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1. Introduction

Let u be a linear functional defined in the linear space P of polynomials with complex coefficients. The action of u over
an element p € P will be denoted by (u, p).

The sequence of complex numbers {u,}n,>o such that u, = (u,x"), is said to be the moment sequence associated
with the linear functional u. The corresponding z-transform Z;’io u, z~"*D defines a function S(z) which is analytic in a
neighbourhood of infinity. This function is known in the literature as a Stieltjes function associated with the linear functional
u (see[1]).

The linear functional u defines a bilinear functional on P x P in the following way: (p, @), = (u, pq), for every p, q € P.
IfH = [(x, x’)u];f,=0 denotes the Gram matrix of the above bilinear functional with respect to the canonical basis of P, then
H is a Hankel matrix, i.e. the entries in every antidiagonal are equal.

The linear functional u is said to be quasi-definite if the leading principal submatrices H,, n > 0, of H are non singular.
In such a situation, there exists a sequence of monic polynomials {P, },>o with deg P, = n such that (u, P,Pn) = kn0n,m with
kn, # 0 foralln > 0. The sequence {P,},>0 is said to be the sequence of monic orthogonal polynomials (SMOP) with respect
to the linear functional u.

Taking into account that the multiplication operator by x is a symmetric operator with respect to the bilinear functional
(-s )u, the SMOP {P,,},>¢ satisfies for n > 0, a three-term recurrence relation

XPp(x) = Ppy1(X) + BuPu(X) + vnPr_1(%),
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with Po(x) = 1and P_;(x) = 0 where y, # 0 for every n > 1. Conversely, if a sequence of monic polynomials {P,}n>0
satisfies a recurrence relation like the previous one, then there exists a unique quasi-definite linear functional u such that
{Pn}n>0 is the corresponding SMOP. This result is known in the literature as Favard’s theorem (see [2]).

For the SMOP {P; },>0 there exists a sequence {vy },>¢ of linear functionals such that (v, P,) = 8nm. This sequence {v,}4>0

is said to be the dual sequence of {P,},>¢. Notice that v, = (5 “PLZ’), where for every p € P, pu denotes the linear functional
»n
such that (pu, q) = (u, pq), q € P. The linear functional vy = (M“—Pz) is said to be the normalization of u in the sense that
0

(vo, 1) = 1. Moreover, the linear functional (x — a)~'u is defined on P by

((x — a)_lu, P) = <u, w) , PelP.

X—a

If ? = (Py, Py, ...)T denotes the column vector associated with an SMOP, then the three-term recurrence relation reads
XxP = J»P where ] is a tridiagonal matrix such that the diagonal entries are {8,},>0, the upper diagonal entries are 1, and
the subdiagonal entries are {y;,}n>1. It is called a monic Jacobi matrix (see [2]).

Thus, for a quasi-definite linear functional u we have three characteristic elements.

(i) The Stieltjes function.
(ii) The SMOP {P,}n>0.
(iii) The monic Jacobi matrix J».

The connections between these three basic elements in the theory of orthogonal polynomials with Padé rational
approximants, quadrature formula, and spectral theory of symmetric operators have been very fruitful.

In a more general framework, in [3,4] the author deals with quasi-orthogonal polynomial sequences {Q;},>o of order r
with respect to a positive Borel measure w. They are defined by Q,(x) = Py(x) + by n—1Pn—1(x) + - - - 4 bpn—rPa—r (x) with
bnn—r # 0, where {P,},>0 is the sequence of orthonormal polynomials with respect to ©. When the polynomials Q, are
characteristic polynomials of some symmetric tridiagonal matrices with positive subdiagonal entries, many properties of
their zeros can be deduced from such a formulation. Furthermore, a positive quadrature formula with n nodes which is exact
for polynomials of degree at most 2n — r — 1,0 < r < n, is based on the zeros of the quasi-orthogonal polynomial Q, and,
as a consequence, for a fixed n, every positive quadrature formula is a Gaussian quadrature formula for some nonnegative
measure.

Many authors have been interested in the study of SMOP’s associated with some perturbations of linear functionals.
In particular, the so-called direct problems deal with some canonical perturbations of linear functionals. For instance, the
analysis of the parameters of the three-term recurrence relation when a positive definite linear functional is multiplied by
a polynomial (Christoffel transformation) has been done from a numerical point of view in [5], from the point of view of the
corresponding monic Jacobi matrices in [6], and taking into account the associated Stieltjes functions, in [7,8]. The relation
between the corresponding SMOP in the case of quasi-definite linear functionals has been deduced in [9]. The addition of
Dirac masses and their derivatives to a quasi-definite linear functional is called Uvarov transformation (see [10,11,8]). They
play an important role in the spectral analysis of higher order linear differential operators whose eigenfunctions are SMOP
(see [12]). They are related to bispectral problems and self-similar reductions of differential operators [7]. The connection
between the corresponding monic Jacobi matrices has been studied in [6].

On the other hand, given a quasi-definite linear functional u and polynomials p, q the analysis of the quasi-definiteness
of a linear functional v such that pv = qu has been done in the framework of the so-called generalized Christoffel formula
when u is a positive definite linear functional and q/p is a positive rational function in the support of u (see [5]). In such
a case the connection between the monic Jacobi matrices has been done in [13]. For the quasi-definite case, the relation
between the corresponding SMOP has been given in [9].

In the general situation, if degp = 1 and q is a constant, necessary and sufficient conditions for the quasi-definite
character of v have been done in [1]. There, the expression of the perturbed SMOP in terms of the initial one as well as the
relation between the parameters of the three-term recurrence relation is stated. This perturbation is called the Geronimus
transformation. The relation between the corresponding monic Jacobi matrices is analyzed in [6,11]. Finally, for the Stieltjes
functions associated with u and v the connection is given in [8].

When deg p = degq = 1, the relation between the SMOP associated with u and v is stated in [14].

Eventually, when p(x) = x? and qis a constant, in [ 15] the authors focus the attention in the invariance of the semiclassical
character for such a transformation. For a more general polynomial transformation and the invariance of the semiclassical
character, see [16].

All these cases correspond to the so-called direct problems, i.e., how a perturbation in a linear functional concerns to
Stieltjes functions, monic Jacobi matrices, and orthogonal polynomials, respectively. In our contribution, the approach will
be completely different and it will be based on the fact that algebraic relations between sequences of monic orthogonal
polynomials yield relations between the corresponding linear functionals as well as the corresponding Jacobi matrices. They
can be considered as inverse problems.

The study of inverse problems, i.e. to find the relation between two linear functionals assuming their corresponding
SMOP’s are related in terms of an algebraic expression, that it is said to be of type k — j, Qu(x) + dpn—1Qu_1(x) + --- +
An,n—k+1Qn—k+1(X) = Pa(X) +bp n—1Pr—1(X) + - - - + by n—jy1Pn—j+1(x), has been firstly considered by Geronimus in [17] in the
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case 1-2. Later on, the relation 1-3 has been analyzed in [18] as well as in [ 19] from the point of view of the corresponding
parameters of the three-term recurrence relation. In this last contribution the authors also deduce the second order linear
differential equation satisfied by the perturbed sequence of orthogonal polynomials when the initial sequence is a classical
one. We also point out that in [20,21] the authors focus the attention in the study of these perturbed families when the
initial orthogonal polynomial sequences are the Chebyshev polynomials of first and second kind, respectively. In particular,
the integral representation of the corresponding linear functional is obtained. Relations of type 2-2 have been completely
studied in [22]. In a very recent paper [23], the authors solved a problem studied in a particular case by Grinshpun (see [24]),
concerning the orthogonality of sequences of monic polynomials {Qy},>0 With Q,(x) = Py (x) + sPp—1(x) + tPy_»(x) where
{Pn}n>0 is a given SMOP. Finally, assuming a priori the orthogonality of the SMOP {P, },>0 and {Q; }»,>0, from a relation of type
k — j the connection between the corresponding linear functionals has been deduced in [25].

Such a relation appears in the framework of coherent pairs of linear functionals related to Sobolev inner products. This
problem has been pointed out in [26] as well as, in a more general framework, in [27].

In [22,26], the orthogonality of the sequence of monic polynomials {Qn},>0 is given in terms of some constant sequences.
Moreover, these constants are those appearing in the polynomial which relates the corresponding linear functional
associated with {P,},>0 and {Q,}n>0. More precisely, in [26] for the case 1-2 the authors proved the following results:

Let {P;}s>0 be an SMOP with respect to a quasi-definite linear functional u with recurrence coefficients {8,},>0 and
{¥n}n>1. We define a sequence of monic polynomials {Qn}n>0 by Qu = Pp + wnPr—1, n > 1, where p, are complex
numbers and @ # 0. The sequence {Q,}n>0 is an SMOP with respect to a quasi-definite linear functional v if and only

P¥(x1;%1 — Bo + 141,0) # Oforalln > 1and pu, = —%, where {P¥(x; X; — Bo + (41, 0)}n>0 denotes the

co-recursive sequence at level zero corresponding to the sequence {P,},>0 (see [2,28,29]), and x; = B1 — 2 — x%
This condition is equivalent to the fact that for n > 1 the parameters u,, do not vanish and satisfy

,Bn_,uvn-H_&:le n>1 (1.1)
Mn
Moreover, (x — x1)v = (B9 — X1 — p1)u. (see [26, Theorem 2]). This result will be used many times in this paper.

In the same way in [22], the authors studied the relations 2-2 P, + s;,P,—1 = Q, + t,Q,—1. They obtained the
characterization of the orthogonality of the sequence of polynomials {Q,},>0 in terms of the existence of two constant
sequences. Besides, these constants a, a are the values appearing in the relation between the two linear functionals, i.e.
(x —a)u =k(x—a)v,(a,a, keC).

A natural question is: Do these constant sequences depend on the coefficients of the polynomial relating the two linear
functionals for more general cases?

The aim of our contribution is twofold. First, we find necessary and sufficient conditions that the sequence of monic
polynomials {Qu}n>0, With Q,(x) = Pp(X) + spPu—1(x) + t,Py—2(x), must satisfy in order to be orthogonal with respect to
a linear functional v. Indeed, if u is the linear functional such that {P;},>¢ is the corresponding SMOP, then there exists
a monic quadratic polynomial h(x) = x*> + ax + b such that h(x)v = ku. We prove that in this case, there exist two
constant sequences and the values of these constants a and b are precisely the coefficients and not the zeros of the quadratic
polynomial h(x) = x> + ax + b such that h(x)v = ku. In other words, we deduce two nonlinear constraints for the sequence
of the coefficients of the three term recurrence relation and the sequences {s,},>1 and {t;},>2. A connection between the
corresponding monic Jacobi matrices is stated.

Second, we obtain necessary and sufficient conditions in order to the above relation 1-3 can be decomposed in two
relations 1-2 and then proceed by iteration. This is related with a two-step Geronimus transformation. In this case, we
prove that the constant sequences can be decomposed in another two simple constant sequences, associated with the zeros
of the polynomial h(x). Also, as a consequence, a matrix interpretation using LU and UL factorization is done. Finally, when
{Pp}n>0 is a symmetric SMOP, i.e. P,(—x) = (—1)"P,(x) and we assume s, = 0, then we prove that the 1-3 relation yields
two 1-2 relations.

The structure of the manuscript is the following. In Section 2 we present the basic background and we give a new
characterization of the orthogonality of the sequence {Q,}n,>0 (Theorem 2.2) in terms of some constant relations for
{Bn}, {¥n}, {sn}, and {t,}. They have not been yet studied in the literature. In Section 3 we deduce necessary and sufficient
conditions for the split of a 1-3 relation into two 1-2 relations. The matrix interpretation of this problem in terms of monic
Jacobi matrices is done. Some illustrative examples are considered.

2. A new characterization of orthogonality

From now on, {P, },>0 will denote an SMOP with respect to a quasi-definite linear functional u which satisfies the three-
term recurrence relation

Poy1(x) = (X — B)Pa(X) — ynPn_1(x), n >0, (2.1)
Po(x) =1,  P_1(x) =0,

where {8,}n>0 and {y,}a>1 are sequences of complex numbers with y, # 0forn > 1.
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Given two sequences of complex numbers {s,},>1 and {t,},>, we define for n > 1 the sequence of monic polynomials
{Qn}n>o such that

Qu(X) = Pp(x) + $yPy_1(X) + tyPr_2(x), witht, #0, n> 2. (2.2)
First, we characterize the orthogonality of the sequence {Q,}n>0.

Proposition 2.1. Let {P,}n>0 an SMOP with recurrence coefficients {Bn}n>0 and {yn}n>1. We define a sequence {Q, }n>0 of monic
polynomials by formula (2.2), i.e.,

Qn(x) :Pn(X)+S,1Pn_1(X)+tnPn_2(X), n= 17
where s, and t, are complex numbers with t, # 0, for alln > 2. Then {Q,}n>0 is an SMOP with recurrence coefficients {Bn}nzo
and {Yn}n>1 if and only if y,, # 0 and the following formulas hold:
Sn—1¥n = Sn¥n—1 + ta(Bn—2 — Bn)y n>2, (2.3)
tho1Vn = taVa—2, N >3,

where the coefficients Bn and y, are defined by

Bn =Bn+Sn—Spr1, n=0, (2.5)
Vo =vn+ta—top1 +5n(Baot — B)y n>1, (2.6)
with So=th=t = 0.
Proof. Inserting formula (2.1) in (2.2) and applying (2.2) to xP, (x), we get
Quy1(X¥) = XQu(X) + (Sn1 — Sn — Bu)Pu(X) + (tns1 — ¥n — SuPn—1 — t)Pa_1(X)
— (Sn¥Vn—1 + taBn—2)Pr2(X) — tyyn_2Pr_3(x), n>1,
pro~vided we substitute there xP,_(x) and xP,,_(x), using again (2.1). Now, formula (2.2) applied to P,(x) and the definition
of B, (see (2.5)), yield
Qui1(®) = X = B)Qu(®) + [tag1 — Yo — ta — Sn(Sni1 — S0 — Bu + Ba D) IPa_1 (%)
— [Sn¥n—1 + ta(Snt1 — Sn — B + Bn—2)1Pn2(X) — tyYn—2Pr3(x), n>1.
So {Qn}n>0 is an SMOP if and only if there exists a sequence of complex numbers (};)n>1, With 3, # 0 for n > 1, such that
[tn-H — VYn— tn - Sn(sn-H —Sp — IBn + ,Bn—l)]Pn—l(x)
- [SnJ/n—1 + tn(sn-H —Sp — ,Bn + ,Bn—z)]Pn—Z (X) - thn—ZPn—B(X)
= _?nanl (X)

Furthermore, ,Bn and y, are the coefficients of the three-term recurrence relation for Q.
Using again (2.2), straightforward calculations yield (2.3) and (2.4). O

This result can be also seen in [18].

Remark. Observe that the conditions y,, # 0, Vn > 3, follow from (2.4).

If the sequence {Qn }n>0 given by (2.2) is an SMOP with respect to a quasi-definite linear functional v, then it is well known,
see [18,19], that the linear functional u is a quadratic polynomial modification of v, that is, h(x)v = ku with h(x) = x*+ax+b
and k is a nonzero complex number.

In the next theorem, we show that the orthogonality of the sequence {Q,},>0 can be characterized by the fact that there
are two sequences depending on the parameters s,, t,, B, ¥» which remain constant and these constants are precisely the
coefficients a and b of the polynomial h.

Theorem 2.2. Let {P,},>o be an SMOP with recurrence coefficients { B, }n>0 and {ya}n>1. We define a sequence {Qy},>0 of monic
polynomials by the formula (2.2), i.e.,
Qn(x) :Pn(x)+SnPn—1(x)+tnPn—2(X)» n>1,

where s, and t, are complex numbers with t, # O, foralln > 2 and sy = ty = t; = 0. Then the following statements are
equivalent:

(i) {Qa}nso is an SMOP.
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(ii) There exist two complex numbers a and b such that, for n > 1,

An = —[Vns1 + tar1 — ez + Snr1(Bn — Butt — Snst + Sns2)] + Snp1 — Bt — Bu =1, (2.7)
n+1
1
By = t [Ynr1 — tayz +Snr1(Ba — Bnr1 — Snt1 + Sua2) 1V + tn — a1 + S0 (Snp1 — Bo)]
n+1
+th — Yn—1+ (Snr1 — Bu)(Sn — Bn—1) = b, (2.8)

where, by convention, we take y, = 0. Besides, the values of y; and y, in (2.6) have to be different from zero.
Furthermore, if u and v are the linear functionals associated with the sequences {Py,},>0 and {Qn}n>0, respectively, normalized
by (u, 1) = (v, 1) = 1, then

** 4+ ax + byv = ku (2.9)
withk € C\ {0}.

Proof. We write the proof of this theorem in terms of Bn and 7, and then it is enough to use (2.5) and (2.6).
(i)=(ii).
If {Qn}n>0 is an SMOP, by Proposition 2.1, (2.3) and (2.4) hold. Inserting in (2.3) the expression of y,_1 in terms of 7,1
given by (2.4) we get forn > 2,
Sn1. 3 5 Sn - 5 5
Vo= Bn2—Bn1+Sh2=—Vnr1—Bn1 —BntSi1=a (2.10)
ty tnt1
and then we get (2.7) from (2.5) and (2.6).
Now, we will deduce (2.8).
From the definition of y,, using (2.4) and (2.5) we have

~ tn+1 ~ ~
Yn = " — V2t — b +Sn(ﬁn 1= Sp—1+Sp—Bn), n=1
n+2

Multiplying in the above expression by },1/tn11

)/)’+1 - Sn¥n+1 Vnt1Vn42 = Sn¥nt1 s -
T (Sne1 — Bro1) = s (S — Ba) +< - —1>yn+1.
n+1 tht1 tnt2 tht1 tht1

Using (2.10), for n + 1 instead of n, in the expression S“V"“ which appears in the right hand side of the above formula, for
n > 1 we obtain

Sn¥ ~ Vi1V ~ Sn1V ~
Vn)’n+l ¥ (50 1_ﬂn 1)< n¥Yn+1 lgn) _ Vn+1Vn+2 + (s, — ﬂn)( n+1Vn+2 lsn+1)

tht1 tht1 tnt2 tnt2

t, - ~ ~
+ ( - 1) Yn+1 + Sa(Bno1 + Sq — Su—1 — Bn).

tht1
Besides, from (2.4) and according to the definition of 7,_; we have, forn > 1,
th

Vn+1 = )7n—l — b1+t — 5n—1(/§n—2 + Sn—1 — Sp—2 — Bn—l)

tn+l
and, therefore, forn > 1

VaVa+1 Sn¥i - . . - -
nn + (Sp1 — ,Bn 1) <n7n+l - ,3n> +to1— Vo1 — Vo +Sn-1(Br2 + Sn—1 — Sn—2 — Bn-1)
n+1 tnt1
Yt 1) 5 [ Snt1¥s 5 - > >
= M + (Sn - ,Bn) (M - ﬂn-H) + tn — Vn — Vn+1 +5n(/3n—1 +$n — Sp—1 — ﬂn) = b (2'11)
tn+2 tn+2

Thus, by straightforward computations, using (2.5) and (2.6) we obtain (2.8).
(ii)=(i).

Notice first that (2.7) and (2.8) are equivalent to (2.10) and (2.11). We will prove that (2.10) and (2.11) yield (2.4). Taking
into account the new expression of % obtained from (2.10) written for n + 1 instead of n, we can reformulate (2.11)

)’ Yot1 2 SnVnt1 7

non + (Sp1 — ,Bn71)< non _,3n>+tn 1= Vno1+ Sn— 1(,8n 2+ Sp—1— ﬂn 1)
a1 tht1

_ ]7n+1)7n+2

= [ SnVar1 2 - ~ ~
+ (Sn — Bn) |: LLALL Bn-1+Sn—1 — 5ni| + bty — Va1 + Sn(Bno1 + Sn — Sn—1 — Bn)-

tn+2 tn-H
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Using the definition of y,_1 in the left hand side of the above expression and simplifying we get

Vot~ > 5 Ynt1Vn+2
™ [Vn +50(Bn — Sn + Sn—1 — Bu—1) + tap1] = yu—r + LLatihry
a1 tht2
Using again the definition of },, we have
P o ) = yoy + L2
n+1 thi2
thatis, forn > 1
Va1 tht1 ~ th .
T (yn - Lyn+2) = Vn-1— . Vn+1- (2]2)
a1 tnya tnt1

Since yy — %)72 = 0, we deduce y, = Int1 Vn+2, for n > 1, and therefore (2.4) holds. Finally, we point out that from (2.4)

th42
and (2.10) we can derive (2.3).
To conclude the proof it remains to deduce the relation between the functionals u and v in terms of the constants a and

b.
If we expand the linear functional u in the dual basis {%}120 of the polynomials {Q;};>o (see [11]) and taking into
account (2.2), then
2
u, Q; t S
u=3y %0, _ (ﬂ Qz+T1Q1+1>v.
= (. Q) V1i¥2 7

Introducing the explicit expression of the polynomials Q, and Q; given by the three-term recurrence relation we obtain

t S1Y ~ ~ V1Y ~ 1Y - ~ -
u= = [x2+<1—“—ﬁo—ﬁ1)x+<w—ﬁo‘—”— wmm)}v. o
1582 t 5] t

Remark. The proof of the theorem has been written in terms of Bn and y, not only for simplicity. If we work in a similar
way as above but trying to look for that all the expressions appearing therein depend only on 8, and y;, then we can obtain
similar formulas for a and b but a problem appears when we want to come back. Indeed, instead of (2.12) we obtain

Yn—1| ~ Vn—2 ~ Vn—1
|:Vn —ty ] = Vo1 + bt , n=3,
th th—1 ty

and so we can not achieve (2.4). The main reason is that the trivial extension of (2.4)ton = 2 (t; = y, = 0) allows us to
obtain the value of y, in terms of 7, as yg = t; % but not conversely, i.e. 7, in terms of 4.

A matrix interpretation.

In the sequel, we present a matrix interpretation of these results in terms of the monic Jacobi matrices associated with
the SMOP’s {P;}n>0 and {Qy}>0, respectively.

Let # = (Py, P1,...)T and @ = (Qg, Q1, ...)" be the column vectors associated with these orthogonal families, and J»
and J the corresponding monic Jacobi matrices. Then, the three-term recurrence relations for such SMOP’s read x? = J» &
and xQ = Jo Q.

Next, we will describe a method to find the matrix Jo using the matrix J,» and the polynomial h(x) = x*> 4+ ax + b.

Taking into account (2.2) we may write @ = M5 where M = (my;) is a banded lower triangular matrix such that
myx = land myj = 0 fork —j > 2, then xMP = Jo M P and, as a consequence, J» P = Mg MP. Thus, we get

My =JaM.
On the other hand, from the classical Christoffel formula (see [5]) we can express h(x) % using the matrix representation
h(x)P = NQ

where V is a banded upper triangular matrix such that ny 4, = 1and ng; = 0 forj — k > 2. Thus h(x)» = ¥ MP, and
then

J2 +alp + bl = N M. (2.13)
But, from h(x)@ = MN @, we get

J2+ag +bl = MN. (2.14)
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As a conclusion, we can summarize our process as follows.

Step 1. Given J», we find the polynomial matrix]é + aJ» + bl.
Step 2. From M and (2.13) we find V.

Step 3. From (2.14) we obtain the polynomial matrix J2 + ajo + bl.

Step 4. Taking into account that J4 is a tridiagonal matrix, from step 3 we can deduce J4, since (Jo + % D= MN—(b— %) I.
A similar analysis for the truncated matrices yields the principal submatrices of Jo can be deduced from a rank-one
perturbation of the corresponding leading principal submatrices of J».

Let us denote (P), = (Py, P1, ..., P,)T and (@), = (Qq, Q1, ..., Q,)T. Then the corresponding three-term recurrence
relations read

X(PIn = Up)Int1(Pn + Porienya, (2.15)
x(@)y = J@)n1(@)n + Quyrny1, (2.16)
where the symbol (A), stands for the truncation of any infinite matrix A at level n, that is, (J»),+1 denotes the leading

principal submatrrix of J» of size (n 4+ 1) x (n 4 1),and e,y = (0, ..., 0, 1)T € R*1,
Taking into account

(@)n = (M)nt-1(P)n, (2.17)
and replacing (2.17) in (2.16) we get

X(M)ni1(Pn = UJ@)nr1(Mnt1(P)n + Pyt + Snr1Pn + trp1Pao1)eni1
= [Je)ns1(Mng1 + en+1(5n+le:+1 + tn+1d£+1)](=7))n + Puy1€ny1,

whered, .1 = (0,...,0,1,0)7 € R*1,
Thus, from (2.15)

(M)n1Up)ns1 = U ns1 (Mng1 + en+1(5n+le:_¢_1 + tn+1dz1'+1)~

So, in order to obtain (Jg),+1 We proceed in three steps.
Step 1. Obtain (M)p+1(p)nt1-

Step 2. Subtract from the previous one the rank-one matrix e, 4 (s,,HeE Tt thdZ 41)- This leads to a matrix Gy .

Step 3. (](Q)n+l = Gn+1[(M)n+1]_l-

In the case of quasi-orthogonal polynomials associated with positive Borel measures, a similar matrix approach has
been considered in [3, Theorem 3.1] and [4, Theorem 3.2] for real symmetric tridiagonal (Jacobi) matrices. Indeed the n-
th quasi-orthogonal polynomial can be represented as the characteristic polynomial of a symmetric tridiagonal matrix
whose entries are explicitly given in terms of the entries of the initial Jacobi matrix associated with the positive Borel
measure. Nevertheless, not every quasi-orthogonal polynomial can be represented as the characteristic polynomial of a
symmetric tridiagonal matrix. Indeed, in [4, Theorem 3.3] a sufficient condition for such a representation is given assuming
the quasi-orthogonal polynomial of degree n is represented as a linear combination of three consecutive monic orthogonal
polynomials.

3. Reducible cases

Let {P,}n>0 be an SMOP with respect to a quasi-definite linear functional u, and {Q, },>0 @ sequence of monic polynomials
strictly quasi-orthogonal of order two, satisfying the relation (2.2).

As a consequence of the Proposition 2.1 we have that {Q,},>0 is an SMOP if and only if the parameters s, and t, satisfy,
forn > 3,

)/,
i1 =1t (1 - tn 2) + ¥n + $n(Ba1 — Bn + Snt1 — Su),

n—1

Sn $2
Sn+1 = _?yn—l + Bn— Bac1 +s3+ ?Vl — B2 — B,
n 2

with some initial conditions.
In this section we will study two particular situations where the computations of these parameters can be simplified.
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3.1. Iterative case

Notice that if {Q,}n>0 satisfies (2.2), then the polynomials Q, cannot be represented as a linear combination of the two
consecutive polynomials P, and P,_;. A natural question arises: Can the SMOP {Q,},>0 be generated from {P,},>0 in two
steps with the help of an intermediate SMOP? In other words: Do two sequences of nonzero complex numbers {A,},>; and
{{tn}n>1 exist such that {R,},>o defined by R, = P, + nPy—1 is an SMOP and Q,, = R, 4+ A,Rn_1? The interest of this question
is to simplify the computation of the parameters s, and t;, in this case via the parameters A, and /.

If the answer is positive, then we will say that the representation (2.2) is iterative. For these cases we have s, = A, + un
and t;, = Apitn_1.

Now, we give a characterization of the iterative representations when both {P,},>¢ and {Q,}n>0 are SMOP’s.

Proposition 3.1. Let {P,},>0 and {Q,}n>0 be two SMOP’s with respect to the quasi-definite linear functionals u and v, respectively,
which are related by (2.2). In this case, the linear functionals satisfy (x> + ax + b)v = (x — x1)(x — x2)v = ku. We denote by
{Bn}n=0, {¥n}n=1and {Bn}nzov {¥n}n=1 the coefficients of the three-term recurrence relations of {Py}>0 and {Qn}n>0, respectively.

Then, the representation (2.2) is iterative if and only if there exist a complex number « and a sequence of complex numbers
{ttn}n>1, with pq # sy and wn, # 0, n > 1, such that

Y
G = ,Bn_/anjL]_lJTn:a» n=>1, (3.1)

n

and

(.
Mng1 = Sne1 — ——, n> 1. (3.2)

n

Under such conditions, « is one of the zeros x; or x, of h(x) = x* + ax + b.

Proof. If the representation is iterative then there exists a sequence of complex numbers {i,}>1, With p, # 0, such that
R, = P, + uyPy—1 is an SMOP. Then, from Theorem 2 in [26] (and its proof), we have

x—a)w = —Au, C,,:=/3n—un+1—&=a, n>1,

n
where o and A are certain complex numbers, A # 0, and w is the quasi-definite functional with respect to which {Rp},>0 is
orthogonal. Substituting R, in (2.2), we get

Q =Ry +5s1— 1, Qu =Ry + (sn — )Ryt + [tn — tn—1(Sn — pn) 1Pz, n =2,
and since (2.2) is iterative, then we also have Q, = R, + A R,_1, with A, # 0 for alln > 1. Therefore A, = s,, — u, for
alln > 1and t, — wp—1(Sn — n) = 0 for alln > 2. Hence (3.2) follows and, furthermore w; # s; holds. Moreover, since
{Rn}n>0 is an SMOP with respect to w and Q, = R, 4+ A,Rn_1, being {Q,},>0 an SMOP with respect to v, then using Theorem

2 again in [26] we find (x — 8)v = —uw, where 8 and p are complex numbers, ;& # 0. Thus, since by hypothesis we also
have (x — x1)(x — x)v = ku, we find the relation

k
= X)X —22) v = — (X — ) (X — B)v.
UA

Since v is quasi-definite, this gives k = uA and {x1, x,} = {«, B}, hence « is indeed equal to x; or to x;.

Conversely, given {14, }n>1 in the above conditions, from [26, Theorem 2], (3.1) implies that the sequence {R,},>o defined
by R, = P, + usPn—1, n > 1, is an SMOP with respect to a quasi-definite linear functional w such that (x — «)w = kju
where k; € C\ {0}.

Taking A, = s, — un, n > 1,wehave A, # 0, n > 1,and t;, = Apuun—1, n > 2. So, we can write

Qu =Py + Ay + un)Pr1 + Appin—1Pp2 = Ry + ApRyq, n> 1.

This means that (2.2) is iterative. O

Remark. There is another constant sequence involved in this topic. Indeed, as a consequence of the above proof and
according to [26, Theorem 1], we get

D, ZBn — iy — Vn+1

=Xy, (0rx1), n=0,
)Ln+1

with Ag = 0. Moreover, we point out that, in general, the characterization of the orthogonality of a family of polynomials
{Qn}n>0 defined by (2.2) can be given (see Theorem 2.2) in terms of two sequences {A;} and {B,} which remain constant
and these constant values are precisely the coefficients of the quadratic polynomial h(x) which appears in the relation
h(x)v = ku. But if we have an iterative representation those sequences {A,} and {B,} (which in fact are very complicated)
can be decomposed in two other simple sequences {C,} and {D,} associated with the zeros of the polynomial h(x). More
precisely, when formula (2.2) is iterative then C, + D, = —A, and C;,D,, = B,..
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Observe that, from (3.2), i, can be expressed as a finite continued fraction

tn+1
Mn+1 = Sp+1 — t

n

)
Next, for the sake of an example we are going to construct a family of monic polynomials orthogonal with respect to

a quasi-definite linear functional v satisfying xX>v = u, where u is the Laguerre functional, represented (in the sense of
distribution theory) by the weight function x*e™ x (o, +.) (), being & > 0.

Example. Laguerre polynomials.

Let {L}},=0 be the sequence of monic Laguerre polynomials orthogonal with respect to the positive definite linear
functional u defined by the weight function x*e™ x o, +o0) (X) with @ > 0. We can take the auxiliary polynomials R, = L‘;*l
satisfying R, (x) = L7 (x) + nL;y_,(x) (see [2]) and the new polynomials Q, such that Q,(x) = R,(x) + A, Ry—1(x). Then the
polynomials Q, satisfy the relation (2.2) withs, = n+ A, and t, = (n — 1)A,, n > 1. It is well known that the recurrence
coefficients ofL,';‘*], oa>0arefB,=2n+a, n>0andy, =nn+ao—1), n> 1.

Using formula (1.1) for this case, having x; = 0 and A, = 2 + o — @ /A4, by induction we can derive that, for¢ > 0 and
a # 1, the values of the parameters A, in terms of A; are

F(e) (o = A1) + (kg — 1) Fit)

" @@= a0+ O — Do )
and then v is quasi-definite if and only if
rmr@@—r)+x-1Hrm—14+w)#0, n>1.
Notice that if « € N\ {1} then A, is a rational function of n, namely,
By = I'(@) (e — A1) + (A — 1)(a+n—1)---(n+1).
r@@—r)+ % —D@+n—-2)---n
If « = 1, then, by induction, we can also obtain, forn > 1
o Mm-DA+1/24+---+1/n)+1 (3.4)

T DA+ 124+ Y- D))+ 1

and v is quasi-definite if and only if
Mm-DA+1/24---+1/m+1#0, n>1

The quasi-definite linear functional v is given by
v=(a—A)Xx " w+ vodo,

where w is the positive-definite linear functional for monic Laguerre polynomials {Lg“1 }n>0. Fromxv = (o —Aq)w it follows

—Q1(0)vg = (& — A)I"(e). Since Q;(0) = R1(0) + A; = LT(0) + A1 + 1 = Ay — @ we achieve vy = I' ().

In particular for « > 1, we can write

v=(a¢—2A)l+ (1 — DI'(e — 1o,

where ¢ is the positive-definite linear functional for monic Laguerre polynomials {L‘,’,“z}nzo.

A matrix interpretation.

Next, as in the general case, we also present a matrix interpretation for these iterative cases.

If w denotes the corresponding linear functional for {R,},>0, then (x — x;)w = kyu where x; is a zero of h(x) as well as
(x — x2)v = koyw where x; is the other zero of h(x).

It is well known (see [5]) that

(X - Xl)Pn = Rn-H + Ry, n>0, (35)
as well as
(X —X2)Ry = Qo1 +1,Qy, n >0,

with r,, 1, # 0.
As before, # = (Py,P1,..)T, R = (Ro,Ry,...)T,and @ = (Qo, Qq,...)T, and then the corresponding three-term
recurrence relations read as

XP =JpP, XR =JxR, xXQ = Jp Q. (3.6)
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On the other hand, from R, = P, + u,P,_1 and (3.5) we have the matrix representations
R =LP, (X—X1)f/7 =UR (37)

where L, is a lower bidiagonal matrix with 1 as diagonal entries and U; is an upper bidiagonal matrix with 1 as entries in
the upper diagonal given explicitly by

1 To 1

pnro 1

L = pa 1 1

and U; =
ns 1 rs

Notice that from (3.6) and (3.7) we get

Jp — x4 = Uiy (3.8)
as well as L]_] Jz — x11)R = U1 R. In other words
Jz —xl = LUy, (3.9)

Proceeding in a similar way
Q=LR, (X — Xz):R =U0,Q

where L, is a lower bidiagonal matrix with 1 as entries in the diagonal and U, is an upper bidiagonal matrix with 1 as entries
in the upper diagonal given explicitly by

1 g 1
Mo no1 )
r
L, = A2 1 and U, = 2
A3 1 r
3
Thus, we get
Jr — x2l = UsL, (3]0)
and
_]Q —XzI = L2U2. (311)

As a consequence we can summarize the process as follows.
Step 1. Given J», from L; and (3.8) we get U;.

Step 2. From (3.9) we get .

Step 3. Given J &, from L, and (3.10) we get Us.

Step 4. From (3.11) we get Jo.

Notice that this is essentially the iteration of the so-called Geronimus transformation in the framework of linear spectral
transformations of Stieltjes functions associated with quasi-definite linear functionals (see [30]).

Now, as in the general case, we analyze the case of the truncated matrices.

The three-term recurrence relation for the sequence {R, },>o reads

X(R)n = Ug)n+1(R)n + Ropr€npa. (3.12)
Since, by (3.7),
(R)n = L)nt1(Pn, (3.13)

where (L)1 is a lower bidiagonal matrix, namely, the (n + 1) x (n 4+ 1) leading principal submatrix of L, replacing (3.13)
in (3.12)

X(P)n = (L)1) [TRInt1 Lnsr + Unsr€ns1€n 1 1(P)n + Posrenir.

Thus, from (2.15) we get (Li)nt1U2)nr1 = Udnt1(L)nsr + Knt1€nt1€n, s
ie.

Ur)nr1 = L)ns1lUp)ngr — Nn+1en+1e£+1][([‘l)n+l]71-
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As a consequence, (Jz)n+1 is similar to the matrix

Updne1 — Mn+1€n+1€£+1
that is, to the matrix obtained when we subtract i,41 in the entry (n + 1) x (n 4 1) of the Jacobi matrix (J»),+1 and the
other entries remain invariant.
On the other hand, we have, by (3.5) and (3.7),

x = x)(P)n = UDn1(R)n + Ru1€ns1, (3.14)

where (Uq),41 is an upper bidiagonal matrix.
According to (2.15) and (3.13), (3.14) reads

(U2)ns1 — Xl 1) (Pn + Prprenir = UDnr1 L) a1 (Pn + (Pt + tns1Po)enss.
Equivalently,

UpIns1 — Hns1€nr1€nyq — Xl = (UDnpr L)ngr.
But from (3.14)

[L)ns1] U ns1 — XiInr1) L)t = U1 L) nga-
Thus,

Ur)ne1 — X1 = L)np1 (Ut
In a similar way,

U1 — Anr€nri€nyq — Xalnpr = (U2)ng1(La)nsrs
and then

Jent1 — x2hni1 = (L) np1(U2)na-

3.2. The symmetric case

Assume that the sequence {P,},> is orthogonal with respect to a symmetric linear functional u. Then 8, = 0, n > 0,
and there exist two polynomial sequences {Vy}n>0 and {V,'}n>0 such that for all n, Py, (x) = V;, (x*) and Py 1 (x) = xVy (x?).

It is known (see [2]) that {V,}n>0 and {V,}n>0 are SMOP’s with respect to the linear functionals o, and xo, where
(o, x™) = (u, x*"), n > 0.

If the sequence {Qy};>0 is defined by (2.2), in general, the polynomials Q, are not symmetric. More precisely, Q, are
symmetric polynomials if and only if s, = 0 for alln > 1.

Again, if {Qn }n>0 is an SMOP with respect to a symmetric linear functional v, then by a symmetrization process there exist
{Rn}n>0 and {R}},>0 SMOP’s with respect to o, and xo,, respectively, satisfying Q2,(x) = Ry (x?) and Qopy1(x) = xR} (*?).In
this case, from (2.2), we have for >1

Rn(x) = Vn(x) + t2nvn—1(x) (315)

Ry () = Vi (%) + tang1 Vi1 (0) (3.16)
and the coefficients t, and t»,1 can be computed using the Theorem 2 in [26]. Besides, as a consequence of the Theorem 2.2,
we get a = 0 and the relation between the linear functionals u and v is: (x> + b)v = ku.

Now, we construct some families of monic symmetric orthogonal polynomials which have reducible representations but
not iterative representations.

Examples.

Hermite generalized polynomials.

Let {H} },=0 be the sequence of monic Hermite generalized polynomials orthogonal with respect to the positive definite
linear functional u defined by the weight function |x|2"e"‘2 with u > —1/2(see[2, p. 157]). Consider the sequence of monic
polynomials {Q,},=o orthogonal with respect to a symmetric quasi-definite functional v satisfying x*v = u. Notice that, now
the representation (2.2) is clearly not iterative because xv is not a quasi-definite linear functional.

By a symmetrization process, o, is the functional defined by the weight function x*~1/2 e=* X(0.400) (X) and we can write
Hy () = Ly~ 2 02), Hyp 4 00 = x L1202,

From (3.3) and (3.4) we get the explicit expressions of the parameters t,, in terms of t,, for u > —1/2, u # 1/2, and
u = 1/2, respectively.

Otherwise, the relation between the two linear functionals u and v yields xo,, = oy. Then the polynomials R} are
orthogonal with respect to x*~1/2e™* and thus t,.q; = n for alln > 1. Moreover the quasi-definite linear functional v
is given in terms of the generalized Hermite linear functional u by

v = X_z u-+ U080

for u > —1/2. From x>v = u, it follows —Q;(0)vy = I'(u + 1/2) and since Q;(0) = R;(0) = —u — 1/2 + t; we have
_ I'(u+1/2)
= w12t
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In particular, for u > 1/2

th—1
v=£+71“ —128,
L1216 (u /2)do

where £ is the positive-definite linear functional corresponding to the generalized Hermite SMOP {H/ ! In>o0-

Chebyshev polynomials of the second kind.

Let {Uy}n>0 be the sequence of monic Chebyshev polynomials of the second kind, orthogonal with respect to the
positive definite linear functional u defined by the weight function (1 — x*)/2 X(=1,1)(x), with the recurrence coefficients
Bn=0,n>0andy, = %, n > 1. Consider the SMOP {Q, }»>0 orthogonal with respect to a symmetric quasi-definite linear
functional v satisfying (x> — 1)v = u.

By the symmetrization process described above, we have {V,},>0, {Rq}n>0 are SMOP’s orthogonal with respect to the
linear functionals o, and o,, respectively, where o, is defined by the weight function (1 — x)/2x~/2y 1)(x). Besides,
using (9.9) in [2, p. 46] the recurrence coefficients for the polynomials V;, are, forn > 1, B7* = yon + Vonp1 = 1/2,
)/:.” = YonVon-1 = 1/16, and ,Bgu =Y = 1/4

Moreover, the relation between the two linear functionals (x> — 1)v = u, yields (x — 1)o, = o,. Now, applying in

(3.15) Theorem 2 in [26], the parameters t,, satisfy B¢ — tynyo — % = 1foralln > 1,ie. tyy = —(% + 161%) and

k= —( + t;). Thus, by induction, we can derive the values of parameters t,, in terms of t,. Indeed
4 ug

1 nénp+D-1 (3.17)
T 4m-D@EL+D -1 :

On the other hand, since (x — 1)xo, = X0y, we can apply in (3.16) Theorem 2 in [26]. Thus, the parameters t;,, satisfy

Xoy

ton

NU— by — ty;ﬁ = 1foralln > 1, and since, using (9.10) in [2, p. 46], " = Yont1 + Y2 = 1/4 and
n-
VXU = ymYans1 = 1/16, we get trynp3 = —(% + m). Again, by induction, we can derive the values of parameters
tone1 in terms of t3, and taking into account that t; and t3 are related by t3 = 126+1 e have

4(1-4tp)

1 2n(4t + 1) + (46, — 1)

t = —— . 3.18

T 42— 1)(@Ah + 1) + (A — 1) (3.18)
Moreover, v is quasi-definite if and only if the following conditions hold:

ty # —3/4, n(dt,+1) —1#0, n>1, and 2n4t,+ 1)+ (4t —1)#0, n>0.
The expression of v in terms of u, (the Chebyshev functional of the first kind) is v = —u, + ("024”)(81 + 8_4). From
(x> — 1)v = uitis not difficult to see that —vy(Q,(0) + 1) = uy = 7 /2 and since Q,(0) = R1(0) = U, (0) + 1, =, — 1/4,
we have vy = rz_fz‘/fm Then

i+ 1/4
v=— 2+l (81 +8_1).

U + > ———
" 264+3/4

See also [21].

Chebyshev polynomials of the first kind.

Let {T,}n>0 be the sequence of monic Chebyshev polynomials of the first kind, orthogonal with respect to the positive
definite linear functional u defined by the weight function (1 —xz)‘]/zx(,m) (x). The recurrence coefficients are 8, = 0, n >
0, vn = %, n > 2,and y; = 1/2. Consider an SMOP {Qy},>0 orthogonal with respect to a symmetric quasi-definite linear
functional v satisfying (x> — 1)v = u.

Thus, {Va}n>0, {Ra}n>0 are SMOP’s with respect to the linear functionals o, and o, respectively, where o, is defined by
the weight function (1 — x)~/2x~1/2 xo 1) (x). Besides, the recurrence coefficients for the polynomials V, are, % = 1/2,
yo =1/16, n > 2,and y;* = 1/8.

Since (x — 1)o, = oy, applying in (3.15) Theorem 2 in [26], the parameters t;, are

b — 1 R+ -1 Cnsa (3.19)
4n—1D2L+1) —1

Using the same arguments, from (3.16) we obtain
1 2nQ+1 2t — 1
— @Q+D+@-1D (3.20)
42n—-1DR2L+1D+ 2L —-1)
Furthermore, v is quasi-definite if and only if the following conditions hold:
ty #—1/2, n2t;+1) —1#0, n>1, and 2n2tL+ 1)+ 2t —1)#0, n>0.

bany1 =
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The expression of v in terms of u is
v
v=—(1-x)"Tu+ 50(51 +8_1).

Again, as in the previous case, vy satisfies —vp(Q2(0) + 1) = ug = 7 and since Q;(0) = R1(0) =T,(0) + t, =t — 1/2 we
. _ =27

achieve Vo = 26+1°
See also [20].
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