
COMMUTATORS AND ANALYTIC DEPENDENCE

OF FOURIER-BESSEL SERIES ON (0,∞)
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Abstract. In this paper we study the boundedness of the commutators [b, Sn] where

b is a BMO function and Sn denotes the n-th partial sum of the Fourier-Bessel series
on (0,∞). Perturbing the measure by exp(2b) we obtain that certain operators

related to Sn depend analytically on the functional parameter b.

0. Introduction.

Let Jα be the Bessel function of order α > −1. The formula∫ ∞

0

Jα+2n+1(x)Jα+2m+1(x)
dx

x
=

{
0, if n 6= m

2−1(α+ 2n+ 1)−1, if n = m

(see [14, XIII.13.41 (7), p. 404] and [14, XIII.13.42 (1), p. 405]) provides an or-
thonormal system (jα

n )n≥0 in L2((0,∞), xα dx) [L2(xα), from now on], given by

jα
n (x) =

√
α+ 2n+ 1Jα+2n+1(

√
x)x−α/2−1/2.

In this paper we consider the Fourier expansion associated with this orthonormal
system, which is usually referred to as the Fourier-Bessel series on (0,∞). For any
suitable function f and any n ≥ 0, the n-th partial sum of this expansion is given
by

Snf =
n∑

k=0

ck(f)jα
k , ck(f) =

∫ ∞

0

f(t)jα
k (t)tα dt.

We also consider the commutator of the Fourier-Bessel series on (0,∞) and the
multiplication operator associated to a BMO function; this is defined, for any given
b ∈ BMO and n ≥ 0, as

[b, Sn]f = bSn(f)− Sn(bf).

In the case α ≥ −1/2, one of the authors proved in [13] that the Fourier-Bessel
series is bounded in Lp(xα), i.e., there exists some constant C > 0 (depending on
α and p) such that for every n ≥ 0 and f ∈ Lp(xα),

‖Snf‖Lp(xα) ≤ C‖f‖Lp(xα),
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if and only if max{4/3, 4(α + 1)/(2α + 3)} < p < min{4, 4(α + 1)/(2α + 1)}. In
Theorem 1 we will extend this result to the case α > −1 and prove the corresponding
inequality for the commutator [b, Sn], b ∈ BMO.

Regarding the commutator [b, Sn], results of this type are of independent interest
and have been widely studied for many classical operators; see [2, 10, 11, 12, 4], for
instance.

In our case, the commutator [b, Sn] is closely related to the problem of pertur-
bating the orthonormal system. Given an orthonormal system (ϕn)n≥0 in some
L2(ν) space and a suitable function b (in some sense close to 0), the classical Gram-
Schmidt procedure can be applied to (ϕn)n≥0 so as to obtain a new orthonormal
system in L2(e2bdν), which we will refer to as a perturbated system. In this natural
way a mapping can be defined that associates a perturbated system (and a per-
turbated orthogonal expansion) to each (small) function b. For different compact
perturbations of orthogonal polynomial systems and further references, see [7, 9, 1].

Let us take the system (jα
n )n≥0 in L2(xα) as our starting point. Let Sn(b) stand

for the n-th partial sum operator of the Fourier series associated to the perturbed
measure e2bxα dx in the aforementioned way. Once the boundedness properties of
Sn = Sn(0) have been established, it is interesting to study the mapping b 7→ Sn(b).
This is not, however, a convenient setting, since each perturbed series Sn(b) acts
on a different space L2(e2bxα). Instead, we can consider the operators

Vn(b) = ebSn(b)e−b.

Now, each Vn(b) acts on L2(xα) and its norm coincides with the operator norm
of Sn(b) acting on L2(e2bxα). The problem is further simplified if we take the
operators

Tn(b) = ebSn(0)e−b,

i.e., Tn(b)f = ebSn(e−bf). Indeed, it has been proved in [3] that the family
(Vn(b))n≥0 depends analytically on b belonging to a neighbourhood of 0 in the
complexification of BMO whenever the family (Tn(b))n≥0 does too.

We will prove in Theorem 2 that the family of operators (Tn(b))n≥0 acting on
L2(xα) is uniformly bounded for b belonging to some neighbourhood of 0 in the
complexification of BMO. As a consequence (see [3, Propositions 2.1 and 2.3]), the
operator-valued mappings (Tn)n≥0 are uniformly analytic in a neighbourhood of 0
in the complexification of BMO and so are (Vn)n≥0.

Now, the connection between [b, Sn] and the perturbated Fourier series comes
via the Gâteaux differential of Tn at 0 in the direction b:

d

dz
Tn(zb)

∣∣
z=0

= [b, Sn].

In this way, the uniform analyticity of Tn in a neighbourhood of 0 gives the L2-
boundedness of [b, Sn].

1. Main results.

If b is a locally Lebesgue-integrable function on (0,∞), the mean of b over an
interval I ⊆ (0,∞) is

bI =
1
|I|

∫
I

b(x) dx.
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The function b is said to have bounded mean oscillation on (0,∞) if

‖b‖BMO = sup
I

1
|I|

∫
I

|b(x)− bI | dx

is finite, where the supremum is taken over all the intervals I ⊆ (0,∞). The space
BMO of real-valued functions (modulo constants) having bounded mean oscillation
on (0,∞) is a real Banach space with ‖ · ‖BMO as its norm.

Theorem 1. Let 1 < p <∞, −1 < α such that
4/3 < p < 4, if − 1 < α < 0;
4(α+ 1)
2α+ 3

< p <
4(α+ 1)
2α+ 1

, if 0 ≤ α.

(a) There exists some constant C > 0 such that, for every f ∈ Lp(xα) and
n ≥ 0,

‖Snf‖Lp(xα) ≤ C‖f‖Lp(xα).

(b) If b ∈ BMO, then there exists some constant C > 0 such that, for every
f ∈ Lp(xα) and n ≥ 0,

‖[Sn, b]f‖Lp(xα) ≤ C‖f‖Lp(xα).

Throughout this paper, we will denote by C a positive constant which is inde-
pendent of n and f , but may be different in each occurrence, even within the same
formula.

Theorem 2. Let 1 < p <∞, −1 < α such that
4/3 < p < 4, if − 1 < α < 0;
4(α+ 1)
2α+ 3

< p <
4(α+ 1)
2α+ 1

, if 0 ≤ α.

Then there exist some C, δ > 0 such that, for all b ∈ BMO with ‖b‖BMO < δ,

sup
n
‖Tn(b)‖Lp(xα)→Lp(xα) ≤ C.

The next corollary is just a consequence of Theorem 2 and [3, Prop. 2.3].

Corollary. The sequences of operators (Tn(b))n≥0 and (Vn(b))n≥0, acting on the
space L2(xα), are uniformly analytic in a neighbourhood of 0 in the complexification
of BMO.

Some notation and previous results will be necessary. For 1 < p < ∞, we write
p′ = p/(p−1), i.e., 1/p+1/p′ = 1. A weight is a nonnegative Lebesgue-measurable
function on (0,∞). The class Ap(0,∞) [Ap, for short] consists of those pairs of
weights (u, v) such that, for every subinterval I ⊆ (0,∞),

1
|I|

∫
I

u

(
1
|I|

∫
I

v−p′/p

)p/p′

≤ C,
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where C is a positive constant independent of I, and |I| denotes the length of I.
The Ap constant of (u, v) is the smallest constant C satisfying this inequality and
will be denoted by Ap(u, v). A single weight w is said to belong to Ap if (w,w) ∈ Ap;
in this case we denote the constant by Ap(w). We refer the reader to [6] for further
details on Ap classes.

The Hilbert transform on (0,∞) will be denoted by H. Fix 1 < p < ∞; then
H is a bounded linear operator on Lp(w), for any weight w ∈ Ap. The norm of
H:Lp(w) −→ Lp(w) and the Ap constant of w depend only one on another, in the
sense that given some constant C which verifies the Ap condition for w, another
constant C1 depending only on C can be chosen so that ‖H‖ ≤ C1, and viceversa.
Therefore, for a sequence (wn)n∈N uniformly in Ap, i.e., with some constant C
verifying the Ap condition for every wn, the Hilbert transform is uniformly bounded
on Lp(wn), n ∈ N. We refer the reader again to [6] for further details.

Also, if (u, v) is a pair of weights such that C1u ≤ w ≤ C2v for some w ∈ Ap,
we deduce that H is a bounded operator from Lp(v) into Lp(u). The existence of
such a weight w is equivalent to (uδ, vδ) ∈ Ap for some δ > 1 (see [8]). For short,
this is written as (u, v) ∈ Aδ

p.
Analogous results hold also with the commutator [b,H], for any b ∈ BMO (see [2],

for instance). Namely, given b ∈ BMO and w ∈ Ap, [b,H] is a bounded operator on
Lp(w) with a norm that depends only on the BMO-norm of b and the Ap constant
of w, in the sense above.

2. Proofs.

Let us start with some auxiliary results:

Lemma 1. Let u, v, w be weights on (0,+∞), λ > 0.
(a) w(x) ∈ Ap if and only if w(λx) ∈ Ap; both weights have the same Ap

constant.
(b) w ∈ Ap if and only if λw ∈ Ap; both weights have also the same Ap constant.
(c) If u, v ∈ Ap, then u+ v ∈ Ap and Ap(u+ v) ≤ Ap(u) +Ap(v).
(d) If u, v ∈ Ap and 1/w = 1/u + 1/v, then w ∈ Ap and Ap(w) ≤ C[Ap(u) +

Ap(v)].

Proof. Parts (a) and (b) are trivial. Part (c) follows easily from the inequality(
1
|I|

∫
I

(u+ v)−p′/p

)p/p′

≤ min

{(
1
|I|

∫
I

u−p′/p

)p/p′

,

(
1
|I|

∫
I

v−p′/p

)p/p′
}
.

Part (d) is a consequence of (c) and the fact that u ∈ Ap ⇐⇒ u−p′/p ∈ Ap′ , with
Ap′(u−p′/p) = [Ap(u)]p

′/p. �

The proof of the next lemma is not difficult, but cumbersome, so we omit it. For
the weight in (c), observe that xr|x1/2 − 1|s ∼ xr near 0, xr|x1/2 − 1|s ∼ |x − 1|s
near 1 and xr|x1/2 − 1|s ∼ xr+s/2 near ∞, whence the three conditions follow.

Lemma 2. Let r, s ∈ R.
(a) xr ∈ Ap ⇐⇒ −1 < r < p− 1.
(b) Set Φ(x) = xr if x ∈ (0, 1) and Φ(x) = xs if x ∈ (1,∞). Then, Φ ∈ Ap if

and only if −1 < r < p− 1 and −1 < s < p− 1.
(c) xr|x1/2 − 1|s ∈ Ap ⇐⇒ −1 < r < p − 1, −1 < s < p − 1 and −1 <

r + s/2 < p− 1.
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Lemma 3. Let n ∈ N, α > −1. Then

n∑
k=0

2(α+ 2k + 1)Jα+2k+1(x)Jα+2k+1(t)

=
xt

x2 − t2
[xJα+1(x)Jα(t)− tJα(x)Jα+1(t)

+ xJ ′α+2n+2(x)Jα+2n+2(t)− tJα+2n+2(x)J ′α+2n+2(t)].

Proof. Using the equality Jν−1(z) + Jν+1(z) = 2ν
z Jν(z) (see [14, III.3.2, p. 45]) to

write Jµ−1 and Jµ+2 in terms of Jµ and Jµ+1 proves the formula

xt

x2 − t2
[xJµ(x)Jµ−1(t)− tJµ−1(x)Jµ(t)− xJµ+2(x)Jµ+1(t) + tJµ+1(x)Jµ+2(t)]

= 2µJµ(x)Jµ(t).

This gives now

n∑
k=0

2(α+ 2k + 1)Jα+2k+1(x)Jα+2k+1(t)

=
xt

x2 − t2
[xJα+1(x)Jα(t)− tJα(x)Jα+1(t)

− xJα+2n+3(x)Jα+2n+2(t) + tJα+2n+2(x)Jα+2n+3(t)].

Finally, use the formula zJν+1(z) = νJν(z)−zJ ′ν(z) (see [14, III.3.2, p. 45]) to take
out Jα+2n+3. �

Proof of Theorem 1. From the definition,

Snf(x) = x−
α
2−

1
2

∫ ∞

0

[
n∑

k=0

(α+ 2k + 1)Jα+2k+1(x
1
2 )Jα+2k+1(t

1
2 )

]
t

α
2−

1
2 f(t) dt

so that Lemma 3 leads to

Snf = W1f −W2f +W3,nf −W4,nf,

where

W1f(x) = 2−1x−α/2+1/2Jα+1(x1/2)H
(
tα/2Jα(t1/2)f(t)

)
(x),

W2f(x) = 2−1x−α/2Jα(x1/2)H
(
tα/2+1/2Jα+1(t1/2)f(t)

)
(x),

W3,nf(x) = 2−1x−α/2+1/2J ′ν(x1/2)H
(
tα/2Jν(t1/2)f(t)

)
(x),

W4,nf(x) = 2−1x−α/2Jν(x1/2)H
(
tα/2+1/2J ′ν(t1/2)f(t)

)
(x)

and ν = α + 2n + 2. Thus, we will show that the operators W1, W2 are bounded
and the operators W3,n, W4,n are uniformly bounded for n ≥ 0. The proof for the
commutator [b, Sn] is the same: just put [b,H] instead of H.
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(I) Boundedness of the operator W1. From the definition, it follows that

‖W1f‖Lp(xα) ≤ C‖f‖Lp(xα)

if and only if

‖Hg‖Lp(xα−αp/2+p/2|Jα+1(x1/2)|p) ≤ C‖g‖Lp(xα−αp/2|Jα(x1/2)|−p).

Proving that there is a weight Φ ∈ Ap with

(1) Cxα−αp/2+p/2|Jα+1(x1/2)|p ≤ Φ(x) ≤ Cxα−αp/2|Jα(x1/2)|−p

will be enough. According to the bounds

|Jα(x)| ≤ Cαx
α, x ∈ (0, 1),

|Jα(x)| ≤ Cαx
−1/2, x ∈ (1,∞)

(see, e.g., [14, III.3.1 (8), p. 40] and [14, VII.7.21 (1), p. 199]), we have

xα−αp/2+p/2|Jα+1(x1/2)|p ≤
{
Cxα+p, if x ∈ (0, 1),

Cxα−αp/2+p/4, if x ∈ (1,∞),

xα−αp/2|Jα(x1/2)|−p ≥
{
Cxα−αp, if x ∈ (0, 1),

Cxα−αp/2+p/4, if x ∈ (1,∞).

Let us try

Φ(x) =
{
xr, if x ∈ (0, 1),

xα−αp/2+p/4, if x ∈ (1,∞).

By (b) in Lemma 2, conditions (1) and Φ ∈ Ap will hold if
α− αp ≤ r ≤ α+ p,

−1 < r < p− 1,
−1 < α− αp/2 + p/4 < p− 1.

The third line is equivalent to

2α− 1
4

p < α+ 1, α+ 1 <
2α+ 3

4
p,

and these follow from the hypothesis. For the inequalities involving r it suffices

max{−1, α− αp} < min{p− 1, α+ p}.

It is easy to check that this also holds, whenever α > −1 and p > 1.
(II) Boundedness of the operator W2. The proof is entirely similar: we have

‖W2f‖Lp(xα) ≤ C‖f‖Lp(xα)

if and only if

‖Hg‖Lp(xα−αp/2|Jα(x1/2)|p) ≤ C‖g‖Lp(xα−αp/2−p/2|Jα+1(x1/2)|−p)
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so that we can prove that there is a weight Ψ ∈ Ap with

(2) Cxα−αp/2|Jα(x1/2)|p ≤ Ψ(x) ≤ Cxα−αp/2−p/2|Jα+1(x1/2)|−p.

Now we have

xα−αp/2|Jα(x1/2)|p ≤
{
Cxα, if x ∈ (0, 1),

Cxα−αp/2−p/4, if x ∈ (1,∞),

xα−αp/2−p/2|Jα+1(x1/2)|−p ≥
{
Cxα−αp−p, if x ∈ (0, 1),

Cxα−αp/2−p/4, if x ∈ (1,∞).

Setting

Ψ(x) =
{
xr, if x ∈ (0, 1),

xα−αp/2−p/4, if x ∈ (1,∞),

conditions (2) and Ψ ∈ Ap will hold if
α− αp− p ≤ r ≤ α,

−1 < r < p− 1,
−1 < α− αp/2− p/4 < p− 1.

The third line is equivalent to

2α+ 1
4

p < α+ 1, α+ 1 <
2α+ 5

4
p,

and these hold, by the hypothesis. For the inequalities involving r we only need

max{−1, α− αp− p} < min{p− 1, α}.

It is easy to check that this also holds, whenever α > −1 and p > 1.
(III) Uniform boundedness of the operators W3,n. Here,

‖W3,nf‖Lp(xα) ≤ C‖f‖Lp(xα)

if and only if

‖Hg‖Lp(xα−αp/2+p/2|J′ν(x1/2)|p) ≤ C‖g‖Lp(xα−αp/2|Jν(x1/2)|−p).

We make now use of the bounds

|Jν(x)| ≤ Cx−1/4
[
|x− ν|+ ν1/3

]−1/4

, ν = α+ 2n+ 2, x ∈ (0,∞),

|J ′ν(x)| ≤ Cx−3/4
[
|x− ν|+ ν1/3

]1/4

, ν = α+ 2n+ 2, x ∈ (0,∞),

with some universal constant C. They follow from those in [5], for instance. There-
fore,

xα−αp/2+p/2|J ′ν(x1/2)|p ≤ Cxα−αp/2+p/8
[
|x1/2 − ν|+ ν1/3

]p/4

,

xα−αp/2|Jν(x1/2)|−p ≥ Cxα−αp/2+p/8
[
|x1/2 − ν|+ ν1/3

]p/4

.
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It will be enough to prove that ϕν ∈ Ap uniformly in n, with

(3) ϕν(x) = xα−αp/2+p/8
[
|x1/2 − ν|+ ν1/3

]p/4

.

From Lemma 1, we have

ϕν(x) ∈ Ap unif. ⇐⇒ ϕν(ν2x) ∈ Ap unif.

⇐⇒ xα−αp/2+p/8
[
|x1/2 − 1|+ ν−2/3

]p/4

∈ Ap unif.

⇐⇒ xα−αp/2+p/8|x1/2 − 1|p/4 + ν−p/6xα−αp/2+p/8 ∈ Ap unif.,

where the last equivalence follows from[
|x1/2 − 1|+ ν−2/3

]p/4

∼ |x1/2 − 1|p/4 + ν−p/6,

i.e., the ratio of both terms is bounded below and above by two positive constants
not depending on n or x. Now, again by Lemma 1, proving that xα−αp/2+p/8 ∈ Ap

and xα−αp/2+p/8|x1/2 − 1|p/4 ∈ Ap will suffice. According to Lemma 2,

{
xα−αp/2+p/8 ∈ Ap

xα−αp/2+p/8|x1/2 − 1|p/4 ∈ Ap

⇐⇒


−1 < α− αp/2 + p/8 < p− 1
−1 < p/4 < p− 1
−1 < α− αp/2 + p/4 < p− 1

⇐⇒


−1 < α− αp/2 + p/8
4/3 < p

α− αp/2 + p/4 < p− 1

⇐⇒
{ 2α−1/2

4 p < α+ 1 < 2α+3
4 p

4/3 < p

and these inequalities follow from the initial conditions.
(IV) Uniform boundedness of the operators W4,n. Finally,

‖W4,nf‖Lp(xα) ≤ C‖f‖Lp(xα)

if and only if

‖Hg‖Lp(xα−αp/2|Jν(x1/2)|p) ≤ C‖g‖Lp(xα−αp/2−p/2|J′ν(x1/2)|−p).

Also,

xα−αp/2|Jν(x1/2)|p ≤ Cxα−αp/2−p/8
[
|x1/2 − ν|+ ν1/3

]−p/4

,

xα−αp/2−p/2|J ′ν(x1/2)|−p ≥ Cxα−αp/2−p/8
[
|x1/2 − ν|+ ν1/3

]−p/4

so let us put

(4) ψν(x) = xα−αp/2−p/8
[
|x1/2 − ν|+ ν1/3

]−p/4
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and show that ψν ∈ Ap uniformly in n. Indeed,

ψν(x) ∈ Ap unif. ⇐⇒ ψν(ν2x) ∈ Ap unif.

⇐⇒ xα−αp/2−p/8
[
|x1/2 − 1|+ ν−2/3

]−p/4

∈ Ap unif.

and

(
xα−αp/2−p/8

[
|x1/2 − 1|+ ν−2/3

]−p/4 )−1

∼ x−α+αp/2+p/8
[
|x1/2 − 1|p/4 + ν−p/6

]
=

[
xα−αp/2−p/8|x1/2 − 1|−p/4

]−1

+
[
νp/6xα−αp/2−p/8

]−1

so that proving that xα−αp/2−p/8|x1/2 − 1|−p/4 ∈ Ap and xα−αp/2−p/8 ∈ Ap will
suffice. But

{
xα−αp/2−p/8 ∈ Ap

xα−αp/2−p/8|x1/2 − 1|−p/4 ∈ Ap

⇐⇒


−1 < α− αp/2− p/8 < p− 1
−1 < −p/4 < p− 1
−1 < α− αp/2− p/4 < p− 1

⇐⇒


α− αp/2− p/8 < p− 1
p < 4
−1 < α− αp/2− p/4

⇐⇒
{ 2α+1

4 p < α+ 1 < 2α+9/2
4 p

p < 4

and these inequalities hold by the hypothesis. The proof of Theorem 1 is now
complete. �

Proof of Theorem 2. For each n ≥ 0 and b ∈ BMO, Tn(b):Lp(xα) −→ Lp(xα) is
bounded if and only if Sn:Lp(epbxα) −→ Lp(epbxα) is bounded, and both operators
have the same norm. Thus, we can follow the proof of Theorem 1 and conclude
that conditions (1), (2), (3) and (4), i.e.,

Cxα−αp/2+p/2|Jα+1(x1/2)|p ≤ Φ(x) ≤ Cxα−αp/2|Jα(x1/2)|−p,

Cxα−αp/2|Jα(x1/2)|p ≤ Ψ(x) ≤ Cxα−αp/2−p/2|Jα+1(x1/2)|−p,

ϕν(x) = xα−αp/2+p/8
[
|x1/2 − ν|+ ν1/3

]p/4

,

ψν(x) = xα−αp/2−p/8
[
|x1/2 − ν|+ ν1/3

]−p/4

,

are still sufficient, if we require now epbΦ, epbΨ, epbϕν , e
pbψν ∈ Ap uniformly in

ν. The proof of Theorem 1, together with next lemma, finish the proof of Theo-
rem 2. �
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Lemma 4. Let 1 < p < ∞. For each φ ∈ Ap, there exists some δ > 0 such that
epbφ ∈ Ap whenever b ∈ BMO with ‖b‖BMO < δ. Moreover, δ and the Ap constant
of epbφ depend only on the Ap constant of φ.

Remark. Again, statements like “δ depends only on the Ap constant of φ” should
be understood as: given a constant C > 0 which verifies the Ap condition for φ,
some δ can be chosen depending only on C.

Proof. If φ ∈ Ap, there exists some ε > 1 such that φε ∈ Ap; moreover, ε and the
Ap constant of φε depend only on the Ap constant of φ [6, Theorem IV.2.7, p. 399].
Take now 1/ε+ 1/ε′ = 1. There exists some δ > 0 such that

‖b‖BMO < δ =⇒ epε′b ∈ Ap;

here, δ and the Ap constant of epε′b depend only on ε′ [6, p. 409]. This, together with
φε ∈ Ap and Hölder’s inequality, imply epbφ ∈ Ap with an Ap constant depending
only on the Ap constant of φ. �
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