + B2,=+1 � B2,=, = � 1, (11.20)

if and only if the following formulas hold:

⌫8,= = 0, = � 8, 2  8  " � 1, " � 3, (11.21)

⌫" ,= = 0, = � " , " � 2, (11.22)

⌫"+1,= = 0, = � " + 1, " � 1, (11.23)

where

⌫8,= := B8+1,= � B8+1,=+1 + B8,= ( Ṽ=�8 � V
⇤
=
) + B8�1,=W̃=+1�8 � B8�1,=�1W

⇤
=
, (11.24)

⌫" ,= := B" ,= ( Ṽ=�" � V
⇤
=
) + B"�1,=W̃=+1�" � B"�1,=�1W

⇤
=
, (11.25)

⌫"+1,= := B" ,=W̃=�" � B" ,=�1W
⇤
=
. (11.26)

Proof Inserting the three-term recurrence relation satisfied by the polynomials '=

and applying (11.18) to G'= (G), '= (G) and '=�1 (G), successively, we have for = � 2

&=+1 (G) = G

"
&= +

"’
8=1

B8,=&=�8 (G)
#
� V

⇤
=

"
&= (G) +

"’
8=1

B8,=&=�8 (G)
#

(11.27)

� W
⇤
=

"
&=�1 (G) +

"’
8=1

B8,=�1&=�1�8 (G)
#
�

"’
8=1

B8,=+1&=+1�8 (G).
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Then, we can write

&=+1 (G) =
G&= � (V⇤

=
+ B1,=+1 � B1,=)&= (G) � (W⇤

=
+ B1,=V

⇤
=
+ B2,=+1 � B2,=)&=�1 (G)

+
"’
8=1

B8,= [G&=�8 (G) �&=+1�8 (G)] +
"’
8=3

B8,=&=+1�8 (G) (11.28)

� V
⇤
=

"’
8=2

B8,=&=�8 (G) �
"’
8=3

B8,=+1&=+1�8 (G) � W
⇤
=

"’
8=1

B8,=�1&=�1�8 (G).

Now we suppose that (&=)= is a MOPS with recurrence coefficients ( Ṽ=)= and
(W̃=)=, that is the polynomials satisfy

&=+1 (G) = (G � Ṽ=)&= (G) � W̃=&=�1 (G), = � 0, (11.29)

with W̃= < 0 for all = � 1. Hence, applying this recurrence relation to every factor
[G&=�8 (G) �&=+1�8 (G)] in formula (11.28) and using (11.19) and (11.20), it can be
derived for = � 2

"�1’
8=2

⌫8,=&=�8 (G) + ⌫" ,=&=�" (G) + ⌫"+1,=&=�1�" (G) = 0.

Then, the conditions (11.21), (11.22) and (11.23) hold, for = � 2.

In order to proof the reverse, we observe that formula (11.28) and conditions
(11.21), (11.22) and (11.23) yield

&=+1 (G) � (G � Ṽ=)&= (G) + W̃=&=�1 (G) (11.30)

= �
"’
8=1

B8,=

⇥
&=+1�8 (G) � (G � Ṽ=�8)&=�8 (G) + W̃=�8&=�1�8 (G)

⇤
,

for = � 2.
Since formula (11.29) is true for = = 1 and obviously for = = 0, we have that it

is also true for = = 2. Hence by using the induction method we can deduce that the
recurrence relation (11.29) holds for all = � 0.

To conclude it suffices to observe that W̃= < 0 for = � 1, from (11.23). É

In the following theorem, we link the results studied in Proposition 11.5 and
Proposition 11.6 and thus we get to solve the inverse problem in a general case
without many calculations.

Theorem 11.7 Let (%=)= be a MOPS with respect to a regular functional u with
(V=)= and (W=)= the corresponding sequences of recurrence coefficients. We define
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recursively a sequence (&=)= of monic polynomials by formula (11.1), i.e.

%= (G) +
#’
8=1

A8,=%=�8 (G) = &= (G) +
"’
8=1

B8,=&=�8 (G), = � 0,

where (A8,=)#
8=1 and (B8,=)"

8=1 are complex numbers, and such that the conditions
det A < 0 and A# ,= B" ,= < 0, for all = � # + " are satisfied.

Then (&=)= is a MOPS with recurrence coefficients ( Ṽ=)= and (W̃=)=, where

Ṽ= + B1,= � B1,=+1 = V= + A1,= � A1,=+1, = � 0,

W̃= + B1,=
�
Ṽ=�1 � Ṽ= + B1,=+1 � B1,=

�
+ B2,= � B2,=+1

= W= + A1,=
�
V=�1 � V= + A1,=+1 � A1,=

�
+ A2,= � A2,=+1, = � 1.

if and only if the polynomials &= satisfy the three-term recurrence relation with
W̃= < 0, for = = 1, 2, . . . , # , and the equations (11.14)–(11.16) and (11.21)–(11.23),
for = � # + " + 1 hold.

Proof Inserting formula (11.10) in (11.1) and applying (11.1) to G%= (G), and again
(11.10) to G%=�8 (G), for 8 = 1, 2, . . . , # , we get, for = � 1,

&=+1 (G) = �
"’
8=1

B8,=+1&=+1�8 (G) + G

"
&= (G) +

"’
8=1

B8,=&=�8 (G)
#

� V=%= (G) � W=%=�1 (G) +
#’
8=1

A8,=+1%=+1�8 (G)

�
#’
8=1

A8,= [%=+1�8 (G) + V=�8%=�8 (G) + W=�8%=�1�8 (G)] .

Now, in the above expression, we apply (11.1) to %= (G) and we rearrange the
formula. Next, we do the same for %=�1 (G). Hence, using the auxiliary coefficients
(11.12) and (11.13), we can write the above formula in the following way

&=+1 (G) = �
"’
8=1

B8,=+1&=+1�8 (G) + G

"
&= (G) +

"’
8=1

B8,=&=�8 (G)
#

(11.31)

� V
⇤
=

"
&= (G) +

"’
8=1

B8,=&=�8 (G)
#
� W

⇤
=

"
&=�1 (G) +

"’
8=1

B8,=�1&=�1�8 (G))
#

+
#�1’
8=2

�8,=%=�8 (G) + �# ,=%=�# (G) + �#+1,=%=� (#+1) (G).
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Let (&=)= be a MOPS with recurrence coefficients ( Ṽ=)= and (W̃=)=. Then, ap-
plying (11.29) to every factor G&=�8 (G), for 8 = 1, . . . ," in formula (11.31), and
using (11.19), (11.20) and (11.24)–(11.26 ), we get

0 =
"�1’
8=2

⌫8,=&=�8 (G) + ⌫" ,=&=�" (G) + ⌫"+1,=&=� ("+1) (G) (11.32)

+
#�1’
8=2

�8,=%=�8 (G) + �# ,=%=�# (G) + �#+1,=%=� (#+1) (G).

Now applying the functional %"�1u to the above equation and taking into account
the orthogonality of the polynomials %= with respect to u, we obtain

h%"�1u,
"�1’
8=2

⌫8,=&=�8 + ⌫" ,=&=�" + ⌫"+1,=&=� ("+1)i = 0, = � # + " + 1,

h%"�2u,
"�1’
8=2

⌫8,=&=�8 + ⌫" ,=&=�" + ⌫"+1,=&=� ("+1)i = 0, = � # + " ,

and successively until

h%0u,
"�1’
8=2

⌫8,=&=�8 + ⌫" ,=&=�" + ⌫"+1,=&=� ("+1)i = 0, = � # + 2.

Thus, for = � # + " + 1, we have

"�1’
8=2

⌫8,=h% 9 u,&=�8i + ⌫" ,=h% 9 u,&=�"i + ⌫"+1,=h% 9 u,&
=� ("+1)i = 0,

(11.33)
for 9 = 0, 1, . . . ," � 1.

Fixed an positive integer = ( = � # + " + 1), we consider the homogeneous
system (11.33) of " equations and " unknowns ⌫8,=, 8 = 2, . . . ," + 1, whose
associated matrix is eB)

=�2 that is the transpose of the matrix eB=�2. Applying the
hypotheses detA < 0, B" ,= < 0, for all = � # + " , and (1) of the Lemma 11.1, we
get deteB)

=�2 < 0, for all = � # + " + 1. Therefore the system has a unique solution
that is the trivial solution

⌫8,= = 0, 8 = 2, . . . ," + 1,

so the equations (11.21)–(11.23) hold for = � # + " + 1. The other equations
(11.14)–(11.16) for = � # + " + 1 are also fulfilled simply noticing that from the
equation (11.32) we obtain
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#�1’
8=2

�8,=%=�8 (G) + �# ,=%=�# (G) + �#+1,=%=� (#+1) (G) = 0,

and the sequence of polynomials (%=)= is a basis.
Conversely, notice that the equations (11.14)–(11.16) in formula (11.31) yield

&=+1 (G) = �
"’
8=1

B8,=+1&=+1�8 (G) + G

"
&= (G) +

"’
8=1

B8,=&=�8 (G)
#

� V
⇤
=

"
&= (G) +

"’
8=1

B8,=&=�8 (G))
#
� W

⇤
=

"
&=�1 (G) +

"’
8=1

B8,=�1&=�1�8 (G)
#
,

for = � # + " + 1. We observe that this is formula (11.27) in the Proposition 11.6
which can be rewritten as (11.28). Then taking into account the equations (11.21)–
(11.23) we get (11.30) for = � # +" +1. Thus, since by hypotheses the polynomials
&= satisfy the three-term recurrence relation with W̃= < 0, for = = 1, 2, . . . , # , we
obtain that these polynomials satisfy the same three-term recurrence relation for all
=. Besides from (11.16) and (11.23) we get that W̃= < 0, for all = � # + 1, and
therefore the sequence (&=)= is a MOPS. É

Remark. Observe that to prove the first part of the Theorem, i.e. with the assumption
that the sequence (&=)= is orthogonal, it is enough to require only the initial condi-
tions (11.3), taking into account (a) of Theorem 11.3. However for the converse we
need that the more extensive condition A# ,= B" ,= < 0 for all = � # + " hold.
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orthogonaux semi-classiques. In: C. Brezinski, L. Gori, A. Ronveaux (eds.) Orthogonal
polynomials and their applications (Erice, 1990), IMACS Ann. Comput. Appl. Math., vol. 9,
pp. 95–130. Baltzer, Basel (1991)

10. Petronilho, J.: On the linear functionals associated to linearly related sequences of orthogonal
polynomials. J. Math. Anal. Appl. 315(2), 379–393 (2006). DOI 10.1016/j.jmaa.2005.05.018.
URL https://doi.org/10.1016/j.jmaa.2005.05.018

https://doi.org/10.1016/0019-3577(95)93197-I
https://doi.org/10.1016/0019-3577(95)93197-I
https://doi.org/10.1080/10236198.2013.864287
https://doi.org/10.1016/j.jmaa.2005.05.018

