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I. INTRODUCTION AND NOTATIONS

This paper deals with HP(F,u) space 0 < p < o, where T is a recti-
fiable Jordan curve and duy = wds is a finite nonnegative measure on I,
which is absolutely continuous with respect to'farc length ds.

The purpose of this paper is to describe the elements of Hp(F,u)
and to obtain some results for this space that have some similarity with

those of classical Hardy spaces Hp(T).

We denote by @ the inside region on I', and by ¢ a conformal mapping
from |z|=1 onto Q that, without loss of generality, we may suppose ¢
normalized by ¢(0) = 0 and ¢'(0) > 0. The function Y will be the inver-
se function of ¢ . Smirnov domains ( ¢' is an outer function) are the
most general domains in which it is possible to develop a consistent
theory of Hardy spaces. In this paper we always consider Q a Smirnov do-
main. Lp(F,u) is the space of p-measurable complex functions defined on
e such that., I1|f(z)]pdu < ® , and Hp(F,u) is the closed subspace of
Lp(F,p) generated by the analytic polynomials P(z) = E akzk ez es Ik
We denote by LP(T) = LP(r,ds) and HP(r) = HP(r,ds).

We can associate to measure p a new measure v on T (unit circle);
given by, dv = wo¢|¢'|de, where d6 is the normalized Lebesgue measure
on T. Of course, f e Lp(P,u) 1ff £0 ¢ € Lp(T,v). By using Mergelyan's
theorem (see [B]), fe Hp(F,u) ifrand only-if fo¢ € Hp(T,v). The subspa
ce S spanned by the polynomials { ? akzk + g bkik ; z e T} is dense
i LP (T q) . -

We need that Hp(F,u) § Lp(F,u), and by that w and I' cannot be arbi-
ena ey It is not ‘difficult to- see that a neccesary and sufficent condi-
tion for Hp(r,u) is a proper subspace of Lp(F,u) is log(wo ¢|¢'|)eL1(T),
or, equivalently, log(w o ¢) € L1(T), since ¢' € H' ([3]). We would like
to obtain a equivalent condition on w with rapport to arc length ds. Un-
fortunately this is not possible and we must restrict the class of cur-

ves that we shall consider

Definition 1. Let p be a real number 1 < P <« and w an integrable nonne
gative function of I' . We say that w e A_(T) (Muckenhoupt's Ap classes,
1] if there existsa constant C > 0, such that, for all intervals J:€ L
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f S /p-il sl
(-———s — JJ st)(S(J) JJ w ds) = ¢
where s(J) is the arc length of J. The A  class is the union of all A
classes and the A1 cliass.is the limit of Ap classes

Definition 2. Let T be a rectifiable Jordan curve. I' is said to be a
chond-are curve if there is a constant C > 0, such that, for all points
2152y € T 5(21,22) = C]z1—zzl, where 5(21,22) is the arc length of the
shorter arc along I' with endpoints 4 and z,

If T is chord-arc, then 2 is Smirnov's (see [9]).

II. A DESCRIPTION OF HP(TI,u)

In the sequel I will be a chord-arc curve and then | o' e Aq for
some.q e (@,=),  Co)E.
Fixed a q of them, it follows

Theorem 1. I§ w 45 a welight on T such that Log w e LYT) and 0 < p < =,

we have:
A i LR .
) HP(D,u) = K HP(T), where K, = (%)"/P exp L'-éu:og g;}]

cy = exp JT (Log(w 0¢)de and ~ denotes the conjugation operaton
defined on T by ﬁ (4 0¢)” 5

Proof. i) As | ¢'| ¢ /4 ¢ YTy and (log(wo 9% e L (T, | #']de), by
applying Holder's inequality, we obtain

IT ilog wowde = ( f llog wo o9 ¢'|d6)1/q(J o | Ay,

and, then, as we said before, it holds.

ii) Let dv = w o ¢| ¢ '|d6 the image measure of won T . By 58] sawe
have Hp(T,v) = Kp HEGT) - 0 < p < = . wheze

,V
-]/p iy ~
Kp,V= (Ei!%fgiiﬂ exp [;%'(1og EJZE%_ﬂllé}
and c = exp J p loglw 06| ¢$'])d6. Using the same result for do = wo¢d®
and dg = | ¢'|de , we obtain ii), denoting K =.K ov. #
P pso
Remarks.

1) The condition log w € Lq(F) is sharp, because, if
log w e'Lr(P] always implies Hp(F W i Lp(P,u), then,
el o (or, equivalently, J T gl o "Wl o vporalligeibil
2) The sequence of polynomlals {P (z)} ;- obtained by orthonormali-

zation of the sequence {z"} on H? (P), iis #abibasi's  OF H? (r), (see [3]),
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applying the preceding theorem {KZPn(z)} is an orthonormal basis of
2
His GRS, din)i.

Eorollary 1. H(T,uf = #P(F,u) . AT, 1) wheneven T/prilq — 1in

Proof. It suffices to show that Kr = Kp.Kq and HT(P) = Hp(F).Hq(F)
which is trivial.

ITI. BASIS IN Hp(F,u) AND ITS DUAL SPACE

Let X be a Banach space and let X* be its dual space. The sequences
{xi} in X and {x;} in X* form a biorthogonal system if <x1,x§> = 6i,j’
i,j € N . The sequence {xi} is a basis of X if and only if {xi} and
{x;} form a biorthogonal system and for every x e X the serie
5% <x,xf> X; converges to x (in the norm sense). Moreover, if X is refle
xive, then, {xf} is.d basis of X* ;. (see [7]).

Denote by X =K K ]|_1 and by K_ = £ oY . We start

V,p V,Pp V,p Lp(T,\)) p V,p

in this section with the following theorem.

Theorem 2. {K wn}: 45 a basis of HP(F,u) and {]Kp|P_2Kp¢”} L5 a basis
0 B ropiew

Proof. Since Hp(F,u) is reflexive, we only have to show that {K wn} and
{]x Ip_zK p™} form a biorthogonal system and that .

g ( T[Kp|p~2Kp¢1du)wi converge, in LP(r,qn) sense, to f , for all

f e Hp(r,u) . In order to prove this we have

yel
——

K P P-2% gig, - j i(n-m)6 2 Py, - 5
fr ol G0 K v dn T ° IS pldy o,

Moreover, if f e Hp(F,u) safiod = K h , where h e Hp(T) and, then,

p,v’
= Pal2ziomes -im6 = A
a Jrf]Kp] K" jT he 100gs = Pty
n n z
hse; (£ ¢ oa "k = |[/h- T Rm)e m% and the
° F ity 0 LEET)

theorem holds, because of convergence of Fourier series in LP-norm if
B<sp <, #

This result permits us to offer a representation of dual space
Hp(F,u)* in the following sense

Theorem 3. I§ 1 < p < o, there exists an Lsomonphism T:HP(F,u)*
P’ ; : n p-2 4 .
—> H" (T, u) which transforms zthe basis {y IKP[ Kp} of H™(T,u)* into
! - -
the basis (K. ¥"} of HP (T, u), p Llprpel s

Proof. We only must prove that there exists a constant C > 0 , such that
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S m n m p-2
el ral vl o =Pl d g [ [ =
= Bua s
£ m
=cil g s X v
b HE 1)
for all finite sequence a1,...,an of complex numbers.

HP (T)* is isomorphic (no isometric) to Hp'(T) ([3]) and there is a
constant A > 0 such that

Al |h ' = h = h 5
I e i

1 n 2
v il T HPN(D) Demoterft - oaulk |Piik o 1f g cmBESD
n o m P P
g o o= K y-h with h e HP(T) and ||go¢ || = ||h]|
R HP(E, v) HP (T)

n = Lyt n =
<g,f > = JP g( 2 a oK1 P ZKp)du =L 5 J - imép 49

Then,we have

n A p -~
el - swpi| I ah(m|;h eH(m , |[nl], < 1} -
H= (T, 1) 0 p
n imé
e o=
(0] H (T)*
But
n : n : n ;
e e
His ER) o HE (L) % o HE (1)
n n ime
and || I a0l o S
0 HY (T,u) 2 H= (1)
Hence, the inequalities hold trivially. #

~
Now, we consider the subspace of Lp(F,u) = Hp(F,u) , spanned by the
n
conjugate of polynomials P(z) = 2 amzm . For this subspace, we may do
a similar development to that of - HP(F,u) and so we shall obtain
TP < TP ; Dye P-2p 03+
HE (T, K HP(r,ds). Since the sequences {pr }+ cand {]Kp] pr Pis

1
are basis of Lp(F,u) and LP (T,u) , respectively, it follows.

Corollary 2. Let § a function of LP(r,n) ; § betongs to HP(r,u) 4if and
onky AL

J 5|Kp|p'212p$”du = 0 fon all n=< 0
&

When w 1 and T= T we obtain the classical result ?In) = 0 for all

e <20, #
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I1V. THE CONJUGATION OPERATOR

If f is a p-measurable complex function defined on T and
iElos o' L1(T) we may define T - (f o ¢y oy , where (f © ¢)” is the
conjugation operator of £ o ¢. If P(z) 1is a polynomial and ECz)a=
= Re(P(z)/T) , then ? = Im(P(z)/TI') . The conjugate function operator,
defined on T is bounded from Lp(F) into Lp(P) if and oenly 1f
|o'] € Ap(T), 1 < p < », Jones and Zinsmeister (see [6]) have proved
that for every p there is a chord-arc curve T such that |¢'| £ Ap + Then3
we must restrict our class of curves because we went that the conjuga-
tion operator is bounded for a fixed p. In order to do it,we consider a
well known special class of curves.

Definition 3. Let I be a rectifiable Jordan curve. T is said quasiregu-
fLar if for each e > 0 there is a n > 0 such that qf3 2152, € I veri-
fying ]ZT-ZZ| ='n i then 5(21,22) = (1+e)|z1—22|.
I is quasiregular if and only if log ¢' € VMOA(D) = H1(D)/\VMO(T) 5
where VMO(T) is the span of trigonometric polynomials in BMO(T). Particu-
lary, if T is quasiregular, T is chord-arc and | ¢ vt Ap(T) for all
p > 1 (see [9])
Lemma 1. 14 T 44 quasinegular and w e Ap(r) , then, w od| ¢'| e Ap(T)
Proof. Let J be an arc of T and ¢(J) = I the corresponding arc of T .
Since w € Ap(F) Sawaie Ap_e(F) for some € > 0 , and by using Hélder's
inequality, we have

1 : 1o ecei/petspeliL
i [ wo st ey [ e e en

= (T%T 'JI (wod).| ¢v]),(T%T JI (w<)¢)-1/p—e-1.| ¢'|)p_€-1
r f i
- (T%T fI W 04| ¢'|)(T%T Jl(wo .

i -~ “1/p-e-1yp-e-1
e JJW”s(J) JJ : ) .

and the conclusion of Lemma is proved.

—1/p—e—1l ¢,i)p—e-1 ( I )p-ec =

Lemma 2. Let § be a real function on T and w = expl§) . The foLlowing
are equivalent:

£) § e L7(T) gy, (BMO-closure of LT

el T > ] - w and w ! satisfy the nevense Holdern inequality ( w and

w! e RHI(q)) , £.¢., there exists a constant c, * 0 such that

[P —
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e

Proof. ii) =>1i)

Since w and w | e RHI(q) for al

that w? and w 4 e A (1) for alliq >

<

n all Ainigervals 1 1E

1l ge> 1y is. not: difficul t toprove

or equivalentely w,w_1 € Ap(T)

Vp > 1 or f belongs to BMO-closure of Lw(T).

i) = ii)

As VMO(T) is in the closure in BMO
fif 6 where fo.ie L sefa e BMO
1 7o 1 o

15 g
.©

13

w e and w 1is equivalent to

inequality and GarnettJones theotems
such that if g € BMO with ||g||s < €
constant (smaller or equal to C)and

8> 0 Particulary, L

the same argument to the function qf( q > 1)
Choosing q = 1+§ , we obtain w € RHI(1+6)2
ment, we conclude w € RHI(q) , for all

The

Theorem 4. 14 T 45 quasiregular then,

e RHI(1+8) and, also, w € RHI(1+6)

of L% ,. for each e> 0: we ‘cans put
and ||£ ||+ < €. Thus,

(0]

e w By using John-Niremberg's

(4D tﬁere is a fixed constant C
, then exp (g) € AZ(T) with

therefore exp(g) € RHI(1+8) with

. By applying

wd e RHI(1+8).

and by iterating this argu-

, we get

q: >

same reasons work for -f and the result holds also for w_1

the conjugation operator L4 bounded

on LP(T, wds) (1 < p < w) if and only if w e Ay (T)

Proof. Since the conjugate function operator is bounded on

LP(r,w 0¢| ¢'|de) if and only if wo

theorem is an inmediate consequence

b.]o'| € Ap(T) the "if part' of. the

of lemma 1.

For the converse we suppose that wo¢| ¢'| e Ap(T) and then, for
some € >0 , wo ¢.]|9p'| € A 2 1) Since T is quasiregular then
|¢'I,|¢']_] e RHI (q) for all q > 1 (lémma 2). Thus

] 1 =1 /p=dsp=i1 - - 1 J ey

(S(J) ij)(S(J) ij ) ("T" IWO¢'|¢ |)

1 v1y-1/p-e-1,p-g-1 1 f wBrexer i B o

( JRE fI (wool ¢'[) ) (TTT I] gLt (s(J))

In a similar way as in the case

lzl= T

Corollary 3. If§ T 4s quasiregularn, Zhen w e AP(P) L46

LR g, ul

In the proof of preceding
ol o o i

Remark 1.
therefore ,

HP(r,u) @ ﬁ*g(r,u) where HP(T,u)

Fomatlid up >

z ;!lp(l",u)

theorem we only use log| ¢'|e VMO,

. Quasiregular curves
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verify this condition and also every curve which is transformed of a

quasiregular curve by a conformal mapping with bounded derivate (they
are not neccesarily quasiregular). The class of curves (boundaries of
Smirnov domains) for which the conjugate function operator is bounded,

strictly contains the quasiregular curves.
Remark 2. Let Tf(z) = P.V.J %%%l-ds(w) a singular integral on T
L

Bor. o= T 5 bitids  known: that T is bounded on Lp(T) ifand only 3£
~ is bounded on Lp(T) . We could ask if the same is true for general
I's , the answer is no. Indeed, T is bounded on LZ(F) ittt Fidseregular
(see [2]) and if ~ is bounded then I is regular (see (1079, but the ‘con-

verse is not true (see [6]).
Abounding in these reasons we have: if we denote
HZ(Q1) the closure on LZ(F) of the polynomials in z and
HZ(QZ) the closure on LZ(F) of the polynomials in 27 A
then T is bounded on LE(r) iff L2(r) = Hi(e,) @ HP(a,) ([2])

- 5 - boundedon LA(r) ifEL%en) SHA B 7 HA)
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