Chapter 11

The inverse problem for linearly related
orthogonal polynomials: General case

A. Pefia and M. L. Rezola

Abstract We study the inverse problem in the theory of (standard) orthogonal poly-
nomials involving two polynomials families (Py), and (Q,), which are connected
by a linear algebraic structure such as

N M
Pn(x) + Z ri,nPn—i(x) = Qn(x) + Z Si,nQn—i(x)’
i=1 i=1

foralln =0,1,... where N and M are arbitrary nonnegative integer numbers.

11.1 Introduction

We had the honor and pleasure of collaborating with Z¢ Carlos. He was distinguished
by his bonhomie, good work and knowledge and we will never forget how wonderful
it was to work with him. His memory will remain with us.

The idea to address the general case in the framework of the inverse problem for
linearly related orthogonal polynomials arose after our joint work [3]] . We share
with him how to do it. Unfortunately for us, he was unable to participate in its
development, although he was aware of everything we achieved and encouraged us
to continue.

The analysis of linear structure relations involving two monic orthogonal polyno-
mial sequences (MOPS), (P,,), and (Q,),, such as
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N M

Pu(x) + ) rinPrei(®) = 0n () + D 500 Quei(6), 120, (11.1)
i=1 i=1

where N and M are fixed nonnegative integer numbers, and (7; ), and (s; ,), are
sequences of complex numbers (and empty sum equals zero), has been a subject of
research interest in the last decades. In the literature, many works can be found where
this type of relations is studied from different points of view. About the interest and
importance of the study of these structure relations we refer to the introduction given
in [10] and [3]], as well as the references therein.

In many of these works the main problem stated and solved therein was the
following inverse problem: assuming that (P,), is a MOPS and (Q,), only a
simple set of polynomials (Q, is a polynomial of degree n), verifying (L1.1), to find
necessary and sufficient conditions so that (Q,), is also a MOPS and to obtain the
relation between the corresponding regular linear functionals. We want to notice
that most of these papers deal with relations considering concrete values for N and
M (see [N, [20, (30, (4], [SN, [7], [8]). In this contribution we analyze the inverse
problem for any values of N and M.

A classical tool for working with algebraic properties of orthogonal sequences of
polynomials is the use of recurrence relations. Any MOPS (P,,), is characterized by
a three-term recurrence relation

xXPy(x) = Ppi1(X) + BnPn(x) + ynPp-1(x), n=0,1,...

with initial conditions P_;(x) = 0 and Py(x) = 1, where (8,), and (y,), are
sequences of complex numbers such that y,, # O foralln = 1,2, . ... This is known
as Favard’s theorem (see, e.g., [6]).

However this tool can be replaced by the use of dual basis which produces a natural
way for studying the algebraic properties of sequences of orthogonal polynomials.
Any simple set of polynomials (P,), has a dual basis (a,),, that is

a,,P;):=6,,;,, n,j=0,1,...
J 2

being J,, ; the usual Kronecker symbol. Moreover, if (P,), is a MOPS with respect
to the linear functional u, then the associated dual basis is

Py

= —7-Nu, n:O,l,...
(u, P}

ap

see [9]]. A more detailed description can be seen in Section 2 of [10].
This is the main tool used by Petronilho in [[10] to solve part of the inverse problem
for general relations as (11.1) assuming the orthogonality of both sequences (P,,),
and (Q,), with respect to u and v, as well as some additional assumptions which we

will call initial conditions. More precisely, he obtains that the rational transformation
between the linear functionals u and v is

(DMll = LPNV,
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where @), and ¥ are polynomials of degrees M and N, respectively. In Section 2,
we make an exhaustive study about these initial conditions. We obtain, in Theorem
that these initial conditions characterize the existence of such rational trans-
formation and the non existence of another relationship with degrees less than or
equal to M and N, respectively. Moreover these initial conditions allow us to prove
important facts like:

(a) All the coefficients 7 , and sps , in (11.1) are not zero forn > N + M.

(b) There exist constant sequences whose values are the coefficients of the poly-
nomials @), and Wy . It is important to note that the existence of such constant
sequences was already obtained in [7] for N = [,M =0, in [U] for N = 1,M =1,
in [4] for N =2, M = 0 and in [3]] for N = 2, M = 1, in terms of the recurrence
coefficients. Here, for arbitrary values of N and M, we obtain this property in a
compact form by using linear functionals and determinants.

On the other hand, in Section 3 we get necessary and sufficient conditions in
order to the sequence (Q;), defined recursively by becomes also a MOPS.
The main advance in this line is to introduce some auxiliary polynomials R,,, which
are precisely the linear combinations of the polynomials P, that appear in the
relation (L1.1). These polynomials do not necessarily have to be orthogonal, but
they are interesting in two senses. First, they allow to simplify the computations in
the problem of characterizing the orthogonality of the sequence (Q;),. And second
and more important, is that the conditions which characterize the orthogonality of
(Qn)n correspond to most of the conditions (n > N + M + 1) that characterize the
orthogonality of two simpler problems. More precisely, assuming that (P,), is a
MOPS, to characterize the orthogonality of (R,), and then, assuming that (R,), is a
MOPS, to characterize the orthogonality of (Q},),,. In some way the problem N — M
can be divided in two simpler problems N — 0 and 0 — M but always keeping in
mind that not all the conditions of regularity (orthogonality) appear, the first ones are
different. This is because, as we have already mentioned, these auxiliary polynomials
(R;)n do not have to be orthogonal.

11.2 Relation between the regular functionals and consequences

Let (P,), and (Q,,), be two sequences of monic polynomials orthogonal with respect
to the regular functionals u and v, respectively, normalized by (u, 1) = 1 = (v, 1).
Suppose that these families of polynomials are linearly related by (11.1), that is

N M
Pn(x) + Z ri,nPn—i(x) = Qn(x) + Z Si,nQn—i(x)» n > 0.
i=1 i=1

Consider the following auxiliary polynomials, namely R,
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N M
Ry(x) = Po(x) + D i nPri(X) = Qn(x) + > 51,0 Qni(x).
i=1 i=1

Denote by (¢,,)n, (a,), and (by,),, the dual basis corresponding to (R,,),, (Py), and

(Qn)n- respectively. Expanding (a,)Y ;" and (b,)N ! in terms of (c,),, we can

write
A(Co, ey CM+N_1)T = (ao, . ,aM_l,bo, - ,bN_l)T, (11.2)

where A is a (M + N) X (M + N) matrix whose elements are the coefficients that
appear in the relation (11.1)). Its explicit expression can be seen in [10, Theorem 1.1].
There, it was proved that the initial conditions

detA#0, ryny+m #0, and synem # 0, (11.3)
yield the following relation between the linear functionals u and v
Dpu =Yy, (11.4)
where @, and Wy are polynomials of (exact) degrees M and N, respectively.

In the sequel we will use the following notations:

Pp(x)
<ll, Pn2> ’

0,(x)

P (x) = .
) V.02

and an (x) =

For n > N — 1, we introduce the N x N matrices B, and Bfl, i=0,...,N—-1,
where

<_§N—1V’ Py .- <_§()V’ P,)
(On-1VPu1) -+ {QoV,Pn-1)

(ON_1V:s Pue(n-1)) =+ Q0¥ Pu—(n-1)) NN

and B!, := the matrix obtained replacing in B, the i-th column by the vector
(<QNV’ Pn>’ cee <QNV’ Pn—(N—])>)T'

_ In a similar way for n > M — 1, we introduce the M X M matrices B, and
Bi,i=0,...,M -1, where

<_FM—1“’ On) te <_ﬁ0u’ On)
(Pp-1w,Qpn-1) -+ (Pow,Qpn_1)

Prr-1, Qu-m-1)) -+ (Pow, On—(m=1))/ 1y s
and ﬁ‘n := the matrix obtained replacing in B, the i-th column by the vector

(Parw. 00). . (Prr, Qu-aa-1)))
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Next, we show a property about the determinants of the matrices By, and B,, which
plays an important role in this work.

Lemma 11.1 Let (Py,), and (Q,)n be two sequences of monic polynomials linearly

related by }

(a) If the polynomials Q,, are orthogonal with respect to the functional v, then
det B, = (-1)N ry ,det B,_y, for n>M+N.
(b) If the polynomials P, are orthogonal with respect to the functional v, then
det B,, = (-HM Spm . det B,_1, for n>M+N.
Proof (a) First we get that det Byyas = (=1)V iy i det Byias—1. Indeed, taking

into account that

M N
Pniy(x) = Onem (x) + Z Si N+MON+M—i(X) — Z ri. N+mMPNep—i (%),

i=1 i=1

by (11.1) for n = N + M, using the orthogonality of the polynomials Q,, with respect
to v and developing the determinant of Bx.s by the first row, it can be derived that

detByanr = — (=1)N 'y veas det Baaas—1.

To conclude the proof of (a) it suffices to observe that the same argument works for
any fixedn > N + M.
(b) This property can be similarly derived with the appropriate changes. O

Now, we will see that the polynomials ¥y and ®j; which satisfy the relation
(11.4) can be written as:

N-1
W () = rvew On () + ) 4 0;(x), (11.5)
i=0
and
f— M_l [
@y (x) = Snapren Py (0) + ) i Pix). (11.6)
i=0

Indeed, if Wy is a polynomial of degree N it can be written as
Wn(x) = Ay On (x) + AN -1 Qo1 (X) +- -+ 21 Q) + Ao,

with Ay # 0. Then, using the dual basis of (P,,),, we have

M
Pyv = Z(‘PNV, P;)P,u, (11.7)
=0
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because (¥nv,P;) = (Pyu,P;) =0, for j > M + 1. Moreover, by (11.1)
rv.Nem (CPNV, Pr) = sy nem (PNV, ON) = AN Sy N+m» and from (11.7) we get
the expressions (11.5) and (11.6) for the polynomials ¥ and ®,,, respectively.

Next, we obtain a characterization of the initial conditions (11.3) in terms of the
relations between the linear functionals u and v.

Theorem 11.2 Let (P,,), and (Q,), be two MOPSs with respect to the regular
functionals w and v, respectively, normalized by {u,1) = 1 = (v, 1). Assume that
they are related by where N,M > 1.

Then, the following statements are equivalent:
(a)

detA #0, ryn+m #0, and sy nsm #O.
(D) There exist polynomials @y, ¥ N of degrees M, N, respectively, such that @y u =

Wn v, and there is no other relationship ®p w = ¥y v, with degrees of polynomials
DOy and Wy less than or equal to M and N respectively.

Proof (a) = (b)

First we prove that the polynomials Wy and @, defined by (11.5) and (11.6)
such that @, u = Wy v are unique. Indeed, using the dual basis (a,), and (b,),
corresponding to (Py,), and (Q;),, respectively, we have

lPNV:rNJ\,IJrNbN +/lN_1bN_1 +"‘+/llbl +/10b07

and
Dpru=sp p+N apr + (-1 801 + -0+ [y A1 + Ho Ap,
since a,, = P,uand b, = Q,vforn>0.

So, by the relation between the functionals (11.4) and the definition (11.2)) of the
matrix A, we get

rN.M+N BN — Sy men Ay =
T
(,u07" -7,uM*1’_107-'"_/lN*I)(aO""&aM*]7b07"‘9bN*]) =

(H0s - - s =15 =05 - - s =AN—-1) A (€05 - - ., Crran—1)" .

Thus, since (c,,), is a basis and there exists A~! the inverse matrix of A, the vector
(Hos - - - Up-15—A0, - - - » —AN—1) is unique. Therefore there exist unique polynomi-
als ¥ and @y, of degrees respectively N, M such that @y u =¥y v.

Now, we suppose that there exist another polynomials ¥y and Dy satisfying
E)M u="Yyv, withdeg ¥y < N and deg &)M < M. Thus, we have

(®y - Pp)u=(¥y - Fn)v,

s0 it is not possible that deg Yy < N and deg @ < M hold simultaneously.
To conclude, it suffices to observe that from the two relations between the func-
tionals u and v, we also obtain the following relation
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lAI;N(I)/\/]V=Ef)/\/]lPNV,

which yields a contradiction if either deg @y =M and deg Yy < Nor deg Dy <
M and deg ¥ = N.

(b) = (a)

Consider the systems

(PNV,Pu)=0, n=M+1,...,N+M, (11.8)

and
(®pyu,0,)=0, n=N+1,....N+M,

where the unknowns are, respectively, (4; l’i 0 ! and (ui)f‘fo‘ !, Notice that, by hy-
pothesis, the solutions of these systems are unique. Thus, the respective coefficient
matrices By, and By, have maximum rank that is

det Byiys #0, and  det By £ 0.

So, by Lemma|11.1 we obtain ry p.n # 0 and sy pen # 0.

Now, it remains only to prove that det A # 0. To do this, we consider the system
with two equations, one of which is the expansion of by as a linear combination of
(¢;)X+N and the other one is the corresponding expansion of a,. Then, multiplying
the first of these equations by 7y _as+n and the second one by sas_ar+n, and subtracting
the resulting equations (this will eliminate ¢z n) We get

M+N-1

N.M+N DN — Sy man Ay = Z X; ¢,
i=0

(see the proof of Theorem 1.1 in [[LQ], for instance). On the other hand, we know

rNMN DN =S N A = (U0s -+ s fiaa—1, =05+ -, —AN—-1)A(C0, . . ., Crrin—1)" .
Thus,

AT (pos - oo ttpr—1, =20, - - =An-1)" = (X0, . .. Xpran-1)7,
and then det A = det A7 # 0 because the system has a unique solution. O

In the following theorem we prove that the initial conditions (11.3) allow us to
assure that the lengths of the linear combinations of (P,), and (Q,), in are
exactly N + 1 and M + 1 respectively. Moreover, we can find constant sequences
whose values are precisely the coefficients of the polynomials W and ®@,,.

Theorem 11.3 Let (Py,), and (Q)n be two MOPSs with respect to the regular
functionals w and v, respectively, normalized by (u,1) = 1 = (v, 1). Assume that
they are related by where N,M > 1 and the coefficients satisfy the initial
conditions ({I1.3). Then, the following properties hold:

(a) All the coefficients rn _, and sy ., in are not zero, for everyn > N + M.
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(b) There exist constant sequences (i n)n>N+m and (Ui n)n>N+m Such that A; , =
Aii=0,...,N=-land p; n = p;, i =0,...,M—1, where (; ,]Z(;l and (u; f‘;[o_l are
the coefficients which appear in the expressions and of the polynomials
‘PN and (DM.

Proof (a) First we observe that forn > N + M we have

N

SM,N+M 2
——— N (WP, _n) =Py, (Pt Y 1inPni) One
wriy (u, P2_) = (Dpu, ( Z D) Qn—(N4n))
i=1
- N ,N+M
= (NY, (Qn+ D 5inQni) One(Nemn)) = T Suan (% O _pp)s
i=1 v.O)

taking into account the hypothesis (11.1), (11.4), the expressions (11.5)-(11.6) and
the orthogonality of the polynomials P, and Q,, with respect to the functionals u and

v, respectively. Thus, since ry ni+m Sy, nv+m # 0, it is enough to prove that either
rNan#z0orsy , #0,forn >N+ M+ 1.
Here, we will prove that ry ,, # 0,forn > N+ M + 1.

Assume that there exists n > N+M+1 suchthatry , = Oandlet ng := min{n;n >
N+M+1,ry , =0}. Then Lemma gives detB,,, = 0, so the coefficient matrix
associated with the system

(lPNV,Pn>=0, n=n0—(N—1),...,l’l0,

N-1

has not maximum rank and therefore there exists another solution, namely, (A =0

such that _
(NV, Pp) =0, n=no—(N-1),...,no,

where
Py (x) = rnman On (1) + Ano1 Oy () + -+ 41 Q) + Ao
Moreover (‘?Nv, Ppy-n) # 0. Indeed, if <§’NV, Ppy—n) = 0 then the system
(PNV,P) =0, n=nyp—N,...,ng—1,

has two solutions which yields a contradiction since the coefficient matrix of this
system, B,,,_1, has maximum rank by definition of ny.
Hence, using the relation (11.1), we have

(PN — PNV, Po) = —(PNV, Py) =0, n=ng—(N-1),

and _ _
<(\PN - IPN)V’ Pno—N) = _<\PNV’ Pn()—N> * 0.

Denote by hp—; the polynomial ¥y — Yy of degree less than or equal to N — 1.
Then, writting A _1V in the dual basis of (P,),, we have
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so there exists a polynomial ¢,,—n of degree ng — N such that hy_1v = ¢,,_nu.

Finally observe that since the functionals u and v satisfy the two relations
hn-1V=¢p-nyu and Wyv=>Oyu,

it can be obtained
hN-1PyV = @ny-nPNV,
which leads to a contradiction, taking into account the degrees of the polynomials
hN—lq)M and (pno_NlPN.
(b) From the previous theorem, we already know that the system (11.8)

YNV, P)=0,n=M+1,..., N+ M,

has a unique solution, namely (4;) Z’Z ~1_which are the coefficients of the polynomial
Yy . So, since det By s # 0 by Cramer’s rule

det B!
N+M — for i=0,...,N—1.

A= “I'N,N+M 7 o
! ’ det BN+M7

On the other hand, since ®,,u = ¥ v, it is obvious that
(PNV,Py)=0,n>M+1.
Now, for each n fixed, n > N + M, we can consider the system
(Pyv,P;)=0,i=n-(N-1),...,n,
whose matrix of coeflicients B,, has maximum rank, because we know
det B, = (-D)N ry n... (=) ry nemrdet Byias # 0,

by (a) and Lemma|11.1| Then, for every n > N+ M, this system has a unique solution

for (4;)Y:1, namely (4;,,)Y;"', and again by Cramer’s rule we have

det B,

Ain = —FN.N+M ——»
b ’ det B,

forallm > N+ M.
N-1

Thus, we can assure there exist N constant sequences, namely (/lis")lzo , such
that for every n > N + M we have A; , = A; that is the value of these constants
coincide with the coefficients of the polynomial ¥y .

To conclude the proof of (b) , we work in the same way with the polynomial @ ;.
So, we have
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(Pyu,0n)=0,n2N+1.

Thus, for each n fixed, n > N + M we can consider the system

(@MU,Q[> =0,i=l’l—(M— 1),...,71,
where the unknowns are (yi)l?‘fo‘l, that is the coefficients of the polynomial ®,,,
see (11.6). The uniqueness of the polynomial @y, obtained in the previous theorem
leads us to state that det B,, # 0, for all » > N + M. Then, in the same way as before,
we obtain that there exist M constant sequences, namely (pi,n)f‘fo_ ! such that for
every n > N + M, we have y; , = u;, where

det B!,
Mi,n = —SM,N+M = .
det B,

Note that the values of these constants coincide with the coefficients of the polynomial
() M. O

Observe that the notation used before Lemmall1.1]does not work for either N = 0
or M = 0. So we conclude this section, for the sake of completeness, showing the
analogous results for these particular situations. We will show only the case M =0
and N > 1, that is

N
Pu(x)+ ) rinPui(x) = On(x), 020, (11.9)
i=1

where N > land r; ,, (i = 1,...,N) are complex numbers. The other case is totally
analogous with the appropriate changes.

Theorem 11.4 Let (P,,),, and (Q,), be two sequences of monic polynomials with
respect to the regular functionals u and v, respectively, normalized by (u,1) = 1 =
(v, 1). Suppose that these families of polynomials are linearly related by ({11.9) with
the initial condition ry n # 0. Then, the following properties hold:

(a) The exists a unique polynomial ¥y of degree N such that u = ¥y v, where
Yy is defined by with M = 0.

(b) All the coefficients ry 5 in are not zero, for everyn > N.

(c) There exist constant sequences (A; p)n>n suchthatd; , = A;, i =0,...,N-1,
where (/L-)fi o U are the coefficients which appear in the expression of the
polynomial ¥y .

Proof The proof follows the same ideas of the previous theorems. In any case, for
the sake of completeness, we briefly expose the arguments used.

Observe that (u, 0,,) = (u, P, + Zf.\il rinPn-i) =0, forn > N + 1. Then, using
the dual basis of (Q,), we getu = nN:() (u, Qn)én v, where (u,On) =ry.n #0
and therefore there exists a unique polynomial of degree N such that

u=%Yyv,
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where Wy is defined by (11.5).

On the other hand, we can check thatdet By _; = 1 and that (a) of the Lemma[l1.1]
holds with M = 0. Thus, the coefficient matrix By of the system

<1PNV»Pn> :0, n= 1,...,N,
has maximum rank and the coefficients (2;) ,IZ 0 ! of the polynomial Wy are

det B,
det BN ’

/li:_rN,N for iZO,...,N—l.

Moreover, in the same way as in the previous theorem, it can be proved that
VN’N¢O:>7‘N,"¢O’ n>N.
Thus, det B,, # 0, forn > N and

det B},

A= din=—rN.N —=2,
i i,n N,N detBn

11.3 Orthogonality characterizations

Let (P,), and (Q,), be two sequences of monic polynomials linked by a structure
relation as (11.1), with the conventions ry _nsp., # 0, foralln > N + M.

In this section, we want to find necessary and sufficient conditions in order to
(Qn)n be aMOPS if (P,), is a MOPS. As we have mentioned in the introduction, to
get this general case, we introduce some auxiliary polynomials R, and so, in some
way, the problem N — M can be divided in two simpler problems N — 0 and 0 — M.
So, we previously study these particular situations that correspond to consider in the
relation either M =0 or N = 0.

From now on, (P,), denotes a MOPS with respect to a regular functional u and
(Bn)n and (y5), the corresponding sequences of recurrence coefficients, that is

Pui1(x) = (x = Bn) Pn(x) = YnPp-1(x), n=0, (11.10)
Po(x) =1, P_1(x) =0,

with y, #0foralln > 1.

Proposition 11.5 Let (P,), be a MOPS with recurrence coefficients (By), and
(Yn)n- Fixed N > 1, we define a sequence (Ry,), of monic polynomials by
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N

Ry(x) = Py(x) + D rinPui(x), 020, (11.11)
i=1

where r; , are complex numbers such that r; , = 0, ifi > nand ry , # 0O, for all
n > N.

Then (Ry)y, is a MOPS with recurrence coefficients (3;,), and (y},)n where
Brn=Bn+rin—rine, n=0, (11.12)

'y:,:7n+rl,n(ﬁn—l_BZ)+F2,n_r2,n+l’ nz= l, (1113)
ifandonly ify; #0,i=1,..., N, and the following formulas hold:

Ain=0, nxi, 2<i<N-1, N2>3, (11.14)
ANa.=0, n=N, N=22, (11.15)
Ans1n=0, n>N+1, N2>1, (11.16)

where
—— * *
Ain = Tivtnrt = Fieln ¥ Tin(By = Bu=i) + Ticl.n=1Yn = Fi-1n¥Yn+1-is

AN =INa(By = Bn-N) +'N-1,0-1Y5 = FN=1,nYn+1-N>

A = .
N+l,n “=VN.n-1Yy ~I'N.nYn-N-

Proof We will characterize when the sequence (R,), is a MOPS, that is when it
satisfies a three-term recurrence relation as

R (x) = (x = Bp)Ru(x) = YuRn-1(x), n >0, (L.17)

withy; #0, n>1.

Inserting formula (11.10) in (11.11) and applying (11.11) to xP,(x) and again
(11.10) to xP,,—;,i = 1,...,N, and (11.11) to P, (x) and next to P,_;(x) we have
forn > 1

Rus1(x) = (x = Bp)Rn(x) = v, Rn-1(x)
N-1

+ Z [Firt.ns1 = Fivton = Tin(Bu—i = Br) = Ti-1.nVn+1-i + Ti-1.n-1Yn] Pn-i (x)
i—2

+[rnn(By = Bn-N) = TN-1,n¥n+1-N + 'N-1,n-1Yn] Pn-n(x)

+ [N nYn-N + TN =1V Pn-1-~N (x),

using (11.12) and (11.13).

As a first consequence for n = 1 and any N > 1, we realize that (11.17) is true
with ¥} # 0 if and only if y # 0.
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Now, taking into account that the sequence (P,,), is a basis, we have that (11.17)
with y;, # 0, for n > 2 holds if and only if y; # 0, 2 < i < N, and the conditions
({11.14), (11.15) and (11.16) are satisfied. O

Remark. Observe that the condition (11.16)) assures that y, # 0, forn > N + 1.

In the following proposition, we change the hypothesis and assume now that (R,,),,
is a MOPS and characterize the orthogonality of the others polynomials which appear
in the linear combination.

Proposition 11.6 Let (R,),, be a MOPS with recurrence coefficients (B},), and
(¥ )n. Fixed M > 1, we define a sequence (Qn)n of monic polynomials recursively
by

M
Ra(x) 1= Qn(x) + Y 85:0Qni(x), 120, (11.18)
i=1

where s; , are complex numbers such that s; , = 0, for i > nand sy, # 0, for all
n>M.
Then (Qn)n is a MOPS with recurrence coefficients (), and (¥,), where

Bn =B+ Stnet =St 120, (11.19)

Tn = Yn+510(By = Bu-1) + 2041 =520, N 21, (11.20)
if and only if the following formulas hold:

Bin=0, n>i, 2<i<M-1, M2>=3, (11.21)
Byn=0, n>M, M=>2, (11.22)
Byiin=0, n>M+1, M=>1, (11.23)

where
Bin = Sistn — Sistnel + Sion(Buei = By) + SictnVne1-i — Sicin-1Yy  (11.24)
Burn = Smon(Bnomt = B) + SM—1 nTne1-M — SM-1,n-1Y s (11.25)
Bumitn = SMnVn-M — SM.n—1Yn- (11.26)

Proof Inserting the three-term recurrence relation satisfied by the polynomials R,
and applying (11.18) to xR, (x), R, (x) and R, —1 (x), successively, we have forn > 2

M M
O (¥) =x [Qu+ ), s,-,nQn_i(x)] - B, [Qn(x) > si,nQn_i(x)] (11.27)
i=1 i=1
M M
= Yn |Qn-1(x) + Z Si,n—lQn—l—i(x)l - Z Si,ne1Qne - (X).
i=1 i=1
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Then, we can write

Qn+1(x) =
x0n = (B + Sttt = S1,n)Cn(X) = (Y + 1By + 52,041 = 52,n) Qn-1(x)
M M
) 5t [¥0n-i(¥) = Qi (D)] + D, 51,0 Qr1-i () (11.28)
i=1 i=3
M M M
- ﬁ: Z Si,nQn—i(x) - Z Si,n+1Qn+l—i(x) - 7:1 Z si,n—lQn—l—i(x)-
= =3 =1

Now we suppose that (Q,,), is a MOPS with recurrence coefficients (/3,), and
(¥1)n, that is the polynomials satisfy

Oni1(x) = (x _En)Qn(x) ~F¥nQn-1(x), n2=0, (11.29)

with ¥,, # O for all » > 1. Hence, applying this recurrence relation to every factor

[xQn-i(x) — Qny1-i(x)] in formula (11.28) and using (11.19) and (11.20), it can be
derived for n > 2

M-1

Z Bi,nQn—i(x) + BM,nQn—M (x) + BM+1,nQn—1—M (x) =0.
i=2

Then, the conditions (11.21)), (11.22) and (11.23) hold, for n > 2.

In order to proof the reverse, we observe that formula (11.28) and conditions
(11.21), (11.22) and (11.23) yield

Oni1(x) = (x _Bn)Qn(x) + V0 On-1(x) (11.30)

M
== Sin [One1=i(¥) = (x = Buei) Qi (%) + FneiQn-1-1(x) ] ,

i=1

forn > 2.

Since formula is true for n = 1 and obviously for n = 0, we have that it
is also true for n = 2. Hence by using the induction method we can deduce that the
recurrence relation (11.29) holds for all n > 0.

To conclude it suffices to observe that ¥, # 0 for n > 1, from (11.23). m

In the following theorem, we link the results studied in Proposition and
Proposition and thus we get to solve the inverse problem in a general case
without many calculations.

Theorem 11.7 Let (P,),, be a MOPS with respect to a regular functional u with
(Bn)n and ('vn)n the corresponding sequences of recurrence coefficients. We define
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recursively a sequence (Q ), of monic polynomials by formula , i.e.
N M
Po(x) + ) rinPui(x) = Qn () + ) 5i.nQn-i(x), 120,
i=1 i=1

where (ri,n)fi , and (si,n)f‘;ll are complex numbers, and such that the conditions
detA#0andrn s n #0, foralln > N+ M are satisfied.

Then (Qn)n is a MOPS with recurrence coefficients (Bn)n and (3,)n, where

B+ Stn—Stns1 =Bn+Fin—Tipe1, 120,

')711 + St.n (En—l _ﬁn + Sl,n+l — Sl,n) + $2.n — 82,n+1

=Yn+710 (Bact = Bn+ T pet —=Tin) +12n —Topst, 1> 1

if and only if the polynomials Q,, satisfy the three-term recurrence relation with

Yo 0, forn=1,2,...,N, and the equations (I1.14)—(I1.16)) and (I1.21)-({I1.23),
forn > N+ M +1 hold.

Proof Inserting formula (11.10) in (11.1)) and applying (11.1) to xP,,(x), and again
(11.10) to xP,—;(x), fori =1,2,...,N, we get, forn > 1,

M M

Ot (¥) = = D 5ins1 Qs (1) + [ @ () + D 50,0 Qp—i (%)
i=1

i=1

N
= BnPn(x) = yuPn-1(x) + Z Fin+1 Prai—i ()
i=1
N
- Z Pin [Pnat-i(X) + Bn-iPn—i(x) + Yn—iPn_1-i(x)] .
i=1

Now, in the above expression, we apply (11.1) to P,(x) and we rearrange the
formula. Next, we do the same for P,,_;(x). Hence, using the auxiliary coefficients
(11.12) and (11.13), we can write the above formula in the following way

M

Oni1(x) = - Z Sine10n+1-i (x) +x

i=1

M
Qn(x)+ ) si,nQn_,-(x>l (11.31)
i=1

M
- B, [Qnu) + > S5inQni(0)| -7
i=1

M
On-1(x) + Z si,n—lQn—l—i(x))l
im1

N-1

+ Z Ai,nPn—i(x) + AN,nPn—N(x) + AN+1,nPn—(N+l)(x)-
i=2
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Let (Q,), be a MOPS with recurrence coefficients (3,,), and (%,),. Then, ap-
plying (11.29) to every factor xQ,_;(x), fori = 1,..., M in formula (11.31), and

using (11.19), (11.20) and (11.24)—(11.26]), we get
M-1
0= BinOni(x) + BrnQn-rt () + Brret Qo) (x)  (11.32)
i=
N-1
+ Z AinPr_i(x) + AN o PN (X) + ANs1,n Pr-(nv+1) (X).
i=

Now applying the functional P, _u to the above equation and taking into account
the orthogonality of the polynomials P,, with respect to u, we obtain

M-1

(Pp-1u, Z Bi nOn-i+BMnOn-m + Brs1,nQn-m+1)) =0, n>2N+M+1,
i=2
_ M-1
<PM_211, Z Bi,nQn—i +BM,nQn—M +BM+1,nQn—(M+1)> =0, n=2N+M,
i=2

and successively until

M-1

(Pou, > BinQu-i + BrnQn-mt + BystnQu-vsn)) =0, n2 N+2.
i=2

Thus, forn > N + M + 1, we have

M-1

Z Bin(Pju,0ni)+Bar (P, Qn-mt) + Brre1 n(Pj 0, Qu(amrs1)) =0,
=
(11.33)
forj=0,1,....,.M - 1.

Fixed an positive integer n (n > N + M + 1), we consider the homogeneous
system of M equations and M unknowns B; ,,i = 2,...,M + 1, whose
associated matrix is Ez—z that is the transpose of the matrix B,._>. Applying the
hypotheses detA # 0, sy, # 0, foralln > N + M, and (b) of the Lemmal[I1.1, we
get det BZ_Z # 0, foralln > N + M + 1. Therefore the system has a unique solution

that is the trivial solution
Bin=0, i=2,....M+1,

so the equations (11.21)—(11.23) hold for n > N + M + 1. The other equations
(11.14)—(11.16) for n > N + M + 1 are also fulfilled simply noticing that from the
equation (11.32) we obtain
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N-1

Z AinPr_i(x) + AN 0PN (X) + ANs1,nPr—(nv+1) (x) = 0,
p)

and the sequence of polynomials (P,), is a basis.
Conversely, notice that the equations (11.14)—(11.16)) in formula (11.31) yield

M

M
Qi1 (1) == ) St Qa1 =i (%) +5 | @ () + ) 50,0 Qi (¥)
i=1

i1
M M

=B [Qn(x) + Z SinQn-i(X)) | =¥y |Qn-1(x) + Z Sin-10n-1-i(x)]|,
o1 i=1

forn > N + M + 1. We observe that this is formula (11.27) in the Proposition [11.6|
which can be rewritten as (11.28). Then taking into account the equations (11.21)—
(11.23) we get (11.30) for n > N+ M + 1. Thus, since by hypotheses the polynomials
0, satisfy the three-term recurrence relation with y,, # 0, forn = 1,2,..., N, we
obtain that these polynomials satisfy the same three-term recurrence relation for all
n. Besides from (11.16) and (11.23) we get that ¥, # 0, for all » > N + 1, and
therefore the sequence (Q,), is a MOPS. O

Remark. Observe that to prove the first part of the Theorem, i.e. with the assumption
that the sequence (Q,,), is orthogonal, it is enough to require only the initial condi-
tions (11.3), taking into account (a) of Theorem|11.3. However for the converse we
need that the more extensive condition ry , sy, # 0 foralln > N + M hold.
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