
A NOTE ON Ap WEIGHTS: PASTING WEIGHTS AND
CHANGING VARIABLES
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Abstract. For two weights u, w on Rn, we show that w ∈ Ap,u

(the Muckenhoupt class of weights) if and only if wu ∈ Ap and

wu1−p ∈ Ap, under the assumption that u ∈ Ar for every r > 1.

We also prove a rather general result on pasting weights on R that

satisfy the Ap condition.

1. Introduction

Ap(Rn) weights (see below for an intrinsic definition) were introduced

by Muckenhoupt [8]. They are exactly those weight functions on Rn

for which the Hardy-Littlewood maximal operator

(1) Mf(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)| dy

is bounded on Lp(w). Here, the supremum is taken over all the cubes

Q ⊆ Rn containing x and |Q| denotes the Lebesgue measure of Q.
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When another (doubling) measure µ replaces the Lebesgue measure

in the definition of the maximal function, then the corresponding Ap,µ

weights play the same role (see [1]).

To be precise, let µ be a positive Borel measure on Rn, 1 < p < ∞

and let p′ be the conjugate exponent: 1/p + 1/p′ = 1. If Ω ⊆ Rn,

then Ap,µ(Ω) denotes the class of weights (i.e., µ-measurable, nonnega-

tive functions defined on Ω) satisfying Muckenhoupt’s condition: there

exists some positive constant C such that

∫
Q

w dµ

(∫
Q

w−p′/p dµ

)p/p′

≤ Cµ(Q)p

for every cube Q ⊆ Ω. We will write Ap,µ(Ω, w) for the least constant

C.

We write Ap,u(Ω) if dµ(x) = u(x) dx, and Ap(Ω) if u ≡ 1, i.e., µ is

the Lebesgue measure on Ω. We omit Ω if there is no ambiguity.

The Ap(R) classes also characterize the boundedness of the Hilbert

transform on Lp(w), see [4]. The same applies, for instance, to Ap([0, 2π])

weights and Fourier series, or Ap([−1, 1]) weights and Fourier expan-

sions in Chebyshev polynomials (actually, Fourier series on [0, 2π] and

Fourier expansions in Chebyshev polynomials are closely related via a

change of variable). In general, the Ap condition is sufficient for the

boundedness of Calderón-Zygmund operators and, in some sense, it is
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also necessary. We refer the reader to [2, 1] for further details on these

topics.

In this context, the relation between different Ap classes is certainly

interesting. We refer, for instance, to the relation between “weighted”

and “unweighted” clases, i.e., Ap,u and Ap. In section 2, we state a

result of this type and give some illustrating example; in section 3 we

give a very simple proof. In particular, some results of Johnson and

Neugebauer [5, 6] follow, relating the Ap conditions for a weight w on

R and the weight w ◦ h, where h is a given change of variable.

A different, yet also interesting question is the construction of ex-

amples of Ap weights. Here, the simplest case is w(x) = |x|a, which

belongs to Ap([0, 1]) if and only if −1 < a < p− 1. Indeed, this can be

checked by simply computing the integrals in the Ap condition. The

same holds if we replace [0, 1] by [0,∞) or R. Obviously, the same

characterization remains true for power weights w(x) = |x − b|a, but

the computations are not so straightforward in the case of

w(x) =
N∏

j=1

|x− tj|aj ,

which can be considered essentially as the result of pasting simple power

weights, in the sense that w behaves like |x − tj|aj near tj. A contri-

bution on this subject was made by Schröder [10]: if w ∈ Ap((a, 0]),
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w ∈ Ap([0, b)) and

(2) 0 < lim inf
ε→0

∫ ε

0
w(x) dx∫ 0

−ε
w(x) dx

≤ lim sup
ε→0

∫ ε

0
w(x) dx∫ 0

−ε
w(x) dx

< ∞,

then w ∈ Ap((a, b)). In section 4 we give an elementary proof that

under some mild conditions we can paste Ap weights so as to obtain

another Ap weight.

2. Change of variables

Proposition 1. Let u, w be two weights on Ω ⊆ Rn, 1 < p < ∞.

Then,

wu ∈ Ap, wu1−p ∈ Ap =⇒ w ∈ Ap,u.

Remark 1. Actually, we will prove that that Ap,u(w) ≤ Ap(wu)Ap(wu1−p).

Proposition 2. Let u, w be two weights on Ω ⊆ Rn, 1 < p < ∞.

Assume that u ∈ ∩r>1Ar. Then,

w ∈ Ap,u =⇒ wu ∈ Ap, wu1−p ∈ Ap.

Remark 2. It follows from the proof that

Ap(wu) ≤ Ar(u)λp/(p′δ′)Ap,u(w
δ)1/δ, λ = p′δ′ − 1, r = 1 + 1/λ;

Ap(wu1−p) ≤ Ar(u)λ/δ′
Ap,u(w

δ)1/δ, λ = pδ′ − 1, r = 1 + 1/λ;

here, δ > 1 is such that wδ ∈ Ap,u.
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Remark 3. The assumption that u ∈ ∩r>1Ar in Proposition 2 is nec-

essary in the following sense: let u be a weight on Ω ⊆ Rn, take some

1 < p < ∞ and suppose that wu ∈ Ap for every w ∈ Ap,u. Then,

u ∈ ∩r>1Ar. Indeed, if M is the (unweighted) Hardy-Littlewood max-

imal operator (1), we have

∫
|Mf(x)|pw(x)u(x) dx ≤ C

∫
|f(x)|pw(x)u(x) dx, ∀w ∈ Ap,u

(since wu ∈ Ap). Then, Rubio de Francia’s extrapolation theorem [9,

Theorem 3] gives

∫
|Mf(x)|rw(x)u(x) dx ≤ C

∫
|f(x)|rw(x)u(x) dx, ∀w ∈ Ar,u

for every 1 < r < ∞. Taking w ≡ 1 yields u ∈ Ar.

Corollary 3 (change of variable). Let Ω1, Ω2 be intervals in R, h :

Ω1 −→ Ω2 bijective and absolutely continuous, and let h−1 be its inverse

function. Let w be a weight on Ω1, 1 < p < ∞.

a) If w|h′| ∈ Ap(Ω1) and w|h′|1−p ∈ Ap(Ω1), then w◦h−1 ∈ Ap(Ω2).

b) Assume that |h′| ∈ ∩r>1Ar(Ω1). If w ◦ h−1 ∈ Ap(Ω2), then

w|h′| ∈ Ap(Ω1) and w|h′|1−p ∈ Ap(Ω1).

Proof of the corollary. Taking into account that h transforms intervals

into intervals, it is straightforward to check that w ◦ h−1 ∈ Ap if and



6 MARIO PÉREZ RIERA

only if w ∈ Ap,|h′|. We only need to take u = |h′| in propositions 1

and 2. �

Remark 4. If w1, w2 ∈ Ap and 0 ≤ λ ≤ 1, then wλ
1w1−λ

2 ∈ Ap, by

Hölder’s inequality. Hence, under the hypothesis of Proposition 2,

wuα ∈ Ap for 1 − p ≤ α ≤ 1. In terms of a change of variable in

R, we have as a corollary:

v ∈ Ap(Ω2) =⇒ (v ◦ h) · |h′|α ∈ Ap(Ω1), 1− p ≤ α ≤ 1.

This result was proved by Johnson and Neugebauer in [5, Theorem

2.7] (for the case 0 ≤ α ≤ 1) and [6, Corollaries 3.1 and 3.4] (on the

full range 1 − p ≤ α ≤ 1). In fact, our proof of Proposition 2 and the

discussion on the necessity of u ∈ ∩r>1Ar are a simplified version of the

proof of [5, Theorem 2.7]. Also, we must remark that in the case n = 1

our Proposition 2 could be deduced from [6, Corollaries 3.1 and 3.4],

since for each weight function u on R there is some h with u = |h′|.

Example (maximal operator of Fourier-Jacobi series). Let us take

α, β ≥ −1/2 and consider the Fourier-Jacobi series associated to the

measure dµ(α,β)(x) = (1 − x)α(1 + x)β dx. In other words, this is the

Fourier expansion associated to the Jacobi polynomials of order (α, β),

which are orthogonal on (−1, 1) with respect to µ(α,β).
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Let us write µ′(x) = (1 − x)α(1 + x)β, let u be a weight on (−1, 1)

and take

w(t) = u(cos t)(1− cos t)(2−p)(2α+1)/4(1 + cos t)(2−p)(2β+1)/4.

Following some results of J. E. Gilbert, it was proved in [3] that under

condition w ∈ Ap((0, π)) the maximal operator S∗
α,β of the Fourier-

Jacobi series is bounded on Lp(udµ(α,β)). Now, we can traslate this Ap

condition into the interval (−1, 1): apply Corollary 3 to the weight

V (x) = u(x)(1− x)(2−p)(2α+1)/4(1 + x)(2−p)(2β+1)/4,

with h(x) = arccos x, h : (−1, 1) −→ (0, π). A direct proof that

|h′(x)| = (1 − x2)−1/2 satisfies the Ar hypothesis can be given, but

either Schröder’s result or our Proposition 4 below can be successfully

used, as well. Then, Corollary 3 yields

w ∈ Ap(0, π) ⇐⇒ u(x)(1− x2)±p/4(µ′)1−p/2 ∈ Ap(−1, 1).

Thus, the two Ap conditions on the right are sufficient for the bound-

edness of the maximal operator S∗
α,β. Actually, they are also necessary

even for the uniform boundedness of the Fourier-Jacobi series, at least

for power-like weights (see [7]).



8 MARIO PÉREZ RIERA

3. Proof of Propositions 1 and 2

Proof of Proposition 1. Let Q be a cube, Q ⊆ Ω. By the hypothesis,

∫
Q

wu

(∫
Q

w−p′/pu−p′/p

)p/p′

≤ Ap(wu)|Q|p,

∫
Q

wu1−p

(∫
Q

w−p′/pu

)p/p′

≤ Ap(wu1−p)|Q|p,

where |Q| is the Lebesgue measure of Q. Let C = Ap(wu)Ap(wu1−p).

It follows that

∫
Q

wu

(∫
Q

w−p′/pu

)p/p′

≤ C|Q|2p

(∫
Q

w−p′/pu−p′/p

)−p/p′ (∫
Q

wu1−p

)−1

= C

(∫
Q

u

)p

 |Q|(∫
Q

u
)1/2 (∫

Q
w−p′/pu−p′/p

)1/2p′ (∫
Q

wu−p/p′
)1/2p


2p

≤ C

(∫
Q

u

)p

,

where the last inequality follows from the three function Hölder’s in-

equality applied to

1 = u1/2 · [w−p′/pu−p′/p]1/2p′ · [wu−p/p′
]1/2p. �

Proof of Proposition 2. Since u ∈ ∩r>1Ar, for each r > 1 and each cube

Q we have ∫
Q

u

(∫
Q

u−1/(r−1)

)r−1

≤ Ar(u)|Q|r.
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Let us take λ = 1/(r− 1), that is: r = 1 + 1/λ; for each λ > 0 we have

(3)

(∫
Q

u

)λ ∫
Q

u−λ ≤ Ar(u)λ|Q|λ+1.

a) Let us prove that wu ∈ Ap. Let δ > 1 be such that wδ ∈ Ap,u

(see [1, 2]). Take 1/δ + 1/δ′ = 1. Let Q be any cube contained in Ω.

By Hölder’s inequality,∫
Q

wu ≤
(∫

Q

wδu

)1/δ (∫
Q

u

)1/δ′

,

∫
Q

w−p′/pu−p′/p =

∫
Q

w−p′/pu−p′
u ≤

(∫
Q

w−p′δ/pu

)1/δ (∫
Q

u1−p′δ′
)1/δ′

.

Taking this into account and the fact that wδ ∈ Ap,u,∫
Q

wu

(∫
Q

w−p′/pu−p′/p

)p/p′

≤

[∫
Q

wδu

(∫
Q

(wδ)−p′/pu

)p/p′]1/δ (∫
Q

u

)1/δ′ (∫
Q

u1−p′δ′
)p/(p′δ′)

≤ Ap,u(w
δ)1/δ

(∫
Q

u

)p/δ+1/δ′ (∫
Q

u1−p′δ′
)p/(p′δ′)

= Ap,u(w
δ)1/δ

[(∫
Q

u

)p′δ′−1 ∫
Q

u1−p′δ′

]p/(p′δ′)

≤ Ap,u(w
δ)1/δAr(u)λp/(p′δ′)|Q|p,

where in the last inequality we use (3) with λ = p′δ′ − 1 and for the

previous step

(p′δ′ − 1)
p

p′δ′
= p− p

p′δ′
=

p

δ
+

p

δ′

(
1− 1

p′

)
=

p

δ
+

1

δ′
.
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b) Let us now prove that wu1−p ∈ Ap. Part (a) can be conveniently

modified so as to get a direct proof. Alternatively, the elementary fact

that for any v, µ, 1 < s < ∞

v ∈ As,µ ⇐⇒ v−s′/s ∈ As′,µ

with As′,µ(v−s′/s) = As,µ(v)s′/s, together with part (a) gives

w ∈ Ap,u ⇐⇒ w−p′/p ∈ Ap′,u =⇒ w−p′/pu ∈ Ap′ ⇐⇒ wu1−p ∈ Ap,

and the appropriate relation for the Ap constants follows as well. �

4. Pasting Ap weights

In this section n = 1, i.e., µ is a Borel measure on R and we deal

with weights defined on a measurable subset of R.

Remark 5. Assume that J is an interval, µ(J) < ∞, w ∈ Ap,µ(J) and

w 6≡ 0, i.e., w is not (µ almost everywhere) the null weight on J . Then,

∫
A

w dµ > 0

for every measurable subset A ⊆ J of positive measure, since otherwise

we would have w = 0 µ-almost everywhere on A,

∫
J

w−p′/p dµ = +∞,

and the Ap,µ condition on the whole interval J would yield w ≡ 0 on J .
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Proposition 4. Let Ω be an open interval on R, µ a Borel measure

on Ω with supp µ = Ω, and w a weight on Ω. Assume that there exist

some open intervals J0, J1, . . . , JN such that

(a) Ω = ∪N
k=0Jk;

(b) J0, J1, . . . , JN−1 have finite measure;

(c) w ∈ Ap,µ(Jk), for every k = 0, 1, . . . , N ;

(d) w 6≡ 0 on Jk, for every k = 0, 1, . . . , N − 1.

Then, w ∈ Ap,µ(Ω).

Remark 6. Obviously, the intervals Jk cannot be disjoint, rather they

overlap. But the notation J0, J1, . . . , JN means no particular order.

Regarding condition (d), it makes the proof easier at some point, but

actually it is not necessary. Indeed, if we take Remark 5 into account

and the fact that the Jk overlap, omitting condition (d) essentially

leads to the following situation:

Ω = J1 ∪ J2 ∪ J3,

J1 = (a, b), J2 = (b− δ, c + δ), J3 = (c, d),

w ≡ 0 on J1 ∪ J3, w ∈ Ap,µ(J2),

µ((b, b + ε)) = ∞, ∀ε > 0,

µ((c− ε, c)) = ∞, ∀ε > 0.
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It is then immediate that w ∈ Ap,µ(Ω).

Remark 7. If µ is the Lebesgue measure on an interval Ω ⊆ R, then

condition (b) yields Ω 6= R. This condition cannot be just omitted, as

the following example shows: consider

w(x) =


(1 + x)a, if x ≥ 0

(1− x)b, if x < 0

with −1 < a < p−1, −1 < b < p−1 and a < b. It is easy to check that

w ∈ Ap((−1/2,∞)) and w ∈ Ap((−∞, 1/2)). However, w /∈ Ap(R): for

the interval I = (−n, n), easy computations yield

∫
I

w ∼ n1+b,∫
I

w−p′/p ∼ n1−a/(p−1),

so that ∫
I

w

(∫
I

w−p′/p

)p/p′

∼ np+b−a

and the Ap condition fails.

Remark 8. Proposition 4 implies Schröder’s result, since under condi-

tion (2) it follows that w ∈ Ap((a, ε)) and w ∈ Ap((−ε, b)) for some

ε > 0.
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Proof of Proposition 4. Let I be a nonempty interval, I ⊆ Ω. We must

prove that there is some constant C, independent of I, such that

(4)

∫
I

w dµ

(∫
I

w−p′/p dµ

)p/p′

≤ Cµ(I)p.

If I ⊆ Jk for some k, we are done, by hypothesis (obviously, a common

constant can be chosen for all the Ap,µ conditions). We can therefore

suppose now that for every k ∈ {0, 1, . . . , N}, I * Jk. There must be

some m ∈ {1, 2, . . . , N} such that

I ⊆ ∪m
k=0Jk, I * ∪m−1

k=0 Jk.

Now, let us show that (4) holds with some constant which depends

on m, but not on I (then, the biggest constant will work for every

interval). We claim that

(5)

∫
I

w dµ ≤ C

∫
I∩Jm

w dµ

and

(6)

∫
I

w−p′/p dµ ≤ C

∫
I∩Jm

w−p′/p dµ,
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with some constants depending on m, but not on I. If this is true (it

will be proved below), then our result follows immediately:∫
I

w dµ

(∫
I

w−p′/p dµ

)p/p′

≤ C

∫
I∩Jm

w dµ

(∫
I∩Jm

w−p′/p dµ

)p/p′

≤ C|I ∩ Jm|p

≤ C|I|p,

where in the second inequality we use that w ∈ Ap,µ(Jm) and at each

occurrence C denotes a different constant which depends only on m.

Thus, only (5) and (6) remain to be proved. Now, for every k =

0, 1, . . . ,m− 1,

(7)

∫
I∩Jk

w dµ ≤
∫

Jk

w dµ < ∞.

The fact that the second integral is finite follows from the hypothesis

that w ∈ Ap,µ(Jk) when applied to the whole Jk, which has finite

measure.

On the other hand, since I and the Jk are intervals and

I ⊆ ∪m
k=0Jk, I * ∪m−1

k=0 Jk, I * Jm,

it follows that there is some n ≤ m − 1 with ∅ 6= Jn ∩ Jm ⊆ I ∩ Jm.

Then,

(8)

∫
I∩Jm

w dµ ≥
∫

Jn∩Jm

w dµ > 0.
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The fact that the second integral cannot vanish follows from Remark 5

(with J = Jn), together with the trivial property that every open

interval contained in Ω = supp µ has positive measure. Let us take

Cm = min

{∫
Jn∩Jm

w dµ : ∅ 6= Jn ∩ Jm

}
.

Then (7) and (8) yield

∫
I∩Jk

w dµ ≤
∫

Jk
w dµ

Cm

∫
I∩Jm

w dµ.

Summing up in k = 0, 1, . . . ,m− 1, we obtain

∫
I

w dµ ≤
∫

I∩Jm

w dµ +
m−1∑
k=0

∫
I∩Jk

w dµ ≤ C

∫
I∩Jm

w dµ,

where

C = 1 +
1

Cm

m−1∑
k=0

∫
Jk

w dµ.

This proves inequality (5). For the proof of (6), just replace w by

w−p′/p. �
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