

SIMPLY INVARIANT SUBSPACES IN $L^p(\Gamma, \mu)$

Guadalupe J.J.
 Colegio Universitario
 de La Rioja

Rezola M.L.
 Dpto. de Teoria de Funciones
 Universidad de Zaragoza

1.- Introduction and notation.

Let Γ be a rectifiable Jordan curve in the complex plane and denote by Ω the region inside of Γ . By a result of Caratheodory, each conformal mapping φ , from D (the open unit disc) onto Ω , has a unique extension to $|z| \leq 1$; particularly, its restriction to unit circle T is a parametrization of Γ (We may suppose the origin belongs to Ω and $\varphi(0)=0$). Denote by ψ the inverse function of φ .

Let μ be a finite nonnegative measure on Γ , which is absolutely continuous with respects to arc length ds ($d\mu = wds$). For $0 < p < \infty$, the $L^p(\Gamma, \mu)$ space is the class of complex μ -measurable functions defined on Γ , such that $\int |f|^p d\mu < \infty$, and the $H^p(\Gamma, \mu)$ is the closed span in $L^p(\Gamma, \mu)$ of analytic polynomials $P(z) = \sum_0^n a_k \cdot z^k$.

The measure ν on T given by $d\nu = w \circ \varphi' |\varphi'| d\theta$, where $d\theta$ is the normalized Lebesgue measure, is the image measure of μ by φ . It is obvious $f \in L^p(\Gamma, \mu)$ if and only if $f \circ \varphi \in L^p(T, \nu)$ and, by using a theorem of Mergelyan ([6], 386), $f \in H^p(\Gamma, \mu)$ if and only if $f \circ \varphi \in H^p(T, \nu)$.

We consider on $L^p(\Gamma, \mu)$ the "shift" operator S defined by $S(f)(z) = z \cdot f(z)$. A closed subspace M of $L^p(\Gamma, \mu)$ is simply invariant (s.i.) under the operator S if $S(M) \subsetneq M$. Our goal in this paper is to study the s.i. subspaces of $L^p(\Gamma, \mu)$ under the operator S , $1 < p < \infty$. The problem of determining the s.i. subspaces was solved by Beurling [1] for the Lebesgue measure and $p=2$. In [3] this result was extended to $H^p(\Gamma, \mu)$ when μ is an arbitrary measure which verifies Szegő's condition, obtaining a particular description of $H^p(\Gamma, \mu)$.

2.- Simply Invariant Subspaces in $L^p(\Gamma, \mu)$.

Let M be a s.i. subspace of $L^p(\Gamma, \mu)$, $1 < p < \infty$; select F in $M \setminus zM$, then there exist a function $q \in M$ such that, $F - q$, is the vector of best approximation of F in zM . The function q is characterized by the condition:

$$\int_{\Gamma} |q|^{p-2} \bar{q} f d\mu = 0$$

for every $f \in zM$ ([5])

LEMMA 1.- q is characterized by the following three conditions:

- i) $F - q \in zM$
- ii) $\|q\|_p^p d\mu = \|q\|_p^p |\psi| ds$
- iii) $f \in q H^p(\Gamma, |\psi'| ds)$, for all $f \in M$

Proof.-

i) Trivial.

ii) Since ψ is analytic on Ω , continuous on $\bar{\Omega}$ and $\psi(0) = 0$, we may approximate ψ on Γ by polynomials which vanish in 0 by using Mergelyan's result. Then, we have $\psi^n q \in zM$ for $n \geq 1$ and

$$0 = \int_{\Gamma} \psi^n q |q|^{p-2} \bar{q} d\mu = \int_{\Gamma} \psi^n |q|^{p-2} \bar{q} d\mu = \int_T e^{in\theta} |q \circ \varphi|^{p-2} \bar{q} d\mu$$

Hence $|q \circ \varphi|^{p-2} \bar{q} d\mu = |q \circ \varphi|^{p-2} d\theta$, since every measure on T is characterized by its Fourier-Stieltjes coefficients.

iii) If f is an element belonging to M , we have $\psi^n f \in zM$ if $n \geq 1$, and

$$0 = \int_{\Gamma} \psi^n f |q|^{p-2} \bar{q} d\mu = \int_{\Gamma} \psi^n f q^{-1} |q|^{p-2} \bar{q} d\mu = \int_T e^{in\theta} (f q^{-1} \circ \varphi) d\theta$$

Thus $f q^{-1} \in H(\Gamma, |\psi'| ds)$

Conversely, if $f \in M$ by iii) $f = qg$ with $g \in H(\Gamma, |\psi'| ds)$. Then, by ii)

$$\int_{\Gamma} z f |q|^{p-2} \bar{q} d\mu = \int_{\Gamma} z g |q|^{p-2} \bar{q} d\mu = \|q\|_p^p \int_{\Gamma} z g |\psi| ds = \|q\|_p^p \int_T \varphi (g \circ \varphi) d\theta = 0$$

since $\varphi (g \circ \varphi) \in H(T)$ and $\varphi(0) = 0$

LEMMA 2.- A subspace M of $L^p(\Gamma, \mu)$, $1 < p < \infty$, is s.i. if and only if there exists $q \in L^p(\Gamma, \mu)$ such that $M = q H^p(\Gamma, |\psi'| ds)$. In this case, q is determined by the subspace up to constant factors of modulus one, and it verifies, $|q|_w^p = |\psi|$ a.e. on Γ .

Proof.- Let M be a s.i. subspace of $L^p(\Gamma, \mu)$ and q as in lemma 1. After a normalization we may suppose $|q|^p w = |\psi|$ a.e. on Γ . From lemma 1-iii), $M \subseteq q H^p(\Gamma, |\psi| ds)$. Now we shall prove that $f q \in M$ if $f \in H^p(\Gamma, |\psi'| ds)$. For each $\epsilon > 0$, we can find a polynomial $P(z)$ such that $|f - P| < \epsilon$ in $L^p(\Gamma, |\psi'| ds)$ -norm. Then $|fq - Pq| < \epsilon$ in $L^p(\Gamma, d\mu)$ and $f q \in M$, since $q \in M$ and M is a closed subspace.

Conversely, it is clear that $M = q H^p(\Gamma, |\psi'| ds)$ is an invariant subspace. Since $zM = M$ implies $\varphi H^p(\Gamma) = H^p(\Gamma)$, M must be a s.i. subspace because, in other case, φ would be an outer function and this contradicts the fact that $\varphi(0) = 0$.

Finally, assume that there are q_1, q_2 , that satisfy the conditions of lemma 2 and $q_1 H^p(\Gamma, |\psi'| ds) = q_2 H^p(\Gamma, |\psi'| ds)$. It follows that $|q_1| = |q_2|$, $q_1 = q_2 g$ with $g \in H^p(\Gamma, |\psi'| ds)$ and $q_2 = q_1 h$ with $h \in H^p(\Gamma, |\psi'| ds)$. Then $gh = 1$ and since $|g| = |h| = 1$, we obtain $g = \bar{h}$. Hence $Re(h) \in H^p(\Gamma, |\psi'| ds)$ and this shows that h is constant.

We can apply preceding lemma when $w = 1$ and $M = H^p(\Gamma, ds)$. Indeed, if M is not s.i. subspace of $L^p(\Gamma, ds)$, $zH^p(\Gamma, ds) \neq H^p(\Gamma, ds)$. Then, $\varphi H^p(\Gamma, |\varphi'| d\theta) \neq H^p(\Gamma, |\varphi'| d\theta)$ and $1/\varphi \in H^p(\Gamma)$, which is not true ($\varphi(0) = 0$).

We obtain

THEOREM 3.- $M \subseteq L^p(\Gamma, \mu)$, $1 < p < \infty$, is a s.i. subspace if and only if $M = Q H^p(\Gamma, ds)$, where $Q \in L^p(\Gamma, \mu)$, $|Q|^p w = 1$ and Q is unique up to constant factors of modulus one.

Proof.- $M = q H^p(\Gamma, |\psi'| ds)$ and $H^p(\Gamma, ds) = q_1 H^p(\Gamma, |\psi'| ds)$, then the results holds for $Q = q/q_1$.

3.- The Space $H^p(\Gamma, \mu)$.

Now we shall study when the space $H^p(\Gamma, \mu)$ is a s.i. subspace of $L^p(\Gamma, \mu)$ and in this case we shall obtain an explicit description of Q . In order to obtain this, first we must consider when

$H^p(\Gamma, \mu)$ is a proper subspace of $L^p(\Gamma, \mu)$. In [7] p. 341, it appears that $H^p(\Gamma, \mu) \subsetneq L^p(\Gamma, \mu)$ iff $|\psi| \log w \in L^1(\Gamma, ds)$ (i.e. $\log w \in \varphi \in L^1(\Gamma)$). We shall give a sufficient condition on weight w , restricting the class of curves.

Definition.- Let Γ be a rectifiable Jordan curve. An arc along Γ with endpoints z_1 and z_2 will be denoted (z_1, z_2) . Γ is said to be a chord-arc curve if there is a constant C such that for all points z_1, z_2 of Γ , $s(z_1, z_2) \leq C |z_1 - z_2|$, where $s(z_1, z_2)$ is the arc length of (z_1, z_2) .

If Γ is a chord-arc curve then Ω is a Smirnov domain (φ' is outer) and these are the most general domains where the system of orthogonal polynomials spans $H^2(\Gamma, ds)$.

Definition.- If $1 < p < \infty$ and w is a nonnegative function on Γ , integrable with respect to ds , we say that $w \in A_p(\Gamma)$ if there exists a constant $C_p > 0$ such that for all intervals $J \subset \Gamma$

$$\left(\frac{1}{S(J)} \int_J w \, ds \right) \left(\frac{1}{S(J)} \int_J w^{-1/p-1} \, ds \right)^{p-1} \leq C_p$$

Where $S(J)$ is the arc length of J .

This definition constitutes the natural extension of the classes A_p of Muckenhoupt (see [2]). The class A_1 is the limit of the classes A_p when $p \rightarrow 1$ and A_∞ is the union of all classes A_p .

In the segment that follows we suppose that Γ is a chord-arc curve and then $|\varphi'| \in A_q$ for some $q \in [1, \infty)$ (see [8]).

By using Hölder's inequality we can obtain that $\log w \in L^q(\Gamma, ds)$ implies $H^p(\Gamma, \mu) \subsetneq L^p(\Gamma, \mu)$ (see [4]). In this case, it is not difficult to see that $H^p(\Gamma, \mu)$ is a s.i. subspace. Hence, when theorem 3 is used, $H^p(\Gamma, \mu) = Q H^p(\Gamma, ds)$ where $Q = q/q_1$.

The function $1/q \circ \varphi$ is outer in $H^p(\Gamma)$. Indeed, if $h \in H^p(\Gamma, |\psi'| ds)$, we have $qh \in H^p(\Gamma, \mu)$ and then there is a sequence of polynomials $\{P_n\}_1^\infty$, such that $\int_{\Gamma} |qh - P_n|^p d\mu \rightarrow 0$ ($n \rightarrow \infty$).

Consequently, $\int_{\Gamma} |h \circ \varphi - 1/q \circ \varphi P_n \circ \varphi|^p d\theta \rightarrow 0$ ($n \rightarrow \infty$).

By application of Mergelyan's result we can get another sequence of polynomials Q_n such that

$$\int_{\Gamma} |h \circ \varphi - 1/q \circ \varphi Q_n|^p d\theta \rightarrow 0 \quad (n \rightarrow \infty)$$

and then $1/q \circ \varphi$ is outer.

But if g is an outer function in $H^p(\Gamma)$ then $g = \exp(u + i\tilde{u})$, where u is real, \tilde{u} is the conjugate function of u and both u , $\exp(pu)$ are integrable. Since $|q \circ \varphi|^p w \circ \varphi = |\psi' \circ \varphi|$ and $1/q \circ \varphi$ is outer, we have

$$q \circ \varphi = (w \circ \varphi / |\psi' \circ \varphi|)^{-1/p} \exp \left| -i/p (\log w \circ \varphi / |\psi' \circ \varphi|)^\sim \right|$$

By the same reasons

$$q_1 \circ \varphi = (1 / |\psi' \circ \varphi|)^{-1/p} \exp \left| -i/p (\log 1 / |\psi' \circ \varphi|)^\sim \right|$$

and then it follows that

$$(q/q_1) \circ \varphi = (w \circ \varphi)^{-1/p} \exp \left| -i/p \log (w \circ \varphi)^\sim \right|$$

and

$$Q = w^{-1/p} \exp \left| -i/p (\log w)^\sim \right|$$

where \sim represents the conjugate function operator on Γ defined by $\tilde{f} = (f \circ \varphi) \circ \psi$ which coincides with the natural definition for polynomials, i.e., if $f = \operatorname{Re} (P(z)|_{\Gamma})$ then $\tilde{f} = \operatorname{Im} (P(z)|_{\Gamma})$.

Denoting $K_p = Q$, we obtain the following representation for $H^p(\Gamma, \mu)$ space.

THEOREM 4. - If $1 < p < \infty$, $H^p(\Gamma, \mu) = K_p H^p(\Gamma, ds)$ where

$$K_p = w^{-1/p} \exp \left| -i/p (\log w)^\sim \right|$$

COROLLARY 5. - If Γ is a chord-arc curve, $(\log w)^q \in L^1(\Gamma, ds)$ and $1 < p < \infty$, the simply invariant subspaces of $L^p(\Gamma, \mu)$ are the form

$M = u H^p(\Gamma, \mu)$, where $|u|=1$ a.e. and u is unique up to constant factors of modulus one.

For $\Gamma=T$ and $w=1$ we have Beurling's theorem.

REFERENCES

- [1] Beurling A., On two problems concergning linear transformation in Hilbert space, *Acta Math.* 81 (1949), 239-255.
- [2] Coifman R.R.-Fefferman C., Weighted norm inequalities for maximal functions and singular integrals, *Studia Math.*, 51 (1974) 241-249.
- [3] Guadalupe J.J., Invariant subspaces and H^p spaces with respect to arbitrary measures, *Bulletino U.M.I.* (6) 1-B (1982), 1067-1077.
- [4] Guadalupe J.J. - Rezola M.L., Closure of analytic polynomials in weigthed Jordan curves. Preprint.
- [5] Holmes R.B., A course on optimization and best approximation, *Lecture Notes*, 257, Springer-Verlag, 1972.
- [6] Rudin W., *Real and Complex Analysis*. Mc. Graw-Hill, 1966.
- [7] Smirnov V.I.-Lebedev N.A., Functions of a Complex Variable Constructive Theory, *Iliffe Book Ltd.* London 1968.
- [8] Zinsmeister M., Courbes de Jordan vérifiant une condition corde-arc. *Ann. Inst. Fourier, Grenoble* 32,2 (1982) 13-21.