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THE CONJUGATE FUNCTION IN PLANE CURVES

BY
JOSE J. GUADALUPE AND M? LUISA REZOLA

ABSTRACT. We prove that the conjugate function operator is
‘bounded in I#(T, wds), 1 < p < oo, if and only if w € 4,(T), where
T is a quasiregular curve.

The weighted norm inequality problem for the conjugate function on the unit
circle T consists in characterizing the nonnegative functions w such that
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for a given p, 1 < p < oo, and constant C independent of /. When w = 1,
the inequality turns out to be the well known M. Riesz theorem [7]. In the
general case the weights are characterized as belonging to the classes A, of
Muckenhoupt, i.e., there is a constant C, > 0 such that
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for every interval I (see [1]). : :

The main aim of- this paper is to study the analogous problem for a special
class of curves in the complex plane. Let 2 be a plane domain whose boundary
T is a rectifiable Jordan curve, and let ¢ be the normalized conformal mapping
from the unit disc D onto £, and ¢ the inverse function of ¢.

Let u be a finite nonnegative measure on I' which is absolutely continuous
with respect to arc length (dx = wds). The space I°(T, u), 0 < p < oo, is the
class of complex p-measurable functions defined on T, such that

./r |flPdu < oo.

For 1 < p < oo, we say that w € 4,(T) if there is a constant C, > 0 such
that for every interval J € T
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where s(J) is the arc length of J. This is the natural definition of the 4, classes
in this context.

If fis a p-measurable complex function on I' and f o ¢ € LYT) we
may define the conjugate function as f = (f 6 ¢)~ o ¥, where (f o &)~

is the classical conjugate function of f o ¢. As it happens in the case of the-

unit circle, if P(z) is a polynomial and f(z) = Re IJ(z) with z € T, then
f(z) = Im P(z).

In the unweighted case (w = 1), the conjugate function operator turns
out to be bounded in I?(T), via conformal mapping, if and only if |¢'| € 4,
1 < p < oo, and therefore |¢’| € 4, is needed. A kind of curves verifying this
last condition are the chord-arc curves, which play an important role in the
study of generalized Hardy spaces and in deducing estimates for singular
integrals [3, 6]. T is said to be a chord-arc curve if there is a constant C > 0
such that for all points z,, z, of T, 5(z;, z;) = Clz; — z,| where 5(zy, z,) is the
length of the shortest arc of T with endpoints z; and z,. These curves are charac-
terized by the condition log ¢* € BMOA [5], which implies [¢'| € A..

P. Jones and M. Zinsmeister [4] proved that for every fixed p there is a
chord-arc curve T such that |¢'| & A,. Thus, the conjugate function operator is
not bounded in I?(T) for this curve

Consequently, we must restrict our attention to the class of curves verifying
l¢| € Ap forallp > 1.

DEerFINITION 1. Let T be a rectifiable Jordan curve. T is said quasiregular if

Jor each € > O there is a 1 > 0 such that zfz], 2y € T verify le = 23] = m, then
s(Z,2) E(A + 9lzp — 25l

In [5] it is shown that T is quasiregular if and only if log ¢’ € VMOA (D) =
HY(D) N VMO(T), where ¥MO(T) is the span of trigonometric polynomials in
BMO(T). In particular, if T is quasiregular, then T is chord-arc and |¢'| € A,
for all p > 1.

The following property of quasiregular curves will be needed for our main
result.

LemMA 2. If T is qua&iregylar and w € A,(D), then, (w o 9)I¢'| € A4,

ProOOF. Let J be an arc of " and ¢ (J) = I the corresponding arc of T. As with
TorR, we A,(I) implies that w € A,_(T) for some € > 0 ([1]). Then, by
using Holder’s inequality, we have ‘

(ﬁ ﬁ(w ° ¢)|¢,!)(|_;I f{(w o )l¢'] ?_I/P_I)p—l
s(p fwon wlt fooamet ™
(Tl% /I|¢’_l_(p_‘)/‘)c
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< (l_;'l _/;(W ° ¢)|¢'[)(ﬁ ﬁ‘(w ° ¢)_vl/p-‘_ll¢’lr—g—l(}_!(% )
T

and the lemma is proved.

Before passing to the following lemma we include some well known results
about 4, classes.
(A) w € A, if and only if there exists € > 0 such that

(L [y =kl f)

which is denoted ‘by w € RHI(1 + ¢) (reverse Holder inequality)..
(B) Let ¢ = logw. Thenw &€ 4,, 1 < p < oo, if and only if

|11 . ron .
LeMMA 3. Let f be a real valued function on T, and w = exp(f). The following
conditions are equzvalent

Dfe LBMO(T) (closure of L* in BMO)
ii)w € 4,Yp > 1 and w € RHI(q) for all g > 1.
i) w e RHI(q) w™t € RHI(g) for all ¢ > 1.
ivywl € A, w9 e A, forall g > 1.
V) w € AI,,,,w_l S Apfor allp > 1.

ProOF.

1) = 1i).

That w € 4, for all p > 1 is an immediate consequence of the Garnett-Jones
theorem, see [2]. ‘ A

On the other hand, by applying the John-Nirenberg inequality, given ¢ > 0

sufficiently small, there is a constant C such that for all g € BMO with

llgll« < € we have

for all interval 7 S T. Hence, exp g € A, with A,-constant smaller or equal
than C? and then, there exists § > 0 so that exp(g) € RHI(1 + 8), whenever
llgllx << €, where & depends only on e.

Since f belongs to the closure of L* in BMO, for each ¢ >0 we can put
f = /i + fo, where f; € L*, f; € BMO and || fil« < e. Thus, w = efi - efo
and wy, = /% are equivalent (i.e., there are constants ¢, ¢; > 0 such that
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clwo = w = ¢,w,). Then, there exists § > 0 such that wy € RHI(1 + §) and
also w € RHI(1 + 8). By applying the same’ arguments to the function

gf(q > 1) which belongs to L3}, also, we get w/ € RHI(1.+ §). Choosing
g=1+ 6 weobtainw € RHI((1 + 8)%) and, by iterating this argument, we
conclude that w € RHI(q), for all ¢ > 1.

il) = iii).

Iftwe 4, for all p > 1 then w™ ! € 4_, and, by using (4), wl e

RHI(1 + ¢ for some ¢ > 0. Both, this last condition and Hoélder’s inequality,

lead us to

1= KE(% ﬁw‘l)(r; ﬁw’)l/r

with » = 1 + 1/¢. Now, by applying w € RHI(g) for all ¢ > 1, it follows

that
(I—;[- '/;w‘q)“q§ Cq(%| /‘;w)-I ' |
Cqu(uln f W') s oxx ‘(m f 1)
i) = iv). '

(A) and Hoélder’s inequality lead us to

(Dl:l ’/;(wq)’-‘“)]/wE = Ke(i—}! ‘/;w)q = % j‘;x;zq«

-1

A

The verification for w
iv) = v).
It follows from w? € A, and w7 € 4, for all g > 1 that

is similar.

sup 1 eq(q"'"’) < 4+oco and
1

sup i e~ 997¢) < co. Then
]

spif¢¢1<oo and
1

up%f —@—en/p=l < +oo forallp > 1.

Therefore, w € A4 » for all p > 1. The same argument works for w L

v) = i). It is obvious from (B) and the Garnett-Jones theorem.
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THEOREM 4. Let I' be a quasiregular curve. Then the conjugation operator is
bounded on L (T, wds) (1 < p < o) if and only if w € A4,(I).

ProoF. Since the conjugate function operator is bounded on I?(7, w o ¢ -
|¢'|d6) if and only if (w o ¢)|¢’| € A4,, the “if part” of the theorem is an immedi-
ate consequence of Lemma 2.

For the converse, we suppose that (w o ¢)|¢’| € Ap and then (w o ¢)|¢'| €

A, for some ¢ > 0. Since T is quasiregular, log [¢'| € VMO C Lzy0, and
therefore, by Lemma 3, |¢’| and ld)’]_‘l verify RHI(q) for all g > 1. Thus

(;(Tlf—) ﬁw)(éf—) 'ﬁw_“p— l)ﬁ_1 = (m /wo¢ [¢"|)
(“1,l Jrowo gyt ™ (m f oo ‘(’;'))’

ReMARK. In the proof of the preceding theorem we only use the fact that

log |¢'| € Lg)s0. Quasiregular curves satisfy this condition and also every curve
which is transformed of a quasiregular curve by a conformal mapping with

bounded derivate (such curves are not necessarily quasiregular). The class of
curves (boundaries of Jordan domains) for which Theorem 4 is verified, strictly

contains the quasiregular curves and it is contained in the class of chord-arc
curves. How can these curves be charactenzed" The answer comes from the
" following.

THEOREM 5. Let T be a rectifiable curve which is the boundary of a Jordan
domain, and which verzfzes the following property: For all weights w on T the
conditions :

i) the conjugation operazor is bounded on L (T, dp), 1 < p < o
and

i) w € 4,(1)
are equivalent.

Then, ].Og !¢,l = LEOMO'

Proor. Take w = [{/| which verifies i) for all p > 1, and therefore w & A,(I)
for all p > 1. Writing

sy = [ig) amd g=—2,
-
the Last condition leads us to

(|—;‘ ﬁww)“q = cox f|¢!

or equivalently, |¢’| € RHI(q) for all ¢ > 1.
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On the other hand, w = 1, satisfies w € 4 ,(I) which implies that the
conjugation operator is bounded on L? (T, ds) and so |¢'| € A, forallp > 1.
Now, the theorem is proved by using Lemma 3.

. The authors are grateful to J.L. Rubio de Francia for his helpful

suggestions.
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