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Abstract. Given the Sobolev bilinear form

(f. &)s = (uo, f8) + (u1. f'g").

with ug andu4 linear functionals, a characterization of the linear second—order differential operators
with polynomial coefficients, symmetric with respect(to-) g in terms ofug andu is obtained. In
particular, several interesting functionalg anduq are considered, recovering as particular cases of
our study, results already known in the literature.
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1. Introduction

As is well known, polynomials orthogonal with respect to a Sobolev inner product,
that is, an inner product involving derivatives, do not satisfy the same general prop-
erties as those orthogonal with respect to a standard inner product. The interest in
studying these families of orthogonal polynomials lies not only in their connections
with topics such as least squares data fitting, spectral theory of ordinary differential
equations, Fourier expansions, but also in their applications to the theory of orthog-
onal polynomials. For instance, it has been shown that some families of classical
polynomials as Laguerré® (x)) or Jacobi(P,*” (x)) polynomials which, for

some values of their parameters, are not orthogonal in the standard sense. How-
ever, they are orthogonal with respect to a Sobolev inner product (see Atfato
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(1999), Alvarez de Moralest al. (1998b), Kwonet al. (1995, 1996, 1998), Pérez
et al. (1996)).

One of these properties is the existence of a recurrence relation: standard or-
thogonal polynomials satisfy a three-term recurrence relation as a consequence
of the symmetry of the operator associated to the multiplication.bijjowever,
multiplications by polynomials are not symmetric operators for many Sobolev
inner products (see Evams al. (1995)) and therefore the corresponding orthog-
onal polynomials do not satisfy an algebraic recurrence relation. We can avoid this
unpleasant situation looking for a linear operaforon the linear spac® of real
polynomials, symmetric with respect to a Sobolev bilinear form (for a preliminary
comment, see Danese (1976)). $0Q, can be expressed as a linear combination
of polynomials Q,,, beeing the number of terms independent:aind (Q,,) the
sequence of monic Sobolev orthogonal polynomials. The derivatives in the bilinear
form suggest the use of a differential operator. This has been done, for instance, in
Alfaro et al.(1999), Alvarez de Moralest al. (1998a, 1998b), Evaret al.(1995),
Marcellanet al. (1994b, 1995, 1996a, 1996b), Pérdzal. (1998), where differ-
ential operators with polynomial coefficients, symmetric with respect to Sobolev
bilinear forms have been constructed. Because of the symmetric character of the
operator, a differential recurrence relation for the Sobolev orthogonal polynomials
can be deduced. The operatfr has also been used to obtain several properties
about zeros of the Sobolev polynomials in some particular cases (see Mastellan
al. (1994b, 1996a)).

The aim of this paper is to characterize the linear second-order differential
operators with polynomial coefficients = pol + p1D + p,D? which are sym-
metric with respect to the Sobolev bilinear form defined(lfyg)s = (uo, fg) +
(uz, f'g"), whereug andu, are linear functionals oR.

For the particular case whefy andu, are defined by positive Borel measures,
and p; = p, = 0, that is,¥ is a multiplication operator, this problem has been
solved in Evangt al. (1995), where it has been proved tlfatis symmetric if, and
only if, u, is given by a discrete positive measure.

The paper is organized as follows: In Section 2, we obtain the main result,
namely the characterization of the symmetnyot= pol + p1 D+ p,D? in terms of
the functionals:g andu,. As a consequence, a substitute of the recurrence relation
is derived. Section 3 is devoted to analyze several situations for different function-
alsug anduy; all the results known in the literature are recovered as particular cases
of our analysis. In Section 4, the case whEris a degree preserving operator is
considered.

2. The Main Result

Let P be the linear space of real polynomialg, u, linear functionals o, and

(f’ g)S = <M0, fg> + <M1, f/g/>v
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a bilinear form oriP. We define a second-order differential operator
F = pol + p1D + p2D?, (1)

where po, p1, p» are arbitrary polynomials anél D denotes the identity and the
derivative operator, respectively.
We say that¥ is symmetrionith respect tq:, -) if

(Ff.8)s=(f,Fgs, foral fgeP. 2

Notice that ifc is a constant, the operat@t = ¢/ is trivially symmetric. Moreover,
if  is symmetric, themF and¥ + cI are symmetric too. Then, we will consider
expression (1) fop;, and p, given, andp, up to an additive constant.

The goal of this section is to characterize the symmetry of such a opérator
terms ofug, uy.

Let us recall the definition of some useful operations for linear functianals
P (see, for instance, Marcelldt al. (1994a)):

— Givenp € P, we define thdeft multiplication of the functionalz by the poly-
nomial p as the functional such thépu, f) = (u, pf), forall f € P.

— The (distributionalderivativeof the functionals, is the functionalDu such that
(Du, )= —{(u, f'Yforall f € P.

THEOREM 1. Let us consider the Sobolev bilinear form
(f’ g)S: <M0’ fg>+<u1’ f/g/>’ (3)

whereug, u; are nonzero linear functionals. Leiy, p1, p» be polynomials and
F = pol + p1D + p.D? a linear differential operator, nontrivially symmetric.
Then¥ is symmetric with respect {8) if and only if the linear functionalgg, 11
satisfy

p2Dug + (py — p1uo + pous =0, (4)
and

p2Du1 = piug. (5)
Moreover, in this situation the functional

Dp2uo + pou, (6)

is a solution of Equatior5).
Proof. Let assume that the operatdr = pol + p1D + p,D? is symmetric, that
is, it satisfies (2). Then, we have

(wo, (prf" + p2fg) + (us, (pof + pof” + pof” + p2f"g")
= (uo, f(p18' + p28")) + (u1, f'(pog + p1&” + p28" + p28")) (7)
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for all f, ¢ € P. Equation (7) forf = 1 andg € PP gives

(u1, pog’) = (uo, p18’ + p28"),

and we obtain (4). Observe that if a linear functiomahtisfiesDu = 0, thenu = 0
(see Lemma 2.3 in Kwoat al. (1996)).

To deduce (5), it suffices to replage= x in (7) and from (4) we have, for all
g € P, (p1u1 — p2Dus, g"”) = 0. Conversely, to derive the symmetry Bf from
(4) and (5), previously we need to obtain the expressi@ag, g)s, (p1f, g)s and
(p2f, g)s in terms ofug, u1 andF . In fact, from (4), we have

(pof, &)s = (uo, pofg) + (u1, pofe') + (us, pof's’)
= (uo, pofg) + (pauo — D(pauo), f&') + (u1, pof'g’)
= (uo, pofg) + (uo, p1fg’) + (pauo, (f&)') + {pous, f'g’)
(wo, fF g) + (pauo + pous, f'g').

In a similar way, (4) and (5) give
(p1f, 8)s = —(p2uo + pous, (fg)') — (Dus, fFg).
Using (5), we obtain
(p2f. 8)s = (pauo + pous, fg) — (u1, fFg).
Thus, by straightforward calculations, we get
(F f.8)s = (pof + prf’' + p2f". &)s = (f, F&)s.

Finally, a simple computation shows that the functiomalg+ pou1 is a solution
of the distributional equatiop,Dv = p;v. a

Remark. Sobolev bilinear forms like (3) are usually calldhgonal The non-
diagonal case (see Alvarez de Moradesl. (1998a), Marcellaet al. (1996b)) can
be expressed as

(f, &)s = (uo0, &) + (uo, f&') + (uro, ') + (ur1, f'g"),

whereug 1 = uj0, in order to preserve the symmetry of the bilinear form. There-
fore, we get

(f.8)s = (uoo — Dug 1, fg) + (uz1, f'g),
and the nondiagonal Sobolev bilinear form reduces to the diagonal one.
In the sequel, we will assume that the bilinear form (3) is regular, that is, all the

principal minors of the associated Gram matrix with respect to the canonical basis
{x";n > 0}, are nonzero. Then, there exists a sequence of monic polynomials,
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namely{Q,},, orthogonal with respect to (3). In this situation, we can deduce
some consequences of the previous theorem.

Let assume thatg, u; satisfy (4) and (5), andd = pol + p1D + p,D? is
the symmetric operator associated with (3). We can ask about the degree of the
polynomial #x", n € N. Clearly it depends on the polynomialg, p1 and p».

COROLLARY 1. If the Sobolev bilinear forn@3) is regular, then

(i) There existao € N such thatdeg# x" > n.
(i) For all n € N except at most for two values of degF x" = n + r where
r = maxdegpo, degp; — 1, degp, — 2} > 0.

Proof. (i) If deg Fx" < n, for all n € N, we can consider the expansion

n—1

‘?Qn = Zan.iQi-
i=0

Thus, using the symmetry ¢f, we have

C— (?Qn7 Qi)S — (Qn7 ?Qi)S
" (Qi, Oi)s (Qi, Oi)s
(i) Let dy, d1, d» be the degree of the polynomialg, p1, p», respectively and

=0, i=01,....n—1

do dy do
pox) =Y aix',  pix) =Y bix/ and pa(x) =Y cext.
i=0 k=0

Jj=0

Including, if necessary, some zero coefficients in the expansions of the polynomials
Po, P1, P2, We can write

r r+1 r42
Fx" = E a x4+ E nbjx””*l—i— E n(n — Lycxk+n—2
i=0 j=0 k=0

= (a, +nb, 11 +nmn — Dc,2)x"™" + lower degree terms
and the result follows. O

Remark. Observe that, as a consequence, if the Sobolev bilinear form (3) is
regular, ther¥ never reduces the degreealifthe polynomialsandr > 0.

COROLLARY 2 (Difference—Differential Relationfor everyn > r, wherer is
as in Corollary1, the following relation holds:

n+r
‘?Qn = Z an.iQi’

i=n—r
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where

(‘? Qn’ Qn+r)S

an,n+r = - -
(Qn+ra Qn+r)S

except at most for two valuesof

Proof. Consider the Fourier expansion of the polynons#af,, in terms ofQ,,,
n+r

FO, = Z“W’ Q;. Then, the result follows from the symmetry of the operafor

£0

i=0
and Corollary 1(ii). a

A linear functionalu on P will be called aPearsonfunctional if there exist two
polynomials¢ and+r, non simultaneously zero, such that

D(pu) = Yu. (8)

Let us recall that a linear functional is semiclassical (see Hendriksenhal.
(1985)), ifitis regular, i.e., there exists a sequence of monic orthogonal polynomi-
als with respect to the linear functional and it satisfies (8).

If a linear functionalu is semiclassical (regular and Pearson) with polynomials
¢ andyr, then degy > 1 and¢ # 0.

Observe that there exist linear functionals which are Pearson and non regular,
for instanceg, ((8., f) = f(a)) and(x — a)~1u, whereu is a regular functional

f(X)—f(a)>)‘

X —a

(<<x —a)tu, f) = (u,

Remark.By Theorem 1, iff = pol + p1D + p,D? is symmetric (non trivially
symmetric, i.e.,F # cI, for any constant) with respect to (3) then the functional
u; is Pearson and besidespd is constantyg is also Pearson.

3. The Case wheraiy and u; are Given by Positive Borel Measures

Letu be a linear functional given by a positive Borel measumn the real lineR,
that is, for all f € P, we have

(mﬂ=£f%- ©)

Assume that all the moments exist and are finite.
Recall that thespectrunof 1 (see Chihara (1978), Chapter 2) is defined by

S(u) = {x; u(x —e,x +¢) > 0foralle > 0}.

If S(w) is an infinite set, the linear functionaldefined by the relation (9) is positive
definite.



ON SYMMETRIC DIFFERENTIAL OPERATORS 9

Conversely, ifu is a positive definite linear functional, then there exists a posi-
tive Borel measuree with infinite spectrum such that can be represented as (9)
(Chihara (1978), p. 56).

If S(w) is finite, that is,S(w) = {x1, x2, ..., xx}, thenpy = Z?’zl a;8,,, where
aj >0,forj=12...,N, andéxj denotes the Dirac mass measure supported
on{x;}.

In this section, we consider the case whgrandu; are given by positive Borel
measuregio and i1 on R, and the Sobolev bilinear form (3) is an inner product.
Thus, the spectrum of at least one of the measures is an infinite set. In this situation,
we can write (3) as

(. g)s = /R Fo duo+ /R £ dua, (10)

for all polynomialsf andg.

According toS(ug) andS(u1) being either finite or infinite, we obtain the cor-
responding operataF associated with (10). In every case, we recover the results
about# already known in the literature.

3.1. S(ug) FINITE

Let S(uo) be finite and nonempty, themy = Z,N:l a8y, WwhereN > 1, x; are
distinct real points and; > Ofori =1, 2,..., N. Since (10) is an inner product,
S(1q) is infinite andu, is positive definite.

Using Theorem 1, ifig andu, satisfy (4) and (5)u; is semiclassical and the
correspondingF is symmetric with respect to (10).

Defineg(x) = ]'[fvzl(x — x;). In this way,quo = 0, andq’(x;) # 0,i =
1,2,...,N.

Multiplying (4) by g, we get— p>q'uo+ poqui = 0, which leads tgyg2u; = 0.
Thereforepy = 0 and by (4)uo is Pearson with equatiol®(paug) = piuo. The
polynomials p, and p; contain the factog. Indeed, from last equation we have
gD (poug) = 0, thatis,pog'ug = 0, andg’ (x;) p2(x;) =0,i =1,2,..., N, andg
divides p,. From poug = 0 and (4) 4 also dividesp;.

The linear operatof can be expressed as

F = pol +q[p1D + p2D?].

wherepy is a constant, ang; = gp;,i = 1, 2.
Observe that this result includes as a particular case, the previously one obtained
in Alfaro et al. (1999).

3.2. S(u1) FINITE

Orthogonal polynomials associated with (10) whenis a finite spectrum posi-
tive Borel measure (the so-called Sobolev-type) have been studied exhaustively by
several authors.
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In 1995, Evan®t al. (1995) gave a characterization of the Sobolev orthogonal
polynomials satisfying a recurrence relation. In particular, they obtain that there
exists a nonconstant polynomialsuch that(hf, g)s = (f, hg)s if and only if
w1 has finite spectrum. Moreover, deg> 2 andh is not necessarily of minimal
degree.

In our case, takingd = pol, with pg a nonconstant polynomial, Theorem 1
says thatF is symmetric with respect to the Sobolev inner product (10) if and only
if pour = 0. Thereforeu; = Z;V:l «;d,,;, for some integewV, whereo; > 0 (at
least one must be nonzero), ajad}) are the distinct real roots ¢f). In this case,
degpo > 2.

Finally, we can observe that, could be not of minimal degree, in the sense
that we can consider only the nonzers, and we will obtain another polynomial
in the same conditions.

Moreover, we point out that thdifference-differential relatiorfCorollary 2) for
the orthogonal polynomials associated with (10) is a recurrence relation with at
least five terms.

3.3. S(ug) AND S(uq) INFINITE

In this case, the linear functionalg andu, are positive definite, and from Equa-
tion (5), u1 is semiclassical witlp, # 0, and dedp; + p5) > 1.

Here, we will analyze two cases from the literature: The so-cakadiclassical
case introduced and studied in Marcelld@t al. (1995), and thecoherent pairs
concept introduced by Iserles al. (1991), and developed by several authors.

Finally, a study whemg andu; are defined from weight functions is given.

3.3.1. The Semiclassical Case

The existence of a linear operat®r symmetric with respect to (10) whes and
u; are positive definite functionals satisfying

Auo = Bul, (11)
whereA and B are nhonzero polynomials, and
D(¢1u1) = Yuy, (12)

is shown in Marcellaret al. (1995). Sincet, is regular, it is semiclassicap, # 0
and deg); > 1. Moreoverug is semiclassical because of (11), in fagtis semi-
classical if and only ifu; is semiclassical. In Marcelldet al. (1995), the authors
proved that the linear operator

F = Bl — A(Y1 — ¢))D — Ap1D? (13)

is symmetric with respect to the Sobolev inner product (10).
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The hypothesis (11) and (12), are a particular case of the hypothesis (4)—(5) of
Theorem 1.
In fact, multiplying (11) by¢,, and taking derivatives, we obtain

A¢1Dug + [(Ap1) — A(Y1 — ¢1)lug — (Bp1)'us = 0. (14)

The above expression is equal to (4), where

po=B¢1, p1=—-AW1— )., p2=—Ad,

and we recover (13).

Observe that (11) is a particular case of (6), sideg — Bu; = 0 is always a
solution of (5)—(12).

Now, we can ask for the reciprocal. Let us asssume that we have a linear opera-
tor &, symmetric with respect to (10), whose explicit expression is given by (13).
Applying Theorem 1, we obtain a wider class of linear functionals that includes, as
a particular case, the originalg andu;.

Remark that the case = u, u; = Au, A > 0, considered in Marcellaat al.
(1994b, 1996a), wheteis either the classical Gegenbauer or the classical Laguerre
functional, respectively, is a particular case of the semiclassical one Awithi,
andB = 1.

3.3.2. Coherent Pairs

Coherent pairs have been the subject of a great number of papers during the last
few years. This concept for positive definite functionajsandu 1, was introduced
in Iserleset al. (1991).

In Marcellanet al. (1995), it has been proved that coherent pairs are a particular
case of 3.3.1. In facy, is semiclassical wittD(¢1u1) = Y1u1 andgrug = Bu,
where deg < 3, degy; < 2 and degs = 2.

Using Theorem 1, in this case, we deduce that

F = Bpil — ¢1(Y1 — ¢ D — ¢3D?,

is symmetric with respect to (10).
Recently, Meijer (1997) has shown that{ify, u,} is a coherent pair, then at
least eithelg or u; is a Laguerre or Jacobi functional.

3.3.3. Weight Functions

To conclude this section, we study the case when the positive linear functignals
andug, are defined by means of weight functiong andw,, respectively, i.e., for
all polynomialsf € P, we have

(ui,f)szwidx, l:0,1
R
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In this situation, Equations (4) and (5) can be written as
p2wy + (py — pr)wo + pow =0, (15)
p2w) — prwy = 0. (16)

Remark thatp, # 0, sinceu; is positive definite. Solving these differential
equations, directely, we obtain

—potc¢
= —Ww
P2
wherek > 0, andc € R. This is a particular case of the semiclassical one.

w1=keXp/ ﬂ, wo 1,
P2

4. Degree-Preserving Operators

Corollary 1 shows how the operat@f increases the degree of the polynomials
when the Sobolev bilinear form (3) is regular. In this section we study w#ien
is a degree preserving operator, that is, when®lgg= degf for all f € P, or
equivalently, deg® x" = n for every nonnegative integer

This situation is very interesting, since#f preserves the degree of the poly-
nomials, as a consequence of the difference-differential relation (Corollary 2),
the corresponding Sobolev orthogonal polynomials are the eigenfunctions of the
differential operatotF, i.e.,

‘{FQn:)\nQn’ n>0,
that is, they satisfy a second-order differential equation

p2y" + p1y + poy = Ay.

First, notice that it is easy to express this fact in terms of the polynomial coeffi-
cients of the operataF :

LEMMA 1. SetF = pol + p1D + p»D?, then¥ is a degree preserving operator
if and only ifdedx?pg + nxp1 + n(n — 1) po] = 2 holds for every: > 0.

This characterization implies that is a nonzero constant, deg < 1, and
degpz < 2.

Now, we will consider (3) as a regular bilinear form and we will deduce neces-
sary and sufficient conditions abawtandu; in order to obtain a symmetric linear
second-order differential operat@ with polynomial coefficients preserving the
degree. Observe that, wheneygris constant, Equations (4) and (5) can be written
as

D(poug) = piuo, (17)
D(pou1) = (p1+ pyua. (18)
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THEOREM 2. Letug andu; be two regular linear functionals. Theff; = pol +
p1D + p,D? is a degree preserving operator symmetric with respe¢8}df and
only if ug is classical with distributional equatio(ll7), and « is also classical
satisfyingu; = pouo.

Proof. If ¥ is symmetric and preserves the degree, then Theorem 1, Lemma 1
and the regularity ofig yield degp; = 1 and deg, < 2. So,up is classical. In
a similar way, we deduce that; is also classical. Relation; = p,uq follows
from the canonical representations for classical functionals (see Mareglin
(1994a)).

Conversely, ifug is classical, then it satisfies (17) with deg< 2 and deg;, =
1. So, we have (4) witlp; = 0. Using this fact and1 = pouo, we get (5). We can
choosepy satisfiying Lemma 1 and therefot® preserves the degree. Applying
Theorem 1, the result follows. a

It is well known that the only classical functionals are those associated with
Hermite, Laguerre, Jacobi and Bessel polynomials. (The Pearson equation for these
functionals can be seen, for instance, in Marce#iial. (1994a).) So, we have

COROLLARY 3. The only regular functionalsg andu, with a degree preserving
operator & symmetric with respect @) are the following:

(a) up anduy Hermite functionals.

(0) uo = u@ andu; = u @+, whereu® is the Laguerre functional, with not a
negative integer.

(©) uo = u®P anduy = u @A+ whereu@? is the Jacobi functional, with,
B anda + B + 1 not a negative integer.

(d) up = u® andu; = u@+?, whereu® is the Bessel functional, wita+ 1 not
a negative integer.

Moreover,¥ = pol + ¥ D + ¢ D?, wherep, is some constant anB (¢ug) = Yug
is the Pearson equation satisfied day

Remark.The reader is referred to the contribution (Kwetral,, 1998, Theorem
3.5), where the statements of Theorem 2 and Corollary 3 have been obtained, using
a different method.
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