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1.- Introduction and notation.

Let T be a rectifiable Jordan curve in the complex plane and denote
by © the region inside of I'. By a result of Caratheodory, each confor-
mal mapping ¢ ,from D (the open unit disc) onto & ,has a unique exten-
sion to |z|<1l; particulary, its restriction to unit circle T is a
parametrization of I (We may suppose the origin belongs to & and

©(0)=0). Denote by ¥ the inverse function of ¢ ,.

Let p be a finite nonnegative measure on I' , which is absolutely
/;Qcontinuous with respectétto arc length ds (du =wds). For 0O<p<x, the
Lp(F,u) space is the class of complex yu -measurable functions defined

. p
on T, such that | |f]| du<e, and the u* (I ,p ) is the closed span in

n
Lp(F,u) of analytic polynomials P(z)=z ak.zk.
0

The measure v on T given by dv= wog |¢'|d6, where d6 is the normali-
zed Lebesgue measure,is the image measure of u byg. It 1is obvious
. . p .
fe P (r,u) if and only if fo o & L (T,v) and, by using a theorem

of Mergelyan ([ 6], 386), f € Hp(F,u) if and only if fo g¢ge Hp(T,v).

We consider on Lp(F,u) the "shift" opeiator S defined by S(f)(z)=
z f(z). A closed subéspace M of Lp( ['nu) is simply invariant (S.1iJ)
under the operator S if S(M) ? M. Our goal in this paper is to study
the s.i. subspaces of Lp(F,u) under the operator S, i<p<«. The problem
_ . of determinig the s.i. subspaces was solved by Beurling [1] for the
Lebesgue measure and p=2. In [3] this result was extended to ﬁanj)

when ¢ 1is a arbitrary measure wich verifies Szef§o's condition,

J p
. obtaining a paticular description of H (T,u).



2.- Simply Invariant Subspaces in Lp(r,p).

Let M be a s.i. subspace of Lp(F,u), l<p<o; select F in M\zM,
then there exist a function geM such that, F-q, is the vector
of best approximation of F in zM. The function g is characterized
by the condition:

[ laf *qfau=0
for every fezM ([5])
LEMMA 1.- g is charactérized by the following three conditions:
i) F-gezM
ii) |ql®au= fqlph [v]as
iii) feq HP (I, {V'|ds), for all feM
Proof. -
i) Trivial.
ii) Since ¥ 1is analytic on Q@ , continuous on §} and Y (0)=0, we may
approximate ¥ on T by polynomials which vanish in 0 by using
Mergelyian's result. Then, we have w“qezM for n>1 and
0=J¥"q Iqlp—%du%rw"lqlpduﬂsme g0 | v
Hence lqdﬂpdv=HQdﬂ§aS6/since every measure on T is characterized
by its Fourier-Stieltjes coefficients.
iii) If £ is an element belonging to M, we haveAflfezM if n>1,
and
0- [y ¥7 £ lal” Ga=fpeta Hal} [wlas=f 0 a0 g)a0
Thus fq~ € H (F!|J]ds)
Conversely, if feM by iii) f=qg with geH'( Fl|¢1ds) Then, by ii)
[z £ lal™ T au=fizglal au= 1al J; 29 [¥las=1al[ o(gep)a0=0

since ¢.(g,9)e H (T) and g(9)=0

o]
LEMMA 2.- A subspace M of LP(FN) l<pcwo, ®#8 s.i. 1if and only if
. P P
there exists gel (T,u) such that M= q H (r}|w|ds). In this case,
q is determined by the subspace up to constant factors of modulus

p
one, and it verifies, |q| w=|{] a.e. onr .



Proof.- Let M be a s.i. subspace of Lp(F,p ) and g as in lemma l.
After a normalization we may suppose Iqlpw=|w| a.e. onl . From
lemma 1-iii), M<q Hp(F,leds). Now we shall prove that fqeM if
chp(F,lwﬂdQ. For each ¢>0, we can find a polynomial P(z) Such
that |f-Pl<e in Lp(F, |V|ds)-norm. Then |fg-Pql<e in Lp( r,du)

and fgeM, since geM and M is a closed subspace.

P . .
Conversely, it 1is clear that M=g H (F,Ilwlds) is an invariant
. p p
subspace. Since zM=M implies ¢ H (T)=H (T), M must be a s.i. sub-
space because, 1in other case, ¢ would be an outer function and

this contradicts the fact that ¢ (0)=0.

Finally, assume that there are d, .9, that satisfy the condi-
p P
tions of lemma 2 and q,H (F,Iwﬂds)=qu (I',|v'|ds). 1t follows
p \ , p
that |qJ=|qJ, 94=q,9 with geH (r,|v'ds) and q,=d,h with heH (T, |v]das)

Then gh=1 and since |g|=|h|=1, we obtafin g=h. Hence

p
Re (h)eH (T, ]|y'lds) and this shows that h is constant.

We can apply preceding lemma when w=1 and M=Hp(F,ds). Indeed,
if M is not s.i. subspace of Lp(F,ds), sz(F,ds)= Hp(F,ds). Then,
cpHp(T,](p'|d8)=Hp(T,|cp'|d6) and 1/(per(T),which is not true (@(0)=0)

We obtain
THEOREM 3.- Mng( ',u), 1l<p<w, is a s.i. subspace if and only
if M= Q }{p(F,ds), where QeLp( T,u), lQIpw:l and Q is unique up
to constant factors of modulus one.

Proof.- M=q Hp(F,lw'lds) and Hp(I‘,ds)=ql Hp(r,w‘|ds), then the

results holds for Q= q/q‘.

p
3.- The Space H (T,u).
p
Now we shall study when the space H (I,u) is a s.i. subspace
p
of L (T,u) and in this case we shall obtain an explicit descrip-

tion of Q. In order to obtain this, first we must consider when



Hp(F,u) is a proper subspace of Lp(F,u). In [7] p. 341, it

appears that Hp(Ru).i P (T,u) iff || log woL1(F,ds) (i.e.

log WoQEL‘(T) ). We shall give a sufficient condition on weight
w, restricting the class of curves.

Definition.- Let I' be a rectifiable Jordan curve. An arc along
I'with endpoints zland zzwill be denoted (z, ,z,). T is said to

be a chord-arc curve if there is a constant C such that for all

where s(z z is the

points z, ,z, of I', s(z, ,z,)<C |zi—z 2 )

z zll Ll

arc length of Zy .2, -

If T is a chord-arc curve then § is a Smirnov domain ( ¢' is
outer) and these are the most general domains where the system
of orthogonal polynomials spans HZ(F,ds).

Definition.- If 1l<p<® and w is a nonnegative function on T, inte-
grable with respect to ds, we say that weAp (') if there exists
a constant C,>0 such that for all intervals Jgrl

-1/p-1 -1
/pdS )p<

-

(—1 [wds ) (1 wa

Cp
s(J) v S(J)

Where S(J) is the arc length of J.

This definition constituies the natural extension of the classes
A, of Muckenhoupt (see [2]). The class A3 1is the limit of the

classes Ap when p+ 1 and A is the union of all classes A;.

In the segment that follows we suppose that I' 1is a chord-arc

curve and then |¢'|eAq for some ge[l,») (see[8]).

By using Hélder's inequality we can obtain that log weLq(F,ds)
implies Hp( r,u) ﬁ .Lp( ' u) (see [4]). In this case, it 1is not

p
difficult to see that H (I',u) is a s.i. subspace. Hence, when

: p
theorem 3 is used, Hp(F,u) = Q H (' ,ds) where qu/qt'



p p
The function 1/go¢ is outer in H (T). Indeed, if heH (F,Ides),

we have qher( I''y) and then there is a sequence of polynomials
{pnr; such thatfr |qh—Ph|de1~90 (n—->®) .
Consequently, LT lho?— l/qo? Pn0?|'d6~90 (n—x ).
By application of Mergelyan's result we can get another sequence
of polynomials Q_ such that

lehO(p— 1/q09 inpde-—)O (n—»>)

and then 1/ go¢ 1is outer.

P -
But if g is an outer function in H (T) then g=exp(u+iu), where
u is real, 4 is the conjugate function of u and both u, exp(pu)
p
are integrable. Since |go @| we¢= |[V'o@| and 1/qo¢® is outer, we
have
A
Qop= (wod/|Vo@|) exp |-i/p (log wo®/|Voo|)™ |
By the some reasons
-1/p . =
qo® = (1/|Voe|) "Texp |-i/p (log 1/|V'o9]|)7|

and then it follows that

-1 )
(Q/Cll)oCP=(WoCP) /pexp |-i/p log (wo9 )™ |

and

0=w"'/Rxp |-i/p (log w) |
where ~ represents the conjugate fuction operator onT defined
by f=(fo¢ Yo ¥ wich coincides with the natural definition for

polynomials, i.e., if f=Re (P(z)lr) then f= Im (P(z)|r).

Denoting Kp=Q, we obtain the following representation for
p
H (T,u) space.
THEOREM 4 .- If 1<p<®, H (T, u)= K, H”(T,ds) where

" Paxp |-i/p (log w) |

Kp=w
1
COROLLARY 5.- If T is a chord-arc curve, (log w) €L (T,ds) and

l< p<o , the simply invariant subspaces of Lp( I''u) are the form
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[5]

[6]
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(8]

p
M=u H ( T,u), where |u|=1 a.e. and u is unique up to constant
factors of modulus one.

For ' =T and w=1 we have Beurling's theorem.
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