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Abstract. We consider a generalization of the classical Hermite polynomials by the addition of terms involving derivatives in
the inner product. This type of generalization has been studied in the literature from the point of view of the algebraic properties.
Thus, our aim is to study the asymptotics of this sequence of nonstandard orthogonal polynomials. In fact, we obtain Mehler—
Heine type formulas for these polynomials and, as a consequence, we prove that there exists an acceleration of the convergence
of the smallest positive zeros of these generalized Hermite polynomials towards the origin.
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1. Introduction

The study of the asymptotic behavior of orthogonal polynomials is one of the central problems in
the analytic theory of orthogonal polynomials. In this paper we deal with the asymptotic properties of
some particular families of polynomials orthogonal with respect to discrete Sobolev inner products of
the form:

(P.Q) = /1 P(2)Q(x) du + P(c)! AQ(),

where p is a positive Borel measure supported on an interval I C R, ¢ € R, A € R®® is a posi-
tive semidefinite matrix and for a polynomial with real coefficients P, P(z) denotes the column vector
(P(x), P'(x),..., P V(x)), being P(x)' its transpose. We denote by (Q,,) the sequence of its orthog-
onal polynomials and by (F,,) the corresponding one with respect to u. For general measures p, with
bounded support and in the Nevai class M (0, 1), some asymptotic results can be seen in [10] and [8],
among others.

A natural approach to study the asymptotic properties of (J,, is to compare these polynomials with
the standard polynomials P,,, whenever the asymptotic properties of these ones are known. In [4] it
was studied in detail the asymptotics of ), when s = 2 and the measure p belongs to the Nevai class
M(0, 1), so the support of p is bounded. However, when the support of the measure v is unbounded,
we have not a so much general approach (see [9]). In this framework, the Laguerre case was considered
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in [6], where dy = 2%~ *dz, with o > —1, and A € R®? is a diagonal matrix. There, the authors
study the asymptotic properties of the corresponding orthogonal polynomials and of their zeros (see
also the survey [9] where a clearer notation is used). Therefore, the motivation of this paper is, on the
one hand, to fulfill a gap in the literature taking into account the other classical measure of unbounded
support dy = e~*"dz, and, on the other hand, to try to obtain a pattern about the scaled asymptotics of
Mehler—Heine type for this unbounded case.

Let us consider the inner product

(P.Q) = /R P@)Q)e " dx + P0) AQ©), A€ R®?, 1)

where the matrix A is positive semidefinite.

The corresponding orthogonal polynomials are somewhat different from the modified Hermite poly-
nomials considered in [5] since in that work the entry (2, 2) in the matrix A is zero, that is, the term
P'(0)Q’(0) does not appear in the inner product and asymptotic properties were not studied, either.
A particular case of the inner product considered here was treated in [11], where the entry (2, 2) in the
matrix A is the only one different from zero. In that paper, the zeros of the corresponding orthogonal
polynomials were studied from the numerical point of view and a lower bound for the smallest positive
Zero was given.

It is important to observe that along this paper we will focus our attention on the Mehler—Heine type
asymptotics. It is natural that the reader wonders: Why is this type of asymptotics studied? In an heuristic
way it is possible to guess that the asymptotic behavior of the new orthogonal polynomials and of the
standard orthogonal polynomials is the same in all the complex plane except for a neighborhood of the
origin. Precisely, the Mehler—Heine type asymptotics describe in a detailed form the asymptotic behavior
around the origin. In this paper, we will prove that these two families of orthogonal polynomials have
a different behavior around the origin. In this way, Remark 1 of this paper supports the idea that the
type of asymptotics that deserves to be studied is the Mehler—Heine type asymptotics since it provides
the differences between both sequences of orthogonal polynomials when the degree of the polynomials
tends to infinity.

Next, we describe the structure of the paper. In Section 2, we introduce some properties of the classical
Hermite polynomials and give expressions of the kernel polynomials and their derivatives which will be
used along this paper. In Section 3, we first obtain Mehler—Heine type formulas for the polynomials
orthogonal with respect to (1) and we observe that the entries in the matrix A are connected with the
order of the Bessel functions which appear in these formulas. We also notice that the nondiagonal case
does not add further additional information to the one obtained in the diagonal case concerning this type
of asymptotics (see Theorem 1). Furthermore, for the diagonal case, we deduce how the presence of
the masses gives an asymptotic behavior of the first positive zero different from the one of the Hermite
polynomials. We also observe that the rank of the matrix does not play an important role to state the
Mehler—Heine type formulas.

These results are a motivation to find a pattern for this type of asymptotics in a more general frame-
work. Then, looking for this pattern, by using a symmetrization process given in [2], in Section 4 we
obtain the asymptotic properties of the polynomials orthogonal with respect to an inner product like (1)
when A € R is a positive semidefinite diagonal matrix. More precisely, we prove that the presence
of all the masses produces an increase in four units in the order of the Bessel function appearing in
the corresponding Mehler—Heine type formulas (see Theorem 2). In this case, we get a convergence
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acceleration to 0 of the two smallest positive zeros. Moreover, we prove that the positive definiteness
of the matrix A is a necessary condition to increase the convergence acceleration of the zeros (see Re-
mark 5). Finally, a conjecture is raised when A € R?™2") r > 1, is a positive definite diagonal matrix.
This conjecture can be reformulated in terms of the one stated in [6] for the Laguerre—Sobolev type
polynomials.

2. Basic tools

From here on, we will use the standard notation H,, for the monic classical Hermite polynomials

orthogonal with respect to the weight e, The polynomials H,, are symmetric, that is, H,(—x) =
(=)™ H,(z), and they satisfy (see [12]):

V7!

2TL

(=1)"(2n)!
2np!

1, |2 = /R e de = Y H (@) = nHy (@),

Hyp,1(0) =0, H>,(0) =

The nth kernel for the Hermite polynomials K,(z,y) = > j_, W satisfies the Christoffel—

Darboux formula

1 Hyp(0)Hy(y) — Hyp1(y)Hy ()
|| Hol|? rT—y ’

Ky (x, y) =

from which it follows

(=D" Hapy1(x)
nlyn oz

Kony1(2,0) = Kon(2,0) =

and

2n+1)!

K>,41(0,0) = K5,(0,0) = N

As usual, we denote the derivated kernels by

o iti n H(i)(ZL‘)H(j)(y)
KG9 = ——K, =) kB kS0 (1,520
W@y = g K@) kZ:O AR (i,§ = 0),

with the convention K0 (z,y) = K, (z,y).

Observe that the symmetry of Hermite polynomials yields to K (0, 0) = O for all n, whenever i + j
is an odd integer number.

In the next lemma we show some formulas for the derivated kernels that we need throughout the

paper.
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Lemma 1. The derivated kernels of the Hermite polynomials satisfy:

(a)
KOD KON (=) 2aHop(x) + Hypy (@)
@0 = K50 @.0) = =t - ,
©02) o 2(=)" 2w Hyp(x) + (1 — 2na?) Hpp 1(3?)
RFan=1@ 00 = 2o ) 7
, 2(—DH)™* (3 — 6nx2)H2n+1(ac) — 2n+ DB - 2nz?)zHy ()
Ké%?’)(l', 0) = ﬁn' o .
(b)
(1,1 (1,1 2n + D!
Kon=10.0) = K570, 0) = 3y/m222pl(n — 1!

2n 1(0 0)

3v/T22=4(n — Dli(n —2)V
2n—D!Bn—-1)
15y/7228(n — 1)l(n — 2)!"

—@2n+ 1)
5/m22n=4nl(n — 2)!
@n +1)!(5n — 3)
35\ /@22 —6nl(n — 2)!"

K5:2,(0,0) =

K$(0,0) =

K$2(0,0) =

Proof. (a) From the Christoffel-Darboux formula taking successive derivatives with respect to y, eval-
uating at y = 0, and using Leibniz’s formula, we find for j =0, 1, ...,

j!

K(OJ):EO
@0 = P

[Pj(x,0; Hp) Hpp1(2) — Pj(2,0; Hpp) Ho(2)],

where Pj(x,0; f) is the jth Taylor polynomial of f at O (see, for instance, [4]). Then, the result follows.
(b) To get these formulas it is enough to take into account that, if for each fixed j, we denote by
Zijj} axz® the (n + j + 1)th Taylor polynomial of 277! K%9(x, 0) at 0, then K((0,0) = ilvy j11.
Therefore, from the expressions of the kernels obtained in (a) and Taylor’s formula for the Hermite

polynomials, the result follows after some suitable computations. O

In the next section we will use the Mehler—Heine type formulas for the monic Hermite polynomials
H,,: for j € Z fixed, it holds
x

i (_12:\/%}]2" (Nvaj > N <§> " —1/2(@), @

(=1 z\'"?
nll_)fgo H2n+1(2\/—> <§> Jij2(), 3)
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uniformly on compact sets of the complex plane (see, for instance, [1], formulas 22.15.3 and 22.15.4).
Remind that the Bessel function J, of the first kind of order o (o € R) is defined by

B o] (—l)n P 2n+a
Jal2) = Z n'n+a+1) (5)

n=0

(if « is a negative integer, we assume n > —a). Therefore z~%J,(2) is an entire function which does
not vanish at the point 0.
It is well known that the Bessel functions satisfy the following recurrence relation (see, for instance,

[12]):
20
Jo—1(2) + Jat1(2) = - a(2). 4)

In the sequel, the notation «,, ~ (3, means that «,, /3, — 1 when n goes to infinity.

3. Hermite-Sobolev type polynomials

We denote by ;) the monic polynomials orthogonal with respect to the inner product
(P,Q) = / P(@)Q(z)e™ dz + P(0)' AQ(0), )
R

where A = (Y | ) with My > 0, M; > 0, A € Rand MM, — A% > 0.

It is obvious that the Hermite polynomials are a particular case of the polynomials Q%, as it is enough
to take the matrix A as the zero matrix.

The algebraic properties of these polynomials Q) have been studied in [4]. In the next proposition,
we obtain the estimates for the coefficients which appear in the representation of the Hermite—Sobolev
type polynomials in terms of (H,,).

We want to make a comment about notation. Obviously, the polynomials orthogonal with respect
to (5) depend on the parameters My, M; and A, but there is usually no confusion denoting them by @),,.
However, we want to consider two different situations, the nondiagonal case A # 0 (so My > 0, M; > 0)
and the diagonal case A = 0 (so My > 0, M; > 0). Thus, we do not write the index A whenever A\ = 0,
that is, in the diagonal case.

Proposition 1. Let Q) be the monic polynomials orthogonal with respect to the inner product (5). Then,
forn > 1, the following formulas hold:

+ Hop—i(x)
2 ’

Hypi () 2eHop () + Hoyp—1()
A Hant A
n " - dn 2 ’ (7

(6)

Q3 (@) = Hyn(2) — aﬁw ) 2xHyp(x)

Qg\n-u(ﬂf) = Hyi(x) — ¢ -
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where

0,
lim a, = { 1

27

n—oQ

lim /nb, = lim /nb} = 0;
n—oo n—oo

lim d,

n—oo

07
4’

M. Alfaro et al. / Asymptotics for a generalization of Hermite polynomials

— =0,
A2 >0,

if My = 0, M,

20, R 0, if MM,
Mo > 0020, R L

if MoM, —
lim /ne, = lim /ne) =0,
n—oo n—oo

, M, =0,

if Mo >0
> 0,M; >0,

. RV
i Mo if MoM;, — X2 >0

3
lim d) = —=
1m 4

n—oo

Proof. The algebraic relations (6) and (7) can be deduced in the usual way expanding @ in terms of the
orthogonal system (H,,) and taking into account the expressions of K, (z,0) and K"V (xz,0) (see also

Proposition 6 in [4]). The coefficients are given by

_1 n—I1 H n 0
= = IO g i, - )KL, 0.0
° 2n
P D" Ho(0)

"oymn—=D! Ay

A ED" @t DH0)
" /mn! Aé\n—s—l ’
—D)" ' 2n+ 1)H,, (0
B = S 2 M + (M)~ 3) K, 0,0,
: 2n+1
where

A =14 MyK,,1(0,0) + M K"0(0,0) + (MoM; — X*) K,,—1(0,00K"1(0,0).

From the estimates of H,,(0), K,(0,0), K,(l"])(O, 0) and A%,
using Stirling’s formula adequately, it can be deduced after suitable computations:

an =0 if My=0,M,>0;  lim a,=—1/2 if My>0,M; >0,
—3M,

A o . )2
nlirrgo na, 81, if MoM; — A* =0,
lim a) = —1/2 if MoM, — > >0,
n—oo
b, =0 if My >0,M, >0,

-3

A : N2

nli)ngo nby, 811, if MoM; — X\ 0,
—3mA

lim n3/2b) = if MoM, — \* > 0,
g™ 16(MoM; — a2y e

according to the different cases, and by
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Cp = 0 lfM() > 0,M1 > 0,

3\
lim ne) = —— if MyM; — \> =0,

n—00 4 M,
3t
. 320 _ . 32
nhm n’’c, = —8( M, if MogM; — A= > 0,

dn, =0 if My > 0,M; = 0; nlingodn:—3/4 if My > 0,M; >0,

lim d) = —3/4 if MoM, — \*> >0,

n—oo

and the result follows. O

Remark 1. Taking into account the relative asymptotics for the monic Hermite polynomials (which can
be obtained from Perron’s formula, see [12], Section 8.22), i.e.,

. Hy, () .
lim ———— = —son(Im(x))1,
A iy~ S (Im@)

the scaled asymptotics for monic Hermite polynomials (see [13], p. 126), i.e., for j € Z fixed and being
o(x) = x 4+ Vx> — 1 the conformal mapping of C \ [—1, 1] onto the exterior of the closed unit disk, we
have

e L O ) BENE
n—00 Hn(\/n +]ZL‘) gﬁ(l‘/\/i)’

and applying Proposition 1, we can deduce after several computations that

Q@) = Hp(z)(1 + o(1)),
Qn (vVnz) = Hy(v/nz) (1 + o(1)),

hold uniformly on compact sets of C \ R and C \ [—V/2, v/2], respectively. Therefore, the polynomi-
als Q) have the same outer strong asymptotics and Plancherel-Rotach type behavior as the Hermite
polynomials.

We focus our attention on Mehler—Heine type formulas for the polynomials Q7. These formu-
las are interesting twofold: on the one hand, they provide the scaled asymptotics of @) on com-
pact sets of the complex plane and, on the other hand, they supply us with asymptotic information
about the location of the zeros of )\ in terms of the zeros of other simple and known special func-
tions.

With the previous results we are ready to prove the scaled asymptotics for the polynomials Q7 orthog-
onal with respect to (5) where A is not the zero matrix.
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Theorem 1. The following Mehler—Heine type formulas hold:

(a) For generalized Hermite polynomials of even degree

12
(f) J_i @), ifrank A =1, M =0,

2
(=D z 2
nlglgo n!\/_Q2n<2\/ﬁ) = —<§> J3p2(x), ifrank A =1, My > 0,
1/2
_ <‘;> Jyo(@), ifrank A =2,

1/2
n (— J_ip(x), ifrank A =1,

nlioo( 1) IQ2n< f) 236 s
— <§> J3/2(w), ifrank A = 2.

(b) For generalized Hermite polynomials of odd degree

1/2
(E> Jip@),  ifrank A =1,M, =0,

2
(= 1)" x 1/2
Jim o Qone (2\/5) = —@) Jsjp(x), ifrank A =1,M; > 0,
T 1/2
_<§) Jspp(x), ifrank A =2,

o\ 172
—(—) Jspp(x), ifrank A =1,

=D" T 2

o\ 172
—<§> Jspp(x), ifrank A = 2.

All the limits hold uniformly on compact sets of the complex plane.

Proof. (a) We have only written the proof for the nondiagonal case (A # 0), since the diagonal case
(A = 0) can be deduced in a similar way. From formula (6) in Proposition 1, we have

U () - L 53)
E l)nl;Hz” ‘(2f )

o[ (= z 1 (1) z
A f{ n—1 !Hz"”(z\/ﬁ)_E n! HZ”(A/H”'

Now, we must distinguish two different cases according to the asymptotic behavior of the coefficients
a) and b)). Handling formulas (2)—(4) adequately, we get:
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o If rank A = 1 (thatis MoM; — \* = 0, My > 0, M; > 0), since a;) — 0 and \/nb}} — 0, then

1y 12
nllrgo( )\/7@271( \/—) (%) J_12(2).

o Ifrank A = 2 (thatis MyM; — \> > 0, My > 0, M; > 0), since 2a;, — —1 and /nb) — 0, then

i S0 ()

N | o\ 12
= (§> {Jl/z(ﬂf) - EJI/Z(x)] = —<§> J3/2(@)-

All the limits hold uniformly on compact sets of C.

(b) Upon in the case M; = 0 and A = 0 (Q2n4+1 = Hzn+1), the asymptotic behavior of \/ﬁc;\L and
d;\L is independent from the occurrence of the parameter ) in the inner product, where the coefficients cé
and d)) are those ones appearing in formula (7). So, we do not write the index \. Since v/nc, — 0 and
4d,, — —3, using (2), (3) and property (4), we get:

H" H"
nlijolo( ) Qant1 (235) anilgo{( ) H2n+1<2\:j—>

1(—D" ( x )
—ovne,——Hy [ =
Ve z n! M\ 2yn

(=)™ AW G Vil
L () L ()
1/2
:(%) [Jl/z(w)Jr (Jl/z(x) J1/2(x)>}

Y 3 o\ /2
= (§> [Jl/z(l’) - ;J3/2(l’)] = _<§> ‘]5/2(33)’

holds uniformly on compact sets of C. O

Remark 2. Observe that the nondiagonal case does not add further additional information to the one
obtained in the diagonal case concerning the asymptotic behavior of the scaled polynomials.

For this reason, from now on, we will only consider the inner product (5) with A = 0, i.e., the diagonal
case.

Remark 3. We want to emphasize the fact that what it is really important in order to have a different
result from the Hermite case is the presence of the masses either M, for the polynomials (), or M; for
(211 and not the rank of A. Observe how the presence of these masses implies, in addition to a change
of sign, an increase in the order of the corresponding Bessel functions appearing in Theorem 1.
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On the other hand, in the next corollary we will show a remarkable difference between the zeros of
(H,) and (@Q),,) with respect to the convergence acceleration to 0.
Before analyzing this, we recall (see [12]) that the zeros of the Hermite polynomials are real, simple

and symmetric. We denote by (xn,k)zl:/f] the positive ones in increasing order. It is worth pointing out
that they satisfy the interlacing property 0 < Zp4+1,1 < Zn1 < Tp+12 < - - -, and that x,, ;—,0 for every
fixed k.

Let (jo,1)k>1 be the positive zeros of the Bessel function J,, in increasing order. Then, formulas (2)
and (3) and Hurwitz’s theorem lead us to

2\/ﬁ$2n,k ;&7—1/2,1@ (k> 1),
2V/nZont1k 7j1/2,k (k= 1),
and therefore

Tk ~ Ce (k= 1D,

vn

where, for every k, C is a positive constant.
Concerning the zeros of ), we know that all of them are real, simple and symmetric and they interlace

with those of H,, (see [3]). We denote by (En,k)i":/lz] the positive zeros of (), in increasing order. In this
case, it also happens that &, ,— 0 for each fixed k.

From Theorem 1 and Hurwitz’s theorem and taking into account the multiplicity of O as a zero of the
limit functions in Theorem 1 we achieve the following corollary.

Corollary 1. Let (fn’k)z;/lz] be the positive zeros of Qy, in increasing order. Then
(@) If Mo =0,

2vnEon —J-1pk (k2.
If My > 0,
Vo, —0,
2v/néon k — J3jpk-1 (k22).
(b) If M, =0,
2vVnEant 1k — ik (k21
If My >0,

Vnéamtia - 0,

2Vn&nik > sz (k> 2).
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Observe that in all the cases we have &, ;, ~ % (k > 2). However, there exist only two situations
for which the asymptotic behavior of the first positive zero is different from the one of the Hermite
polynomials. They correspond to M, > O for even degree polynomials and M; > O for odd degree
polynomials, then \/n&, — 0. Thus, the presence of the masses M, and M, in the inner product (5)

produces a convergence acceleration to 0 of two zeros of the polynomials ((),,), namely, the first positive
zero and its symmetric one.

4. Mehler-Heine type formulas: The diagonal case

The comments and results in the previous section are a motivation to study what happens with these
properties when the matrix A is a positive semidefinite and diagonal.
We begin considering a diagonal matrix A € R*%. Thus, we introduce the inner product

3
(P.Q) = [ P@Q@e™ dr+ Y- MPOOQO) (8)

1=0

with M; > 0,7 = 0, 1,2, 3. We denote by S,, the monic orthogonal polynomials with respect to (8).
Notice that in this case the polynomials .S,, are symmetric, i.e., S,(—x) = (—1)"S,,(x). This does not
occur for the polynomials Q) considered in the previous section when A # 0. Therefore, because of
this symmetry, we can transform the inner product (8) into a Laguerre—Sobolev type inner product and
so we can establish a simple relation between the polynomials S,, and the polynomials studied in [6]
and [9]. This technique is known as a symmetrization process. In fact, in [7] this process is considered
for standard inner products associated with positive measures. The simplest case of this situation is the
relation between monic Laguerre polynomials and Hermite polynomials, that is (see [7] or [12]),

Hoyp(x) = LG (2%),  Hyppi(x) = zL/?(2?), n>0.

Later in [2] the authors generalize the symmetrization process in the framework of Sobolev type orthog-
onal polynomials.
Thus, applying Theorem 2 in [2] in a straightforward way we obtain that

SZn(x) — L%—1/2,M0,4M2) (x2) and SZn—‘—l(x) — xL’(’z/2,M1,36M3)(x2)7

where (L%—1/2,M0,4M2)) and (LS/Z,M1,36M3)

respect to

) are the sequences of monic orthogonal polynomials with

(P.Q) = /O ¥ P@)Q)e e de + MyP(0)Q(0) + 40P (0)Q'(0),
(P.Q)r+ = /O " P@)Q)e %" dz + M, PO)Q(0) + 36M: P'(0)Q'(0),

respectively. The Mehler—Heine type formulas for the orthogonal polynomials with respect to the above
inner products were obtained in [6] and later reformulated more clearly in [9]. Observe that the inner

products considered in those articles are & ’Qn)‘ and Z(P\’/%)l* , respectively. Taking into account that the
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Mehler-Heine type formulas do not depend on the explicit value of the masses M;, but only on whether
the masses are positive or not, see Proposition 2.10 in [9], we deduce the following result directly:

Theorem 2. The polynomials S, satisfy the following Mehler—Heine type formulas.

(a) For polynomials of even degree:

(=D"v/n

. x
i =55 (57)
12
<§> J_12(2), if My = 0,M, =0,
1/2
x
- (§> J32(), if Mo > 0, M, =0,
= 1/2
T 2 2 .
(E) [Ejv/z(@ = J3p(@) = 3@, if Mo=0,Mz >0,
1/2
(%) J7/2(2), if My > 0, M, > 0.

(b) For polynomials of odd degree:

. =" x
n1g1010 ( ) Sont1 (2\/—)
o\ 12
E J]/z(ﬂ?), l_fMl :0,M3 :0,
12
<§> Jsp2(@), if My > 0,M; =0,
B T 2 .
(§> [ Josa(x) — Js5pa(x) — §J1/2(90) , if My =0,M; >0,
(5) Jg/z(x) lfMl > 0, M3 > 0.

All the limits hold uniformly on compact sets of the complex plane.

Notice that in the even case as well as in the odd case, the presence of the two relevant masses produces
an increase in four units in the order of the Bessel functions appearing in the corresponding Mehler—
Heine type formulas. As we have proved, we get an increase in two units in the order of Bessel functions,
when only the first masses appear in (8), i.e., My > 0 and M, = O or M; > 0 and M3 = 0O in the
respective cases.

Remark 4. We can also observe that the rank of the matrix A is not relevant to establish the Mehler—
Heine type formulas as we have said in the previous section.

In the next corollary we only display the results which are different from those ones obtained before.
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Corollary 2. Let (§n,k)5§n:/12] be the positive zeros of Sy, in increasing order. Then

(@) If My = 0 and M, > 0,

o G
Zn,k \/ﬁ

If My > 0and M, > 0,

k=1).

Vg =0 (k=1,2),

Eynp o CE
2n,k \/ﬁ

(b) If My, = 0and M5 > 0,

(k = 3).

C
Stk ~ —= (k= 1).

N

If My > 0and M3 > 0,

Vn&antik 70 (k=1,2),

C
Eomiip ~ 7% (k > 3).

In all the cases, for every k, Cy, is a positive constant.

Remark 5. We want to point out that a singular fact occurs when there is a gap in the set of the masses,
namely My = 0, M, > 0 or M; = 0, M3 > 0, in the respective cases. This difference appears as much
in the expression of the limit function (a particular linear combination of Bessel functions, see Theo-
rem 2) as in the convergence acceleration to 0 of the zeros. Observe that in order to get a convergence
acceleration to 0 of four zeros of (S,,) (the two smallest positive zeros and their symmetric ones) it is
necessary that all the masses M; appearing in the inner product (8) are positive.

In [6] a nice conjecture was stated for the orthogonal polynomials with respect to a Laguerre—Sobolev
type inner product involving r masses at the origin. This conjecture was reformulated with a clearer
notation in the survey paper [9]. Therefore, according to our previous results it is natural to pose a
similar one for the orthogonal polynomials, ),,, with respect to the inner product

2r—1

(P,Q) = /R P@)Q@e ™ de+ Y M;PY)QP©), r>1,M; > 0.
=0

Then, it should be true the following conjecture.
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Conjecture. If M; > 0,i=0,1,...,2r — 1, with r > 1, then

Iy 1/2
p )\F Q2n<2f>:(_1)r<§) T jpsar(@),

n—oQ

lim (

- o\ 12
Jim Q2n+1(m>:(—1)r(§) J1 /2420 (2),

uniformly on compact sets of C.

Now, by using again the symmetrization process given in [2], Theorem 2, we can rewrite our polyno-
mials @), as

Qan() = L V/2N0 N2 (22) - and - Qo () = L/ >N Nor=0)(52),

..........

with respect to

00 r—I1
(P, Q)1 = /0 P@Q@z e dz + 3 Ny PP(0)Q(0),
1=0

00 r—1 ) )
(P, Q-1 = /0 P@)Q@)z' e dz + 3 Noit PY0)QP(0),
=0

where

No = My, Ny = (i+ DMy and  Nayy1 = (i + )i Majg
and (a); denotes the Pochhammer symbol, that is,

(@; =ala+1)---(a+i—1), (a)o = 1.

We have proved this conjecture for r = 1 and » = 2 in Theorems 1 and 2, respectively. However, the
techniques used in this paper and in [6] do not seem the most adequate ones to prove the general case.
We want to highlight that in solving the conjecture for the Laguerre case in [6] we have solved the one
for the Hermite case.

Finally, it is worth observing that as a consequence the following result could be deduced for the
positive zeros of (.,:

Vibnk =0 (k=1.2,...,7),

Ck
fn,k’\‘% (k=r+1).
So, the presence of all the constants M; > 0,7 = 0,1,...,2r — 1, in the above generalized inner

product would induce a convergence acceleration to 0 of 27 zeros of the polynomials ((),,), namely, the
r smallest positive zeros and their symmetric ones.
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