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Abstract. In this paper we study weighted norm inequalities for the commutators

[b, Sn] where b is a BMO function and Sn denotes the n-th partial sum of the Fourier
series relative to a system of orthogonal polynomials on [−1, 1] with respect to general

weights. Results about generalized Jacobi and Bessel Fourier series are obtained.

0. Introduction.

Given a linear operator T acting on functions and a function b, and denoting
by Mb the operator of pointwise multiplication by b(x), the commutator of this
operator and T is defined by

[b, T ]f(x) = [Mb, T ]f(x) = b(x)Tf(x)− T (bf)(x).

The first results on this commutator were obtained by Coifman, Rochberg and
Weiss [CRW]. They proved that if H is the classical Hilbert transform (and also
more general singular integrals) and 1 < p < ∞, then [b,H] is bounded in Lp(R)
if and only if b ∈ BMO(R). The boundedness of the commutator has been studied
among others by Bloom [Bl] involving some weights and where b belongs to an ap-
propriate weighted BMO space and by Segovia and Torrea ([ST 1]), who obtained a
vector-valued commutator theorem for operators T including the Hilbert transform,
and whose results apply to the Carleson operator, Littlewood-Paley sums, U.M.D.
Banach spaces, Parabolic Differential Equations and Approximate Identities (for
further references see [ST 2], [ST 3]).

Frequently, the boundedness of the commutator is related to the analytic be-
haviour of some operator. Let (X, dµ) be a σ-finite measure space and B a real
Banach function space on (X, dµ). Consider the partial sums of Fourier series rel-
ative to the orthonormal polynomials on L2(X, dµ), that is, for f ∈ L2(X, dµ) and
x ∈ X,

Snf(x) =
∫

X

Kn(x, y)f(y) dµ(y)

where Kn(x, y) is the corresponding kernel. Let B be the complexification of B
and, for each b ∈ B, define Tn(b) = MebSnMe−b . Then

Tn(b)(f)(x) =
∫

X

exp[b(x)− b(y)]Kn(x, y)f(y) dµ(y).
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The boundedness of the operators Tn(b) is equivalent to a weighted norm inequality
for the operators Sn.

On the other hand, for this particular sequence {Tn}n∈N of operator valued
functions, the uniform boundedness in a neighbourhood of 0 ∈ B implies the
Gâteaux-differentiability (see [CM], [L]) and the Gâteaux-differential of Tn at 0
in the direction b ∈ B is

d

dz
Tn(zb)

∣∣
z=0

= [b, Sn].

In particular, these ideas (which came out in [CRW]) show that certain weighted
norm inequalities for a basic operator T give information about the commutator
[b, T ].

The purpose of this paper is to study the uniform boundedness of the commutator
of the partial sums of Fourier series with respect to a class of weights which includes,
as a particular case, generalized Jacobi Fourier series.

In a first step, we find necessary conditions for the uniform boundedness of
the operators [b, Sn] in Lp(dµ); also, for the uniform weak boundedness [b, Sn] :
Lp(dµ) −→ Lp,∞(dµ) or the restricted weak boundedness [b, Sn] : Lp,1(dµ) −→
Lp,∞(dµ).

Here, Lp,r(dµ) stands for the classical Lorentz space of all measurable functions
f satisfying

‖f‖Lp,r(dµ) =
(
r

p

∫ ∞

0

[
t1/pf∗(t)

]r dt

t

)1/r

<∞ (1 ≤ p <∞, 1 ≤ r <∞),

‖f‖Lp,∞(dµ) = ‖f‖Lp
∗(dµ) = sup

t>0
t1/pf∗(t) <∞ (1 ≤ p ≤ ∞),

where f∗ denotes the nonincreasing rearrangement of f . We refer the reader to
[SW] for further information on these topics.

In a second step, we find sufficient conditions for the uniform boundedness of
[b, Sn] in Lp(dµ), which, in many cases, coincide with the necessary conditions
previously found. We are concerned with the case dµ = wdx, where w is a positive
weight function.

We shall distinguish two cases: firstly, polynomial systems with uniform bounds
(the class H defined below), where we follow the ideas of Coifman, Rochberg and
Weiss. This is the case of Jacobi weights (1−x)α(1+x)β with α, β ≥ −1/2. Fourier
Bessel series also fall in this scheme.

Next, we consider a more general setting (the class H) where these techniques do
not work well and a more detailed examination of the kernels is required. Here, we
reduce the problem to the boundedness of [H, b] (where H is the Hilbert transform)
in weighted Lp spaces by inserting Ap weights.

We shall need weighted estimates for the partial sums of the Fourier series. The
problem of finding conditions on weights u, v such that

(1) ‖uSnf‖Lp(w) ≤ C‖vf‖Lp(w) ∀n ≥ 0,∀f ∈ Lp(vpw)

has been solved only in some particular cases. For instance, Badkov gives in [B]
necessary and sufficient conditions for (1) when u = v and both u, w are generalized
Jacobi weights; earlier results can be found in [P 1], [P 2], [W], [M 1]. For the two
weight case, see [GPV 1], [GPRV 1], [GPRV 2]. Hermite and Laguerre series have
been considered by Askey and Wainger ([AW]) and Muckenhoupt ([M 2]).
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Bessel series have been studied by Wing [W], Benedek-Panzone [BP 1], [BP 2]
and the authors [GPRV 3].

In this paper we shall see that the boundedness of the commutator for this type
of series holds when the partial sums of the Fourier series are bounded.

1. Notations and main results.

Let dµ(x) = w(x)dx, with w ∈ L1(dx) and w > 0 a.e. in [−1, 1]. Let {pn}n≥0

be the sequence of orthonormal polynomials with respect to µ.
For f ∈ L1(w), let Snf denote the n-th partial sum of the Fourier expansion of

f in {pn}n≥0, i.e.,

Snf(x) =
∫

R
f(y)Kn(x, y)w(y)dy, Kn(x, y) =

n∑
k=0

pk(x)pk(y)

Throughout this paper, C will denote a constant, independent of n, f , but
possibly different from line to line.

Let 1 < p <∞ and −∞ ≤ a < b ≤ ∞. The class Ap(a, b) consists of those pairs
of weights (u, v) such that(

1
|I|

∫
I

u(x) dx
) (

1
|I|

∫
I

v(x)−1/(p−1) dx

)p−1

≤ C

where I ranges over all finite intervals I ⊆ (a, b) and |I| stands for the length of the
interval I. A weight u is said to belong to Ap if (u, u) ∈ Ap. We refer the reader to
[GR] for further details on Ap classes.

We say that (u, v) ∈ Aδ
p(a, b) for δ > 1 if (uδ, vδ) ∈ Ap(a, b). With this definition

we mean that a power of u and v greater than 1 belongs to Ap. We use the same
exponent δ although it can change in each occurrence.

We shall take B the space of functions of bounded mean oscillation (BMO) on
[−1, 1]. If b ∈ L1(dx), the mean of b on an interval I is

bI =
1
|I|

∫
I

b(x) dx.

The function b is said to have bounded mean oscillation on [−1, 1] if

‖b‖∗ = sup
I

1
|I|

∫
I

|b(θ)− bI | dθ

is finite, where the supremum is taken over all intervals I ⊆ [−1, 1]. The space
BMO of real-valued functions (modulo constants) having bounded mean oscillation
on [−1, 1] is a Banach space with ‖ · ‖∗ as its norm.

Theorem 1. Let w be a weight on [−1, 1], w > 0 a.e., {Sn}n≥0 the Fourier series
relative to dµ(x) = w(x)dx, U, V two weights, U, V −1 > 0 a.e. Let b ∈ BMO,
b /∈ L∞ and suppose that there exists some constant C > 0 with

‖U [b, Sn](V −1f)‖Lp,r(w) ≤ C‖f‖Lq,s(w)
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for each n ≥ 0 and f ∈ Lq,s(w) (where 1 < p < ∞, 1 < q < ∞; either r = p or
r = ∞; either s = q or s = 1). Then,

‖bUw−1/2(1− x2)−1/4‖Lp,r(w) <∞,

and
‖bV −1w−1/2(1− x2)−1/4‖Lq′,s′ (w) <∞.

Let w(x) be a weight function on [−1, 1], pn(x) the corresponding orthonormal
polynomials and qn(x) the orthonormal polynomials with respect to (1− x2)w(x).
We say that w belongs to the class H of weights if it satisfies

i) w(x) > 0 a.e.,
ii) |pn(x)| ≤ Cw(x)−1/2(1− x2)−1/4,
iii) |qn(x)| ≤ Cw(x)−1/2(1− x2)−3/4.

The class H contains the generalized Jacobi weights

w(x) = ϕ(x)(1− x)α(1 + x)β
N∏

i=1

|x− xi|γi

where α, β ≥ −1/2, γi ≥ 0 (i = 1, 2, . . . , N), −1 < x1 < · · · < xn < 1, ϕ is positive
and continuous on [−1, 1] and ρ(δ)/δ ∈ L1(0, 2), ρ being the modulus of continuity
of ϕ (see, e. g., [B]).

Theorem 2. Let 1 < p < ∞, w ∈ H, U and V weights on [−1, 1] and b ∈ BMO.
If (

(1− x2)−p/4Upw1−p/2, (1− x2)−p/4V pw1−p/2
)
∈ Aδ

p(−1, 1),

(2)
(
(1− x2)p/4Upw1−p/2, (1− x2)p/4V pw1−p/2

)
∈ Aδ

p(−1, 1)

for some δ > 1 (δ = 1 when U = V ), then the commutator [b, Sn] is bounded from
Lp(V pw) into Lp(Upw) uniformly in n.

For generalized Jacobi weights with α, β > −1, γi ≥ 0, the orthogonal polyno-
mials do not have uniform bounds. We extend the class H of weights and say that
a weight w belongs to the class H if w(x) = (1− x)α(1 + x)βw1(x), where

i) w(x) > 0 a.e. and there exist ε > 0 and positive constants C1 and C2 such
that C1 < w1(x) < C2 for all x ∈ (1− ε, 1) and x ∈ (−1,−1 + ε),

ii) |pn(x)| ≤ C(1− x+ an)−(α/2+1/4)(1 + x+ bn)−(β/2+1/4)w1(x)−1/2,
iii) |qn(x)| ≤ C(1 − x + an)−(α/2+3/4)(1 + x + bn)−(β/2+3/4)w1(x)−1/2, where

{an} and {bn} are positive sequences such that lim
n
an = lim

n
bn = 0.

Theorem 3. Let 1 < p < ∞, w ∈ H, U(x) = (1 − x)a(1 + x)bu(x), V (x) =
(1−x)A(1+x)Bv(x) with u > 0 a.e., v > 0 a.e. and such that C1 < u(x), v(x) < C2

for x ∈ (1− ε, 1) and x ∈ (−1,−1 + ε). If b ∈ BMO,∣∣∣∣(α+ 1)
(

1
p
− 1

2

)
+
a+A

2

∣∣∣∣ < a−A

2
+ min

{
1
4
,
α+ 1

2

}
, A ≤ a,
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(

1
p
− 1

2

)
+
b+B

2

∣∣∣∣ < b−B

2
+ min

{
1
4
,
β + 1

2

}
, B ≤ b

and (
upw

1−p/2
1 , vpw

1−p/2
1

)
∈ Aδ

p(−1, 1)

for some δ > 1 (δ = 1 when u = v), then the commutator [b, Sn] is bounded from
Lp(V pw) into Lp(Upw) uniformly in n.

As a consequence of these results for generalized Jacobi weights, we obtain

Corollary 1. Let 1 < p <∞,

w(x) = (1− x)α(1 + x)β
N∏

i=1

|x− xi|γi

with xi ∈ (−1, 1), xi 6= xj ∀i 6= j, α, β > −1, γi ≥ 0 ∀i and

U(x) = (1− x)a(1 + x)b
N∏

i=1

|x− xi|gi .

Then the commutator [b, Sn] is uniformly bounded from Lp(Upw) into Lp(Upw) for
each b ∈ BMO if and only if

(3)
∣∣∣∣a+ (α+ 1)

(
1
p
− 1

2

)∣∣∣∣ < min
{

1
4
,
α+ 1

2

}

(4)
∣∣∣∣b+ (β + 1)

(
1
p
− 1

2

)∣∣∣∣ < min
{

1
4
,
β + 1

2

}
and

(5)
∣∣∣∣gi + (γi + 1)

(
1
p
− 1

2

)∣∣∣∣ < min
{

1
2
,
γi + 1

2

}
, i = 1, 2, . . . , N.

Corollary 2. With the same notation, inequalities (3), (4), (5) are also necessary
for the weak and restricted weak (p, p)−boundedness of the conmutator [b, Sn] for
each b ∈ BMO.

Remark. Notice that, in contrast to this situation, the operators Sn are of restricted
weak type when w is a Jacobi weight and p is an endpoint of the open interval
determined by (3), (4), (5) (see [GPV 2]).

2. Proofs of the theorems.

Proof of Theorem 1. For each 0 < L < K <∞, let us define

P(L) = {x ∈ [−1, 1]; |b(x)| < L},

G(K) = {x ∈ [−1, 1]; K < |b(x)|}.
Then, for each x ∈ G(K), y ∈ P(L) we have:

∗) sgn (b(x)− b(y)) = sgn b(x);

∗) |b(y)| < L <
L

K
|b(x)|, so that

|b(x)− b(y)| ≥ |b(x)| − |b(y)| > K − L

K
|b(x)|.
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From the hypothesis it follows

‖u[b, Sn − Sn−1](v−1f)‖Lp,r(w) ≤ C‖f‖Lq,s(w);

[b, Sn − Sn−1](v−1f)(x) = pn(x)
∫ 1

−1

[b(x)− b(y)]pn(y)v(y)−1f(y)w(y)dy,

where {pn} are the orthonormal polynomials with respect to w(x)dx. Now, take
0 < L < K <∞ and

f(y) = [sgn pn(y)]χP(L)(y)|h(y)|,

h being any function in Lq,s(w). Here and in the sequel, χA denotes the character-
istic function on a measurable set A. For each x ∈ G(K),∣∣[b, Sn − Sn−1](v−1f)(x)

∣∣
= |−pn(x) sgn b(x)|

∫ 1

−1

|b(y)− b(x)| |pn(y)| v(y)−1χP(L)(y) |h(y)| w(y)dy

≥ K − L

K
|pn(x)| |b(x)| ‖pnv

−1χP(L)h‖L1(w).

Thus,
‖u[b, Sn − Sn−1](v−1f)‖Lp,r(w)

≥ K − L

K
‖χG(K)bupn‖Lp,r(w) ‖pnv

−1χP(L)h‖L1(w)

and therefore

K − L

K
‖χG(K)bupn‖Lp,r(w) ‖pnv

−1χP(L)h‖L1(w) ≤ C‖f‖Lq,s(w) ≤ C‖h‖Lq,s(w)

for each h ∈ Lq,s(w). By duality,

K − L

K
‖χG(K)bupn‖Lp,r(w) ‖pnv

−1χP(L)‖Lq′,s′ (w) ≤ C.

Also,

(6)
K − L

KL
‖χG(K)bupn‖Lp,r(w) ‖χP(L)bv

−1pn‖Lq′,s′ (w) ≤ C.

In a similar way, taking

f(y) = [sgn b(y)] sgn pn(y)χG(K)(y)|h(y)|,

and x ∈ P(L), we obtain

(7)
K − L

KL
‖χP(L)bupn‖Lp,r(w) ‖χG(K)bv

−1pn‖Lq′,s′ (w) ≤ C.



COMMUTATORS OF ORTHOGONAL FOURIER SERIES 7

Now, by a result of Máté, Nevai and Totik (see [MNT 2]),

C‖gw−1/2(1− x2)−1/4‖Lp(w) ≤ lim inf
n

‖gpn‖Lp(w)

for any measurable function g. A similar property holds in Lp,∞(w) (see [GPV 2]).
Then, taking lim inf in (6) and (7) we have

‖χG(K)buw
−1/2(1− x2)−1/4‖Lp,r(w) ‖χP(L)bv

−1w−1/2(1− x2)−1/4‖Lq′,s′ (w) <∞,

‖χP(L)buw
−1/2(1− x2)−1/4‖Lp,r(w) ‖χG(K)bv

−1w−1/2(1− x2)−1/4‖Lq′,s′ (w) <∞

for each 0 < L < K < ∞. Since b /∈ L∞ we have χG(K)b 6= 0 for every K > 0 and
there exists some L0 > 0 such that χP(L)b 6= 0 for every L > L0. Now, u, v−1 > 0
almost everywhere, so that for L0 < L < K < ∞ the above norms cannot vanish
and as a consequence they cannot be ∞ as well. This proves the theorem. �

Proof of Theorem 2. Write

u(x) = (1− x2)−p/4U(x)pw(x)1−p/2, v(x) = (1− x2)−p/4V (x)pw(x)1−p/2,

u(x) = (1− x2)p/4U(x)pw(x)1−p/2, v(x) = (1− x2)p/4V (x)pw(x)1−p/2.

The following lemmas will be proved below.

Lemma 1. Assume that w ∈ H and let U and V be as above and satisfying

(u, v) ∈ Aδ
p and (u, v) ∈ Aδ

p

for some δ > 1. Then
‖USnf‖p,w ≤ C‖V f‖p,w

where C depends only on the Ap constants of (u, v) and (u, v).

Lemma 2. Let (u1, v1) ∈ Aδ
p for some δ > 1 and b ∈ BMO. Then, there exist

δ > 1 and γ > 0 such that (esbu1, e
sbv1) ∈ Aδ

p for all s with |s| < γ, and the Ap

constant is independent of s.

Now, for a fixed function b ∈ BMO and n ∈ N, put

Tzf = ezbSn(e−zbf), z ∈ C.

Let us show the analyticity of this operator-valued function. From the hypothesis
and Lemma 2 it follows

(esbu, esbv) ∈ Aδ
p and (esbu, esbv) ∈ Aδ

p

for all s such that |s| < γ. Then, by Lemma 1, we have

‖esbUSnf‖p,w ≤ C‖esbV f‖p,w.

Therefore, for |z| < γ
‖UTzf‖p,w ≤ C‖V f‖p,w.
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Then, for |z| < γ, Tz ∈ L(Lp(V pw), Lp(Upw)). Moreover, the constant C in the
last inequality is independent of z, |z| < γ. So, the application Tz is bounded (with
the operator norm) in |z| < γ. Then, in order to prove the analyticity in |z| < γ it
is enough to show that the mapping z 7→ 〈Tzf, g〉 is holomorphic for every f in a
dense subspace of Lp(V pw) and every g in a dense subspace of the dual of Lp(Upw)
(see [K, p. 365]).

If f , g are bounded functions we can differentiate the expression

〈Tzf, g〉 =
∫ 1

−1

∫ 1

−1

ez(b(x)−b(y))Kn(x, y)f(x)g(y)U(x)pw(x)w(y) dx dy

by differentiating under the integral sign, since the derivative of the integrand can
be dominated by

Ceγ|b(x)−b(y)||b(x)− b(y)| |Kn(x, y)|U(x)pw(x)w(y)

which is integrable on [−1, 1] × [−1, 1]. This follows from a suitable handling of
the hypothesis (integrability conditions which are implicit in the Aδ

p conditions (2),
b ∈ BMO and w ∈ H).

Besides, this process shows that

d

dz
Tz

∣∣
z=0

= [b, Sn].

Therefore, [b, Sn] is a bounded operator from Lp(V pw) into Lp(Upw). Moreover,
by Cauchy’s integral theory, the norm of [b, Sn] is controlled by the maximum of
the norms of Tz (which are independent of n) when z ranges in a circle and hence
the norms of [b, Sn] are independent of n. This concludes the proof of Theorem
2. �

Proof of Lemma 1.
The main idea of this proof comes out in [P 1] (see also [GPV 1]). We use

Pollard’s decomposition of the kernels Kn(x, y),

Kn(x, y) = rnT1,n(x, y) + snT2,n(x, y) + snT3,n(x, y)

where
T1,n(x, y) = pn+1(x)pn+1(y),

T2,n(x, y) = (1− y2)
pn+1(x)qn(y)

x− y
,

T3,n(x, y) = (1− x2)
pn+1(y)qn(x)

y − x

and {rn}, {sn} are bounded sequences. In fact, for any measure dµ on [−1, 1] with
µ′ > 0 a.e.,

lim
n
rn = −1/2, lim

n
sn = 1/2

(this can be deduced from [P 1] and either [R] or [MNT 1]). Therefore, we can
write

Snf = rnW1,nf + snW2,nf − snW3,nf
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where

W1,nf(x) = pn+1(x)
∫ 1

−1

pn+1fw,

W2,nf(x) = pn+1(x)H((1− y2)qnfw, x)

and
W3,nf(x) = (1− x2)qn(x)H(pn+1fw, x),

H being the Hilbert transform on the interval [−1, 1]. Thus, the study of Sn can
be reduced to that of Wi,n (i = 1, 2, 3).
i = 1): By using the uniform estimates for pn and qn and Hölder’s inequality

with 1/p+ 1/p′ = 1, we have

‖UW1,nf‖p,w = ‖Upn+1‖p,w

∣∣∣∣∫ 1

−1

pn+1(y)f(y)w(y) dy
∣∣∣∣

≤ C‖U(x)w(x)−1/2(1− x2)−1/4‖p,w‖V (x)−1w(x)−1/2(1− x2)−1/4‖p′,w‖V f‖p,w.

From the Ap conditions in the hypothesis it follows

U(x)pw(x)1−p/2(1− x2)−p/4 ∈ L1(dx)

and
(V (x)pw(x)1−p/2(1− x2)p/4)−p′/p ∈ L1(dx),

that is,
‖U(x)w(x)−1/2(1− x2)−1/4‖p,w <∞

and
‖V (x)−1w(x)−1/2(1− x2)−1/4‖p′,w <∞.

Therefore
‖UW1,nf‖p,w ≤ C‖V f‖p,w.

i = 2): Since(
(1− x2)−p/4w1−p/2Up, (1− x2)−p/4w1−p/2V p

)
∈ Aδ

p(−1, 1)

for some δ > 1, the Hilbert transform is bounded from Lp((1− x2)−p/4w1−p/2V p)
into Lp((1− x2)−p/4w1−p/2Up) (it is a consequence of Theorem 3 in [N]).

Write g(y) = (1− y2)qn(y)f(y)w(y). Then

‖UW2,nf‖p,w = ‖Upn+1Hg‖p,w

≤ C‖U(1− x2)−1/4w−1/2Hg‖p,w

≤ C‖V (1− x2)−1/4w−1/2g‖p,w ≤ C‖V f‖p,w.

i = 3): It can be done in a similar way using the second Aδ
p-condition. �

Proof of Lemma 2.
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For any interval I, write

I(f) =
1
|I|

∫
I

f(x) dx.

The condition (u1, v1) ∈ Aδ
p can be written

I(uδ
1)I(v

−δ/(p−1)
1 )p−1 ≤ C for each interval.

It is known [N] that there exists δ > 1 such that (uδ
1, v

δ
1) ∈ Ap if and only if there

is some σ ∈ Ap with C1u1 ≤ σ ≤ C2v1, where δ and the Ap constants depend on
each other. In order to prove that (esbu1, e

sbv1) ∈ Aδ
p it is enough to show that

esbσ ∈ Ap uniformly in s.
Since σ ∈ Ap, by the reverse Hölder’s inequality there exists ε > 1 such that

σε ∈ Ap. As b ∈ BMO (and also −b ∈ BMO), by the John-Nirenberg inequality
there exists λ > 0 small enough such that esb ∈ Ap for |s| < λ uniformly in s, that
is, with an Ap constant independent of s (see [GR]).

By Hölder’s inequality with 1/ε+ 1/ε′ = 1,

I(esbσ) ≤ I(σε)1/εI(eε′sb)1/ε′

and
I((esbσ)−1/(p−1)) ≤ I(σ−ε/(p−1))1/εI(e−ε′sb/(p−1))1/ε′ .

Therefore
I(esbσ)I((esbσ)−1/(p−1))p−1

≤
[
I(σε)I(σ−ε/(p−1))

]1/ε[
I(eε′sb)I(e−ε′sb/(p−1)

]1/ε′ ≤ C

for every s such that |s| < λ/ε′. �

Lemma 3. Let R,S ∈ R, an > 0, lim
n
an = 0, t ∈ [−1, 1]. Then:

a) |x− t|R(|x− t|+ an)S ∈ Ap(−1, 1) uniformly in n if and only if −1 < R <
p− 1, −1 < R+ S < p− 1;

b) for a product of terms of this type, these conditions are applied separately
to each factor.

For the proof of this lemma, see [GPV 2].

Proof of Theorem 3.
Coming back again to Pollard’s decomposition we have

[b, Sn] =
3∑

i=1

[b,Wi,n]

where

[b,W1,n]f = bpn+1

∫ 1

−1

pn+1fw − pn+1

∫ 1

−1

pn+1fbw,

[b,W2,n]f = pn+1[b,H]((1− y2)qnfw),

[b,W3,n]f = (1− x2)qn[b,H](pn+1fw).



COMMUTATORS OF ORTHOGONAL FOURIER SERIES 11

We consider each operator separately.
i) Boundedness of [b,W2,n].
Write

λn = Up|pn+1|pw and µn = V p|qn|−p(1− x2)−pw1−p.

Now
‖U [b,W2,n]f‖p,w ≤ C‖V f‖p,w

if and only if
‖[b,H]g‖p,λn

≤ C‖g‖p,µn

with some constant C independent of n. In order to prove this last inequality, the
idea consists in inserting weights φn, that is, finding functions φn such that

C1λn ≤ φn ≤ C2µn and φn ∈ Ap uniformly ,

that is, with an Ap-constant independent of n. By using the estimates for pn and
qn we have

λn ≤ Cupw
1− p

2
1 (1− x)ap+α(1 + x)bp+β(1− x+ an)−p( α

2 + 1
4 )(1 + x+ bn)−p( β

2 + 1
4 ),

µn ≥ Cvpw
1− p

2
1 (1− x)Ap−α+α(1−p)(1 + x)Bp−β+β(1−p)

×(1− x+ an)p( α
2 + 3

4 )(1 + x+ bn)p( β
2 + 3

4 ).

It is not difficult to see, from the hypothesis, that we can take a real number R
such that

Ap− p+ α(1− p) ≤ R ≤ ap+ α,

−1 < R < p− 1

and choose S such that

Ap− p+ α(1− p) + p(α/2 + 3/4) ≤ R+ S ≤ ap+ α− p(α/2 + 1/4),

−1 < R+ S < p− 1.

Now, it is a straightforward calculation to verify that

C(1− x)ap+α(1− x+ an)−p( α
2 + 1

4 ) ≤ (1− x)R(1− x+ an)S

≤ C(1− x)Ap−p+α(1−p)(1− x+ an)p( α
2 + 3

4 ).

We can also take R̃ and S̃ such that

Bp− p+ β(1− p) ≤ R̃ ≤ bp+ β,

Bp− p+ β(1− p) + p(β/2 + 3/4) ≤ R̃+ S̃ ≤ bp+ β − p(β/2 + 1/4),

−1 < R̃ < p− 1,

−1 < R̃+ S̃ < p− 1,
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so that
C(1 + x)bp+β(1 + x+ bn)−p( β

2 + 1
4 ) ≤ (1 + x) eR(1 + x+ bn)eS

≤ C(1 + x)Bp−p+β(1−p)(1 + x+ bn)p( β
2 + 3

4 ).

If we write
αn(x) = (1− x)R(1− x+ an)S ,

βn(x) = (1 + x) eR(1 + x+ bn)eS
we have

Cλn ≤ upw
1−p/2
1 αnβn,

vpw
1−p/2
1 αnβn ≤ Cµn.

As
(upw

1−p/2
1 , vpw

1−p/2
1 ) ∈ Aδ

p

then, there exists a positive function φ satisfying

C1u
pw

1−p/2
1 ≤ φ ≤ C2v

pw
1−p/2
1 and φpw

1−p/2
1 ∈ Ap.

Besides, there are positive constants C1 and C2 such that

C1 ≤ φ(x) ≤ C2 for all x ∈ (−1,−1 + ε) and x ∈ (1− ε, 1).

On the other hand, having in mind that an > 0, lim
n
an = 0 and

−1 < R < p− 1, −1 < R+ S < p− 1,

from Lemma 3 it follows

αn = (1− x)R(1− x+ an)S ∈ Ap uniformly.

Also, it is clear that αn is bounded below and above by positive constants on the
interval [−1, 1 − ε]. In a similar way we obtain that βn ∈ Ap uniformly and there
exist positive constants C1 and C2 such that C1 < β(x) < C2 for all x ∈ [−1+ ε, 1].
Then, splitting in pieces the integrals appearing in the Ap condition it can be shown
that

φn = φpw
1−p/2
1 αnβn ∈ Ap uniformly.

Since the commutator of the Hilbert transform with a function b ∈ BMO is bounded
with Ap weights (see [Bl]), then

‖[b,H]g‖p,λn
≤ C‖[b,H]g‖p,φn

≤ C1‖g‖p,φn
≤ C2‖g‖p,µn

and the boundedness of [b,W2,n] follows.
ii) Boundedness of [b,W3,n].
We can prove that there are positive constants C1, C2 and weights ψn uniformly

in Ap, such that

C1U(x)p(1− x2)p|qn(x)|pw(x) ≤ ψn(x) ≤ C2V (x)p|pn+1(x)|−pw(x)1−p,
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ψn ∈ Ap uniformly

and we proceed like before.
iii) Boundedness of [b,W1,n].

[b,W1,n]f = Anf +Bnf,

where

Anf = (b− bQ)pn+1

∫ 1

−1

pn+1fw,

Bnf = pn+1

∫ 1

−1

(b− bQ)pn+1fw

and Q stands for the interval [−1, 1].

‖UAnf‖p,w = ‖(b− bQ)Upn+1‖p,w

∣∣∣∣∫ 1

−1

pn+1fw

∣∣∣∣
≤ ‖(b− bQ)Upn+1‖p,w ‖pn+1V

−1‖p′,w ‖V f‖p,w.

Let δ > 1 satisfying the Ap hypothesis, ε > 0, and 1
p = 1

s + 1
pδ + 1

p(1+ε) . From the
definitions of λn, αn, βn and Hölder’s inequality we have

‖(b− bQ)Upn+1‖p,w = ‖(b− bQ)λ1/p
n ‖p

≤ ‖(b− bQ)[upw
1−p/2
1 ]1/pα1/p

n β1/p
n ‖p

≤ ‖(b− bQ)‖s ‖[upw
1−p/2
1 ]δ‖1/(pδ)

1 ‖αnβn‖1/p
1+ε.

From the Ap hypothesis,

‖[upw
1−p/2
1 ]δ‖1/(pδ)

1 < C.

Now, ε > 0 can be taken small enough so that

‖αnβn‖1/p
1+ε < C.

Finally, from the John-Nirenberg theorem, there exists some C such that

‖(b− bQ)‖s ≤ C‖b‖∗.

Putting these inequalities together, it follows

‖(b− bQ)Upn+1‖p,w < C.

In an analogous way
‖pn+1V

−1‖p′,w < C.

Thus
‖UAnf‖p,w ≤ C‖V f‖p,w.

The operators Bnf can be handled the same as before. �
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Proof of Corollaries 1 and 2.
a) If r ∈ R and pr+α+1 = 0, from the definition of Lp,∞(xα), it is not difficult

to see
‖xrχ(0,λ)(x)‖Lp,∞(xα) = C,

for some constant C > 0 independent of λ > 0. Therefore,

‖xr log
1
|x|
χ(0,1)(x)‖Lp,∞(xα) ≥ C log

1
λ
,

so that

‖xr log
1
|x|
χ(0,1)(x)‖Lp,∞(xα) = ∞.

Now, if the restricted weak boundedness

[b, Sn] : Lp,1(w) −→ Lp,∞(w)

holds uniformly in n for each b ∈ BMO, from Theorem 1 we have

‖ log
1

|x− t|
uw−1/2(1− x2)−1/4‖Lp,∞(w) <∞,

and

‖ log
1

|x− t|
v−1w−1/2(1− x2)−1/4‖Lp′,∞(w) <∞

for each t ∈ [−1, 1], since b(x) = log |x − t|−1 ∈ BMO. This leads to (3), (4), (5),
which proves Corollary 2 and, as a consequence, the only if part of Corollary 1.

b) Suppose now that (3), (4), (5) hold. From Lemma 3 and the fact that gener-
alized Jacobi polynomials belong to the class H (if α, β ≥ −1/2, γi ≥ 0) or the class
H (for any α, β > −1, γi ≥ 0), it is easy to show that the hypothesis of Theorem 2
or Theorem 3 also hold. �

3. Fourier-Bessel series.

Let us now consider the Bessel function Jα of order α > −1 and let {αn}∞n=1 be
the increasing sequence of the zeros of Jα. The Bessel system of order α, {jα

n}∞n=1,
where

jα
n (x) = 21/2|Jα+1(αn)|−1Jα(αnx), n ≥ 1,

is orthogonal and complete in L2((0, 1), x dx). Let Sα
nf denote the n-th partial sum

operators

Sα
nf(x) =

n∑
k=1

ckj
α
k (x), ck = ck(f) =

∫ 1

0

jα
k (y)f(y)y dy.
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Theorem 1′. Let U , V be two weights on (0, 1). If there exists some constant
C > 0 such that

‖U [b, Sα
n ](V −1f)‖Lp,r(xdx) ≤ C‖f‖Lq,s(xdx)

for each n ≥ 0, f ∈ Lq,s(xdx) (where 1 < p < ∞, 1 < q < ∞; either r = p or
r = ∞; either s = q or s = 1), then,

‖ log
1

|x− a|
Ux−1/2‖Lp,r(xdx) <∞,

‖ log
1

|x− a|
V −1x−1/2‖Lq′,s′ (xdx) <∞

for each a ∈ [−1, 1].

The proof is similar to that of Theorem 1, if we replace the mentioned results of
[MNT 2] and [GPV 2] by the analogous results for Fourier-Bessel series (see [GPRV
2, Lemma 2] and [GPRV 3, proof of Theorem 3]).

In a similar way to the case of weights in the class H we obtain

Theorem 2′. Let 1 < p <∞, α ≥ −1/2, U and V weights on (0, 1) and b ∈ BMO.
If (

x1−p/2U(x)p, x1−p/2V (x)p
)
∈ Aδ

p(0, 1)

for some δ > 1 (δ = 1 if u = v), then the commutator [b, Sα
n ] is bounded from

Lp(V px) into Lp(Upx).

The proof can be done in a similar way to Theorem 2, using Proposition 1 in
[GPRV 3] instead of Lemma 1. Also, for −1 < α < −1/2 a result analogous to
Theorem 3 can be stated. Finally, theorems 1′ and 2′ give the following result.

Corollary. Let 1 < p <∞, α ≥ −1/2, and

U(x) = xa(1− x)b
m∏

k=1

|x− xk|bk .

(a, b, bk ∈ R). Then, the following conditions are equivalent:
a) ‖USα

n (U−1f)‖Lp(xdx) ≤ C‖f‖Lp(xdx) for each f ∈ Lp(xdx)
b) ‖USα

n (U−1f)‖Lp,∞(xdx) ≤ C‖f‖Lp(xdx) for each f ∈ Lp(xdx)
c) ‖USα

n (U−1f)‖Lp,∞(xdx) ≤ C‖f‖Lp,1(xdx) for each f ∈ Lp,1(xdx)

d)
∣∣∣∣1p +

a− 1
2

∣∣∣∣ < 1
4
, −1 < pb < p− 1, −1 < pbk < p− 1 (1 ≤ k ≤ m).
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Publicacions Matemàtiques 35 (1991), 209–235.

[ST 3] , Higher order commutators for vector-valued Calderón-Zygmund operators,

Trans. Amer. Math. Soc. 336 (1993), 537–556.

[SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces,

Princeton Univ. Press, Princeton, New Jersey, 1975.

[W] G. M. Wing, The mean convergence of orthogonal series, Amer. J. Math. 72 (1950),

792–808.
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