COMMUTATORS AND ANALYTIC DEPENDENCE OF FOURIER-BESSEL SERIES ON $(0, \infty)$

José J. Guadalupe, Mario Pérez and Juan L. Varona

ABSTRACT. In this paper we study the boundedness of the commutators $[b, S_n]$ where b is a BMO function and S_n denotes the n-th partial sum of the Fourier-Bessel series on $(0, \infty)$. Perturbing the measure by $\exp(2b)$ we obtain that certain operators related to S_n depend analytically on the functional parameter b.

0. Introduction.

Let J_{α} be the Bessel function of order $\alpha > -1$. The formula

$$\int_0^\infty J_{\alpha+2n+1}(x)J_{\alpha+2m+1}(x)\,\frac{dx}{x} = \begin{cases} 0, & \text{if } n \neq m \\ 2^{-1}(\alpha+2n+1)^{-1}, & \text{if } n = m \end{cases}$$

(see [14, XIII.13.41 (7), p. 404] and [14, XIII.13.42 (1), p. 405]) provides an orthonormal system $(j_n^{\alpha})_{n\geq 0}$ in $L^2((0,\infty),x^{\alpha}\,dx)$ [$L^2(x^{\alpha})$, from now on], given by

$$j_n^{\alpha}(x) = \sqrt{\alpha + 2n + 1} J_{\alpha+2n+1}(\sqrt{x}) x^{-\alpha/2-1/2}$$

In this paper we consider the Fourier expansion associated with this orthonormal system, which is usually referred to as the Fourier-Bessel series on $(0, \infty)$. For any suitable function f and any $n \ge 0$, the n-th partial sum of this expansion is given by

$$S_n f = \sum_{k=0}^n c_k(f) j_k^{\alpha}, \qquad c_k(f) = \int_0^{\infty} f(t) j_k^{\alpha}(t) t^{\alpha} dt.$$

We also consider the commutator of the Fourier-Bessel series on $(0, \infty)$ and the multiplication operator associated to a BMO function; this is defined, for any given $b \in \text{BMO}$ and $n \geq 0$, as

$$[b, S_n]f = bS_n(f) - S_n(bf).$$

In the case $\alpha \geq -1/2$, one of the authors proved in [13] that the Fourier-Bessel series is bounded in $L^p(x^{\alpha})$, i.e., there exists some constant C > 0 (depending on α and p) such that for every $n \geq 0$ and $f \in L^p(x^{\alpha})$,

$$||S_n f||_{L^p(x^\alpha)} \le C||f||_{L^p(x^\alpha)},$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 42C10.

 $Key\ words\ and\ phrases.$ Fourier-Bessel series, commutators, BMO, A_p weights.

Research supported by DGES (grant PB96-0120-C03-02) and by UR (grant API-97/B12).

if and only if $\max\{4/3, 4(\alpha+1)/(2\alpha+3)\} . In Theorem 1 we will extend this result to the case <math>\alpha > -1$ and prove the corresponding inequality for the commutator $[b, S_n]$, $b \in BMO$.

Regarding the commutator $[b, S_n]$, results of this type are of independent interest and have been widely studied for many classical operators; see [2, 10, 11, 12, 4], for instance.

In our case, the commutator $[b, S_n]$ is closely related to the problem of perturbating the orthonormal system. Given an orthonormal system $(\varphi_n)_{n\geq 0}$ in some $L^2(\nu)$ space and a suitable function b (in some sense close to 0), the classical Gram-Schmidt procedure can be applied to $(\varphi_n)_{n\geq 0}$ so as to obtain a new orthonormal system in $L^2(e^{2b}d\nu)$, which we will refer to as a perturbated system. In this natural way a mapping can be defined that associates a perturbated system (and a perturbated orthogonal expansion) to each (small) function b. For different compact perturbations of orthogonal polynomial systems and further references, see [7, 9, 1].

Let us take the system $(j_n^{\alpha})_{n\geq 0}$ in $L^2(x^{\alpha})$ as our starting point. Let $\mathbf{S}_n(b)$ stand for the *n*-th partial sum operator of the Fourier series associated to the perturbed measure $e^{2b}x^{\alpha} dx$ in the aforementioned way. Once the boundedness properties of $S_n = \mathbf{S}_n(0)$ have been established, it is interesting to study the mapping $b \mapsto \mathbf{S}_n(b)$. This is not, however, a convenient setting, since each perturbed series $\mathbf{S}_n(b)$ acts on a different space $L^2(e^{2b}x^{\alpha})$. Instead, we can consider the operators

$$V_n(b) = e^b \mathbf{S}_n(b) e^{-b}.$$

Now, each $V_n(b)$ acts on $L^2(x^{\alpha})$ and its norm coincides with the operator norm of $\mathbf{S}_n(b)$ acting on $L^2(e^{2b}x^{\alpha})$. The problem is further simplified if we take the operators

$$T_n(b) = e^b \mathbf{S}_n(0) e^{-b},$$

i.e., $T_n(b)f = e^b S_n(e^{-b}f)$. Indeed, it has been proved in [3] that the family $(V_n(b))_{n\geq 0}$ depends analytically on b belonging to a neighbourhood of 0 in the complexification of BMO whenever the family $(T_n(b))_{n\geq 0}$ does too.

We will prove in Theorem 2 that the family of operators $(T_n(b))_{n\geq 0}$ acting on $L^2(x^{\alpha})$ is uniformly bounded for b belonging to some neighbourhood of 0 in the complexification of BMO. As a consequence (see [3, Propositions 2.1 and 2.3]), the operator-valued mappings $(T_n)_{n\geq 0}$ are uniformly analytic in a neighbourhood of 0 in the complexification of BMO and so are $(V_n)_{n\geq 0}$.

Now, the connection between $[b, S_n]$ and the perturbated Fourier series comes via the Gâteaux differential of T_n at 0 in the direction b:

$$\frac{d}{dz}T_n(zb)\big|_{z=0} = [b, S_n].$$

In this way, the uniform analyticity of T_n in a neighbourhood of 0 gives the L^2 -boundedness of $[b, S_n]$.

1. Main results.

If b is a locally Lebesgue-integrable function on $(0, \infty)$, the mean of b over an interval $I \subseteq (0, \infty)$ is

$$b_I = \frac{1}{|I|} \int_I b(x) \, dx.$$

The function b is said to have bounded mean oscillation on $(0, \infty)$ if

$$||b||_{\text{BMO}} = \sup_{I} \frac{1}{|I|} \int_{I} |b(x) - b_{I}| dx$$

is finite, where the supremum is taken over all the intervals $I \subseteq (0, \infty)$. The space BMO of real-valued functions (modulo constants) having bounded mean oscillation on $(0, \infty)$ is a real Banach space with $\|\cdot\|_{\text{BMO}}$ as its norm.

Theorem 1. Let $1 , <math>-1 < \alpha$ such that

$$\begin{cases} 4/3$$

(a) There exists some constant C > 0 such that, for every $f \in L^p(x^{\alpha})$ and $n \geq 0$,

$$||S_n f||_{L^p(x^\alpha)} \le C||f||_{L^p(x^\alpha)}.$$

(b) If $b \in BMO$, then there exists some constant C > 0 such that, for every $f \in L^p(x^{\alpha})$ and $n \geq 0$,

$$||[S_n, b]f||_{L^p(x^\alpha)} \le C||f||_{L^p(x^\alpha)}.$$

Throughout this paper, we will denote by C a positive constant which is independent of n and f, but may be different in each occurrence, even within the same formula.

Theorem 2. Let $1 , <math>-1 < \alpha$ such that

$$\begin{cases} 4/3$$

Then there exist some $C, \delta > 0$ such that, for all $b \in BMO$ with $||b||_{BMO} < \delta$,

$$\sup_{n} ||T_n(b)||_{L^p(x^\alpha) \to L^p(x^\alpha)} \le C.$$

The next corollary is just a consequence of Theorem 2 and [3, Prop. 2.3].

Corollary. The sequences of operators $(T_n(b))_{n\geq 0}$ and $(V_n(b))_{n\geq 0}$, acting on the space $L^2(x^{\alpha})$, are uniformly analytic in a neighbourhood of 0 in the complexification of BMO.

Some notation and previous results will be necessary. For 1 , we write <math>p' = p/(p-1), i.e., 1/p + 1/p' = 1. A weight is a nonnegative Lebesgue-measurable function on $(0, \infty)$. The class $A_p(0, \infty)$ $[A_p$, for short] consists of those pairs of weights (u, v) such that, for every subinterval $I \subseteq (0, \infty)$,

$$\frac{1}{|I|} \int_I u \left(\frac{1}{|I|} \int_I v^{-p'/p} \right)^{p/p'} \le C,$$

where C is a positive constant independent of I, and |I| denotes the length of I. The A_p constant of (u, v) is the smallest constant C satisfying this inequality and will be denoted by $A_p(u, v)$. A single weight w is said to belong to A_p if $(w, w) \in A_p$; in this case we denote the constant by $A_p(w)$. We refer the reader to [6] for further details on A_p classes.

The Hilbert transform on $(0, \infty)$ will be denoted by H. Fix 1 ; then <math>H is a bounded linear operator on $L^p(w)$, for any weight $w \in A_p$. The norm of $H: L^p(w) \longrightarrow L^p(w)$ and the A_p constant of w depend only one on another, in the sense that given some constant C which verifies the A_p condition for w, another constant C_1 depending only on C can be chosen so that $||H|| \leq C_1$, and viceversa. Therefore, for a sequence $(w_n)_{n \in \mathbb{N}}$ uniformly in A_p , i.e., with some constant C verifying the A_p condition for every w_n , the Hilbert transform is uniformly bounded on $L^p(w_n)$, $n \in \mathbb{N}$. We refer the reader again to [6] for further details.

Also, if (u, v) is a pair of weights such that $C_1 u \leq w \leq C_2 v$ for some $w \in A_p$, we deduce that H is a bounded operator from $L^p(v)$ into $L^p(u)$. The existence of such a weight w is equivalent to $(u^{\delta}, v^{\delta}) \in A_p$ for some $\delta > 1$ (see [8]). For short, this is written as $(u, v) \in A_p^{\delta}$.

Analogous results hold also with the commutator [b, H], for any $b \in BMO$ (see [2], for instance). Namely, given $b \in BMO$ and $w \in A_p$, [b, H] is a bounded operator on $L^p(w)$ with a norm that depends only on the BMO-norm of b and the A_p constant of w, in the sense above.

2. Proofs.

Let us start with some auxiliary results:

Lemma 1. Let u, v, w be weights on $(0, +\infty), \lambda > 0$.

- (a) $w(x) \in A_p$ if and only if $w(\lambda x) \in A_p$; both weights have the same A_p constant.
- (b) $w \in A_p$ if and only if $\lambda w \in A_p$; both weights have also the same A_p constant.
- (c) If $u, v \in A_p$, then $u + v \in A_p$ and $A_p(u + v) \le A_p(u) + A_p(v)$.
- (d) If $u, v \in A_p$ and 1/w = 1/u + 1/v, then $w \in A_p$ and $A_p(w) \le C[A_p(u) + A_p(v)]$.

Proof. Parts (a) and (b) are trivial. Part (c) follows easily from the inequality

$$\left(\frac{1}{|I|} \int_{I} (u+v)^{-p'/p} \right)^{p/p'} \leq \min \left\{ \left(\frac{1}{|I|} \int_{I} u^{-p'/p} \right)^{p/p'}, \left(\frac{1}{|I|} \int_{I} v^{-p'/p} \right)^{p/p'} \right\}.$$

Part (d) is a consequence of (c) and the fact that $u \in A_p \iff u^{-p'/p} \in A_{p'}$, with $A_{p'}(u^{-p'/p}) = [A_p(u)]^{p'/p}$. \square

The proof of the next lemma is not difficult, but cumbersome, so we omit it. For the weight in (c), observe that $x^r|x^{1/2}-1|^s\sim x^r$ near 0, $x^r|x^{1/2}-1|^s\sim |x-1|^s$ near 1 and $x^r|x^{1/2}-1|^s\sim x^{r+s/2}$ near ∞ , whence the three conditions follow.

Lemma 2. Let $r, s \in \mathbb{R}$.

- (a) $x^r \in A_p \iff -1 < r < p 1$.
- (b) Set $\Phi(x) = x^r$ if $x \in (0,1)$ and $\Phi(x) = x^s$ if $x \in (1,\infty)$. Then, $\Phi \in A_p$ if and only if -1 < r < p 1 and -1 < s < p 1.
- (c) $x^r |x^{1/2} 1|^s \in A_p \iff -1 < r < p 1, -1 < s < p 1 \text{ and } -1 < r + s/2 < p 1.$

Lemma 3. Let $n \in \mathbb{N}$, $\alpha > -1$. Then

$$\sum_{k=0}^{n} 2(\alpha + 2k + 1)J_{\alpha+2k+1}(x)J_{\alpha+2k+1}(t)$$

$$= \frac{xt}{x^2 - t^2} \left[xJ_{\alpha+1}(x)J_{\alpha}(t) - tJ_{\alpha}(x)J_{\alpha+1}(t) + xJ'_{\alpha+2n+2}(x)J'_{\alpha+2n+2}(t) - tJ_{\alpha+2n+2}(x)J'_{\alpha+2n+2}(t) \right].$$

Proof. Using the equality $J_{\nu-1}(z) + J_{\nu+1}(z) = \frac{2\nu}{z}J_{\nu}(z)$ (see [14, III.3.2, p. 45]) to write $J_{\mu-1}$ and $J_{\mu+2}$ in terms of J_{μ} and $J_{\mu+1}$ proves the formula

$$\frac{xt}{x^2 - t^2} \left[xJ_{\mu}(x)J_{\mu-1}(t) - tJ_{\mu-1}(x)J_{\mu}(t) - xJ_{\mu+2}(x)J_{\mu+1}(t) + tJ_{\mu+1}(x)J_{\mu+2}(t) \right]$$
$$= 2\mu J_{\mu}(x)J_{\mu}(t).$$

This gives now

$$\sum_{k=0}^{n} 2(\alpha + 2k + 1)J_{\alpha+2k+1}(x)J_{\alpha+2k+1}(t)$$

$$= \frac{xt}{x^2 - t^2} \left[xJ_{\alpha+1}(x)J_{\alpha}(t) - tJ_{\alpha}(x)J_{\alpha+1}(t) - xJ_{\alpha+2n+3}(x)J_{\alpha+2n+2}(t) + tJ_{\alpha+2n+2}(x)J_{\alpha+2n+3}(t) \right].$$

Finally, use the formula $zJ_{\nu+1}(z)=\nu J_{\nu}(z)-zJ_{\nu}'(z)$ (see [14, III.3.2, p. 45]) to take out $J_{\alpha+2n+3}$. \square

Proof of Theorem 1. From the definition,

$$S_n f(x) = x^{-\frac{\alpha}{2} - \frac{1}{2}} \int_0^\infty \left[\sum_{k=0}^n (\alpha + 2k + 1) J_{\alpha + 2k + 1}(x^{\frac{1}{2}}) J_{\alpha + 2k + 1}(t^{\frac{1}{2}}) \right] t^{\frac{\alpha}{2} - \frac{1}{2}} f(t) dt$$

so that Lemma 3 leads to

$$S_n f = W_1 f - W_2 f + W_{3,n} f - W_{4,n} f,$$

where

$$\begin{split} W_1 f(x) &= 2^{-1} x^{-\alpha/2 + 1/2} J_{\alpha + 1}(x^{1/2}) \, H \big(t^{\alpha/2} J_{\alpha}(t^{1/2}) f(t) \big)(x), \\ W_2 f(x) &= 2^{-1} x^{-\alpha/2} J_{\alpha}(x^{1/2}) \, H \big(t^{\alpha/2 + 1/2} J_{\alpha + 1}(t^{1/2}) f(t) \big)(x), \\ W_{3,n} f(x) &= 2^{-1} x^{-\alpha/2 + 1/2} J_{\nu}'(x^{1/2}) \, H \big(t^{\alpha/2} J_{\nu}(t^{1/2}) f(t) \big)(x), \\ W_{4,n} f(x) &= 2^{-1} x^{-\alpha/2} J_{\nu}(x^{1/2}) \, H \big(t^{\alpha/2 + 1/2} J_{\nu}'(t^{1/2}) f(t) \big)(x) \end{split}$$

and $\nu = \alpha + 2n + 2$. Thus, we will show that the operators W_1 , W_2 are bounded and the operators $W_{3,n}$, $W_{4,n}$ are uniformly bounded for $n \ge 0$. The proof for the commutator $[b, S_n]$ is the same: just put [b, H] instead of H.

(I) Boundedness of the operator W_1 . From the definition, it follows that

$$||W_1 f||_{L^p(x^\alpha)} \le C ||f||_{L^p(x^\alpha)}$$

if and only if

$$||Hg||_{L^{p}(x^{\alpha-\alpha p/2+p/2}|J_{\alpha+1}(x^{1/2})|p)} \le C||g||_{L^{p}(x^{\alpha-\alpha p/2}|J_{\alpha}(x^{1/2})|-p)}.$$

Proving that there is a weight $\Phi \in A_p$ with

(1)
$$Cx^{\alpha-\alpha p/2+p/2}|J_{\alpha+1}(x^{1/2})|^p \le \Phi(x) \le Cx^{\alpha-\alpha p/2}|J_{\alpha}(x^{1/2})|^{-p}$$

will be enough. According to the bounds

$$|J_{\alpha}(x)| \le C_{\alpha} x^{\alpha}, \quad x \in (0,1),$$
$$|J_{\alpha}(x)| \le C_{\alpha} x^{-1/2}, \quad x \in (1,\infty)$$

(see, e.g., [14, III.3.1 (8), p. 40] and [14, VII.7.21 (1), p. 199]), we have

$$x^{\alpha - \alpha p/2 + p/2} |J_{\alpha+1}(x^{1/2})|^p \le \begin{cases} Cx^{\alpha + p}, & \text{if } x \in (0, 1), \\ Cx^{\alpha - \alpha p/2 + p/4}, & \text{if } x \in (1, \infty), \end{cases}$$
$$x^{\alpha - \alpha p/2} |J_{\alpha}(x^{1/2})|^{-p} \ge \begin{cases} Cx^{\alpha - \alpha p}, & \text{if } x \in (0, 1), \\ Cx^{\alpha - \alpha p/2 + p/4}, & \text{if } x \in (0, 1), \end{cases}$$

Let us try

$$\Phi(x) = \begin{cases} x^r, & \text{if } x \in (0,1), \\ x^{\alpha - \alpha p/2 + p/4}, & \text{if } x \in (1,\infty). \end{cases}$$

By (b) in Lemma 2, conditions (1) and $\Phi \in A_p$ will hold if

$$\begin{cases} \alpha - \alpha p \le r \le \alpha + p, \\ -1 < r < p - 1, \\ -1 < \alpha - \alpha p/2 + p/4 < p - 1. \end{cases}$$

The third line is equivalent to

$$\frac{2\alpha - 1}{4} p < \alpha + 1, \qquad \alpha + 1 < \frac{2\alpha + 3}{4} p,$$

and these follow from the hypothesis. For the inequalities involving r it suffices

$$\max\{-1, \alpha - \alpha p\} < \min\{p - 1, \alpha + p\}.$$

It is easy to check that this also holds, whenever $\alpha > -1$ and p > 1.

(II) Boundedness of the operator W_2 . The proof is entirely similar: we have

$$||W_2 f||_{L^p(x^\alpha)} \le C||f||_{L^p(x^\alpha)}$$

if and only if

$$||Hg||_{L^p(x^{\alpha-\alpha p/2}|J_{\alpha}(x^{1/2})|^p)} \le C||g||_{L^p(x^{\alpha-\alpha p/2-p/2}|J_{\alpha+1}(x^{1/2})|^{-p})}$$

so that we can prove that there is a weight $\Psi \in A_p$ with

(2)
$$Cx^{\alpha-\alpha p/2}|J_{\alpha}(x^{1/2})|^p \le \Psi(x) \le Cx^{\alpha-\alpha p/2-p/2}|J_{\alpha+1}(x^{1/2})|^{-p}.$$

Now we have

$$x^{\alpha - \alpha p/2} |J_{\alpha}(x^{1/2})|^{p} \leq \begin{cases} Cx^{\alpha}, & \text{if } x \in (0, 1), \\ Cx^{\alpha - \alpha p/2 - p/4}, & \text{if } x \in (1, \infty), \end{cases}$$
$$x^{\alpha - \alpha p/2 - p/2} |J_{\alpha + 1}(x^{1/2})|^{-p} \geq \begin{cases} Cx^{\alpha - \alpha p - p}, & \text{if } x \in (0, 1), \\ Cx^{\alpha - \alpha p/2 - p/4}, & \text{if } x \in (1, \infty). \end{cases}$$

Setting

$$\Psi(x) = \begin{cases} x^r, & \text{if } x \in (0,1), \\ x^{\alpha - \alpha p/2 - p/4}, & \text{if } x \in (1,\infty), \end{cases}$$

conditions (2) and $\Psi \in A_p$ will hold if

$$\left\{ \begin{array}{l} \alpha - \alpha p - p \leq r \leq \alpha, \\ -1 < r < p - 1, \\ -1 < \alpha - \alpha p/2 - p/4 < p - 1. \end{array} \right.$$

The third line is equivalent to

$$\frac{2\alpha+1}{4}\,p<\alpha+1,\qquad \alpha+1<\frac{2\alpha+5}{4}\,p,$$

and these hold, by the hypothesis. For the inequalities involving r we only need

$$\max\{-1, \alpha - \alpha p - p\} < \min\{p - 1, \alpha\}.$$

It is easy to check that this also holds, whenever $\alpha > -1$ and p > 1.

(III) Uniform boundedness of the operators $W_{3,n}$. Here,

$$||W_{3,n}f||_{L^p(x^\alpha)} \le C||f||_{L^p(x^\alpha)}$$

if and only if

$$||Hg||_{L^p(x^{\alpha-\alpha p/2+p/2}|J'_{\nu}(x^{1/2})|^p)} \le C||g||_{L^p(x^{\alpha-\alpha p/2}|J_{\nu}(x^{1/2})|^{-p})}.$$

We make now use of the bounds

$$|J_{\nu}(x)| \le Cx^{-1/4} \left[|x - \nu| + \nu^{1/3} \right]^{-1/4}, \quad \nu = \alpha + 2n + 2, \ x \in (0, \infty),$$
$$|J_{\nu}'(x)| \le Cx^{-3/4} \left[|x - \nu| + \nu^{1/3} \right]^{1/4}, \quad \nu = \alpha + 2n + 2, \ x \in (0, \infty),$$

with some universal constant C. They follow from those in [5], for instance. Therefore,

$$x^{\alpha - \alpha p/2 + p/2} |J_{\nu}'(x^{1/2})|^p \le C x^{\alpha - \alpha p/2 + p/8} \left[|x^{1/2} - \nu| + \nu^{1/3} \right]^{p/4},$$
$$x^{\alpha - \alpha p/2} |J_{\nu}(x^{1/2})|^{-p} \ge C x^{\alpha - \alpha p/2 + p/8} \left[|x^{1/2} - \nu| + \nu^{1/3} \right]^{p/4}.$$

It will be enough to prove that $\varphi_{\nu} \in A_p$ uniformly in n, with

(3)
$$\varphi_{\nu}(x) = x^{\alpha - \alpha p/2 + p/8} \left[|x^{1/2} - \nu| + \nu^{1/3} \right]^{p/4}.$$

From Lemma 1, we have

$$\varphi_{\nu}(x) \in A_p \text{ unif.} \iff \varphi_{\nu}(\nu^2 x) \in A_p \text{ unif.}$$

$$\iff x^{\alpha - \alpha p/2 + p/8} \left[|x^{1/2} - 1| + \nu^{-2/3} \right]^{p/4} \in A_p \text{ unif.}$$

$$\iff x^{\alpha - \alpha p/2 + p/8} |x^{1/2} - 1|^{p/4} + \nu^{-p/6} x^{\alpha - \alpha p/2 + p/8} \in A_p \text{ unif.},$$

where the last equivalence follows from

$$\left[|x^{1/2} - 1| + \nu^{-2/3}\right]^{p/4} \sim |x^{1/2} - 1|^{p/4} + \nu^{-p/6},$$

i.e., the ratio of both terms is bounded below and above by two positive constants not depending on n or x. Now, again by Lemma 1, proving that $x^{\alpha-\alpha p/2+p/8} \in A_p$ and $x^{\alpha-\alpha p/2+p/8}|x^{1/2}-1|^{p/4} \in A_p$ will suffice. According to Lemma 2,

$$\begin{cases} x^{\alpha - \alpha p/2 + p/8} \in A_p \\ x^{\alpha - \alpha p/2 + p/8} |x^{1/2} - 1|^{p/4} \in A_p \end{cases} \iff \begin{cases} -1 < \alpha - \alpha p/2 + p/8 < p - 1 \\ -1 < p/4 < p - 1 \\ -1 < \alpha - \alpha p/2 + p/4 < p - 1 \end{cases}$$

$$\iff \begin{cases} -1 < \alpha - \alpha p/2 + p/4 < p - 1 \\ 4/3 < p \\ \alpha - \alpha p/2 + p/4 < p - 1 \end{cases}$$

$$\iff \begin{cases} \frac{2\alpha - 1/2}{4} p < \alpha + 1 < \frac{2\alpha + 3}{4} p \\ 4/3 < p \end{cases}$$

and these inequalities follow from the initial conditions.

(IV) Uniform boundedness of the operators $W_{4,n}$. Finally,

$$||W_{4,n}f||_{L^p(x^\alpha)} \le C||f||_{L^p(x^\alpha)}$$

if and only if

$$||Hg||_{L^p(x^{\alpha-\alpha p/2}|J_\nu(x^{1/2})|^p)} \le C||g||_{L^p(x^{\alpha-\alpha p/2-p/2}|J'_\nu(x^{1/2})|^{-p})}.$$

Also,

$$x^{\alpha - \alpha p/2} |J_{\nu}(x^{1/2})|^{p} \leq C x^{\alpha - \alpha p/2 - p/8} \left[|x^{1/2} - \nu| + \nu^{1/3} \right]^{-p/4},$$
$$x^{\alpha - \alpha p/2 - p/2} |J_{\nu}'(x^{1/2})|^{-p} \geq C x^{\alpha - \alpha p/2 - p/8} \left[|x^{1/2} - \nu| + \nu^{1/3} \right]^{-p/4},$$

so let us put

(4)
$$\psi_{\nu}(x) = x^{\alpha - \alpha p/2 - p/8} \left[|x^{1/2} - \nu| + \nu^{1/3} \right]^{-p/4}$$

and show that $\psi_{\nu} \in A_p$ uniformly in n. Indeed,

$$\psi_{\nu}(x) \in A_p \text{ unif.} \iff \psi_{\nu}(\nu^2 x) \in A_p \text{ unif.}$$

$$\iff x^{\alpha - \alpha p/2 - p/8} \left[|x^{1/2} - 1| + \nu^{-2/3} \right]^{-p/4} \in A_p \text{ unif.}$$

and

$$\begin{split} \left(x^{\alpha-\alpha p/2-p/8} \left[|x^{1/2}-1| + \nu^{-2/3} \right]^{-p/4} \right)^{-1} \\ &\sim x^{-\alpha+\alpha p/2+p/8} \left[|x^{1/2}-1|^{p/4} + \nu^{-p/6} \right] \\ &= \left[x^{\alpha-\alpha p/2-p/8} |x^{1/2}-1|^{-p/4} \right]^{-1} + \left[\nu^{p/6} x^{\alpha-\alpha p/2-p/8} \right]^{-1} \end{split}$$

so that proving that $x^{\alpha-\alpha p/2-p/8}|x^{1/2}-1|^{-p/4}\in A_p$ and $x^{\alpha-\alpha p/2-p/8}\in A_p$ will suffice. But

$$\begin{cases} x^{\alpha - \alpha p/2 - p/8} \in A_p \\ x^{\alpha - \alpha p/2 - p/8} |x^{1/2} - 1|^{-p/4} \in A_p \end{cases} \iff \begin{cases} -1 < \alpha - \alpha p/2 - p/8 < p - 1 \\ -1 < -p/4 < p - 1 \\ -1 < \alpha - \alpha p/2 - p/4 < p - 1 \end{cases}$$

$$\iff \begin{cases} \alpha - \alpha p/2 - p/8
$$\iff \begin{cases} \frac{2\alpha + 1}{4} p < \alpha + 1 < \frac{2\alpha + 9/2}{4} p \\ p < 4 \end{cases}$$$$

and these inequalities hold by the hypothesis. The proof of Theorem 1 is now complete. $\ \square$

Proof of Theorem 2. For each $n \geq 0$ and $b \in BMO$, $T_n(b): L^p(x^{\alpha}) \longrightarrow L^p(x^{\alpha})$ is bounded if and only if $S_n: L^p(e^{pb}x^{\alpha}) \longrightarrow L^p(e^{pb}x^{\alpha})$ is bounded, and both operators have the same norm. Thus, we can follow the proof of Theorem 1 and conclude that conditions (1), (2), (3) and (4), i.e.,

$$Cx^{\alpha-\alpha p/2+p/2}|J_{\alpha+1}(x^{1/2})|^{p} \leq \Phi(x) \leq Cx^{\alpha-\alpha p/2}|J_{\alpha}(x^{1/2})|^{-p},$$

$$Cx^{\alpha-\alpha p/2}|J_{\alpha}(x^{1/2})|^{p} \leq \Psi(x) \leq Cx^{\alpha-\alpha p/2-p/2}|J_{\alpha+1}(x^{1/2})|^{-p},$$

$$\varphi_{\nu}(x) = x^{\alpha-\alpha p/2+p/8} \left[|x^{1/2} - \nu| + \nu^{1/3} \right]^{p/4},$$

$$\psi_{\nu}(x) = x^{\alpha-\alpha p/2-p/8} \left[|x^{1/2} - \nu| + \nu^{1/3} \right]^{-p/4},$$

are still sufficient, if we require now $e^{pb}\Phi, e^{pb}\Psi, e^{pb}\varphi_{\nu}, e^{pb}\psi_{\nu} \in A_p$ uniformly in ν . The proof of Theorem 1, together with next lemma, finish the proof of Theorem 2. \square

Lemma 4. Let $1 . For each <math>\phi \in A_p$, there exists some $\delta > 0$ such that $e^{pb}\phi \in A_p$ whenever $b \in BMO$ with $||b||_{BMO} < \delta$. Moreover, δ and the A_p constant of $e^{pb}\phi$ depend only on the A_p constant of ϕ .

Remark. Again, statements like " δ depends only on the A_p constant of ϕ " should be understood as: given a constant C > 0 which verifies the A_p condition for ϕ , some δ can be chosen depending only on C.

Proof. If $\phi \in A_p$, there exists some $\varepsilon > 1$ such that $\phi^{\varepsilon} \in A_p$; moreover, ε and the A_p constant of ϕ^{ε} depend only on the A_p constant of ϕ [6, Theorem IV.2.7, p. 399]. Take now $1/\varepsilon + 1/\varepsilon' = 1$. There exists some $\delta > 0$ such that

$$||b||_{\text{BMO}} < \delta \Longrightarrow e^{p\varepsilon'b} \in A_p;$$

here, δ and the A_p constant of $e^{p\varepsilon'b}$ depend only on ε' [6, p. 409]. This, together with $\phi^{\varepsilon} \in A_p$ and Hölder's inequality, imply $e^{pb}\phi \in A_p$ with an A_p constant depending only on the A_p constant of ϕ . \square

References

- 1. A. I. Aptekarev, A. Branquinho and F. Marcellán, Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation, J. Comput. Appl. Math. 78 (1997), 139–160.
- 2. S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1985), 103–122.
- 3. R. R. Coifman and M. A. M. Murray, *Uniform analyticity of orthogonal projections*, Trans. Amer. Math. Soc. **312** (1989), 779–817.
- 4. R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611–635.
- 5. A. Córdoba, The disc multiplier, Duke Math. J. 58 (1989), 21–29.
- J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985.
- 7. F. Marcellán, J. S. Dehesa and A. Ronveaux, On orthogonal polynomials with perturbed recurrence relations, J. Comput. Appl. Math. 30 (1990), 203–212.
- 8. C. J. Neugebauer, Inserting A_p weights, Proc. Amer. Math. Soc. 87 (1983), 644–648.
- 9. P. Nevai and W. Van Assche, Compact perturbations of orthogonal polynomials, Pacific J. Math. 153 (1992), 163–184.
- 10. C. Segovia and J. L. Torrea, *Vector-valued commutators and applications*, Indiana Univ. Math. J. **38** (1989), 959–971.
- 11. _____, Weighted inequalities for commutators of fractional and singular integrals, Publicacions Matemàtiques **35** (1991), 209–235.
- 12. _____, Higher order commutators for vector-valued Calderón-Zygmund operators, Trans. Amer. Math. Soc. **336** (1993), 537–556.
- 13. J. L. Varona, Fourier series of functions whose Hankel transform is supported on [0, 1], Constr. Approx. 10 (1994), 65–75.
- 14. G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944 (reprinted 1995).
- José J. Guadalupe. Dpto. de Matemáticas y Computación. Universidad de La Rioja. 26004 Logroño. Spain.

Mario Pérez. Dpto. de Matemáticas. Universidad de Zaragoza. 50009 Zaragoza. Spain.

E-mail address: mperez@posta.unizar.es

Juan L. Varona. Dpto. de Matemáticas y Computación. Universidad de La Rioja. 26004 Logroño. Spain.

 $E ext{-}mail\ address: jvarona@dmc.unirioja.es}$