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Abstract. In this paper, a generalized Jacobi measure on [−1, 1] is perturbed by
exponentials of functions b of bounded mean oscillation. If we consider the Fourier

series in orthogonal polynomials associated to each modification, then certain esti-

mates (uniform in n ∈ N and b belonging to some neighbourhood of the origin) are
obtained. As a consequence, the partial sum operators depend analytically on the

functional parameter b. The case of Bessel series is also considered.

0. Introduction.

Let µ be a positive Borel measure on the real line and assume that (Pn)n≥0

is a sequence of orthonormal polynomials in L2(µ), obtained from the sequence
(1, x, x2, . . . ) by the Gram-Schmidt orthogonalization process. The system (Pn)n≥0

satisfies a three-term recurrence relation of the form

(1) xPn = an+1Pn+1 + bnPn + anPn−1, n = 0, 1, 2, . . .

P−1 = 0, P0 = 1

with an > 0, bn ∈ R. Conversely, any such recurrence relation (with the initial
conditions P−1 = 0, P0 = 1) determines a sequence (Pn)n≥0 which is orthonormal
with respect to some positive measure µ on the real line.

The recurrence relation (1) can be reformulated as xP = JP , where P =
(P0, P1, . . . ) and J is an infinite tridiagonal matrix, i.e., J = (aij)i,j≥0 with aij = 0
if |i− j| > 1. The matrix J is called the Jacobi matrix of the polynomial system.

These matrices appear frequently attached to physical problems. For example,
the motion of a number of particles interacting on the real line can be described, in
the context of Toda lattices, by nonlinear matrix differential equations (see [4, 1]).
The solutions are a flow of infinite tridiagonal matrices, so that the spectral analysis
of the system can be transformed into the problem of determining the polynomials
associated to a three-term recurrence relation.

A perturbation of the physical system corresponds to a perturbation of the three-
term recurrence relation. For a study of this type of perturbation (in the compact
case) and further references, see [11, 8].

Following Coifman and Murray [3], another way of considering perturbed or-
thogonal polynomials consists of modifying the corresponding spectral measure.
More precisely, let µ be a nonnegative measure on the real line and let (Pn)n≥0 be
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an orthonormal system in L2(µ). Often, but not necessarily, this is a polynomial
system. Consider a perturbed space L2(u2dµ), where u(x) = eb(x) is a suitable
function such that (Pn)n≥0 ⊆ L2(µ). When b is close to zero (in a sense to be
determined later), the new measure u2dµ is in some sense close to µ. Now the
Gram-Schmidt orthogonalization process can be applied to (Pn)n≥0 so as to get a
perturbed orthonormal system in L2(u2dµ).

Let Sn(b) stand for the n-th partial sum operator of the Fourier expansion rel-
ative to the perturbed system in L2(u2dµ). We consider the mapping b −→ Sn(b)
depending on the functional parameter b. This is not a convenient setting, since
Sn(b) is a bounded operator on L2(e2bdµ), which varies with b. Instead, we take

(2) b −→ Vn(b) = ebSn(b)e−b

so that each operator Vn(b) acts on L2(µ), the L2(µ)-boundedness of Vn(b) is equiv-
alent to the L2(u2dµ)-boundedness of Sn(b) and the operator norms are equal.

The mapping (2) can now be seen in the context of calculus on Banach spaces
where notions like continuity, differentiability and analyticity are well defined. We
are interested in the uniform analyticity of the sequence (Vn)n≥0.

In specific examples it is difficult to deal with the operators Sn(b) and Vn(b),
and it is much more convenient to work with the family of operators

Tn(b) = ebSn(0)e−b.

The formula
V = T (I + (T − T ∗))−1

of Kerzman and Stein makes it possible. Here, V is a self-adjoint projection of a
Hilbert space H onto a closed subspace K and T is a bounded oblique projection
(non self-adjoint) from H onto K. We can take V = Vn(b) and T = Tn(b), so that
T ∗ = Tn(−b) and the uniform analyticity of (Tn)n≥0 implies, via the Kerzman-Stein
formula, the uniform analyticity of (Vn)n≥0.

Let B be a real Banach space, B the complexification of B and Y another
complex Banach space. A sequence of operators Fn : B −→ Y (n ≥ 0) is uniformly
analytic in a neighbourhood U of 0 ∈ B if and only if there exists a constant C > 0
such that for every n, and all b ∈ U , we have

a) Fn is Gâteaux differentiable
b) ‖Fn(b)‖ ≤ C, where ‖ · ‖ denotes the operator norm.

Consider

Sn(0)f(x) = Snf(x) =
∫ 1

−1

Kn(x, y)f(y) dµ(y)

where Kn(x, y) is the corresponding nth kernel of the orthonormal polynomials in
L2(µ). Then

Tn(b)f(x) =
∫ 1

−1

exp[b(x)− b(y)] Kn(x, y)f(y) dµ(y).

For this particular kind of projections it is enough to prove b) to obtain uniform
analyticity for {Tn(b)}n≥0, acting on L2(µ), and so the problem can be reduced to
obtaining a uniform weighted norm inequality for the operators Sn.
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For Jacobi polynomials, dµ(x) = (1 − x)α(1 + x)βdx, with α, β ≥ −1/2, and
B = BMO, Coifman and Murray proved that the operators Tn(b) are bounded
from L2(dµ) into itself when ‖b‖∗ (the norm of b in BMO) is small enough. This
implies that the Tn are uniformly analytic in a neighbourhood U of 0 and so are
the Vn.

The aim of this paper is to deal with a more general class of measures and to
study the uniform boundedness of the operators Tn(b) in Lp(dµ) where p belongs
to an interval including p = 2. This will be possible because there exists enough
information in a more general context about uniform weighted norm inequalities
for the partial sum operators in Lp spaces. As a consequence we obtain the uniform
analyticity of the operators Tn and Vn.

The paper is organized as follows: in Section 1 we present the notation and
the main results (Theorems 1 and 2), which will be proved in Sections 3 and 4,
respectively. In Section 2 we state and prove some auxiliary results about the Ap

class of weights.

1. Notation and results.

Throughout this paper, C will denote a universal constant which may be different
from line to line. If 1 < p < ∞, we use the notation q = p/(p−1), i.e., 1/p+1/q = 1.

Let 1 < p < ∞ and −∞ ≤ a < b ≤ ∞. The class Ap(a, b) consists of those
weights u such that(

1
|I|

∫
I

u(x) dx

) (
1
|I|

∫
I

u(x)−1/(p−1) dx

)p−1

≤ C

where I ranges over all the finite intervals I ⊆ (a, b) and |I| stands for the length
of the interval I. The least constant C will be referred to as the Ap constant of u
and denoted Ap(u). The Hilbert transform is bounded on Lp(u) if u ∈ Ap (see [7]).

If b is an integrable function on [−1, 1], the mean of b on an interval I is

bI =
1
|I|

∫
I

b(x) dx.

The function b is said to have bounded mean oscillation on [−1, 1] if

‖b‖∗ = sup
I

1
|I|

∫
I

|b(x)− bI | dx

is finite, where the supremum is taken over all the intervals I ⊆ [−1, 1]. The space
BMO of real-valued functions (modulo constants) having bounded mean oscillation
on [−1, 1] is a Banach space with ‖ · ‖∗ as its norm.

Consider a generalized Jacobi weight

(3) w(x) = h(x)(1− x)α(1 + x)β
N∏

i=1

|x− ti|γi , x ∈ [−1, 1]

where
a) α, β > −1, γi ≥ 0 ti ∈ (−1, 1), ti 6= tj ∀i 6= j;
b) h is a positive, continuous function on [−1, 1] and ω(h, δ)δ−1 ∈ L1(0, 1),

ω(h, δ) being the modulus of continuity of h.
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Let (Pn)n≥0 be the orthonormal polynomials with respect to w(x)dx. Badkov
([2]) proved that there exists a constant C such that for every x ∈ [−1, 1] and n ∈ N

(4) |Pn(x)| ≤ C(1− x + n−2)−(2α+1)/4(1 + x + n−2)−(2β+1)/4
N∏

i=1

|x− ti|−γi/2.

Also, if (Qn)n≥0 denotes the orthonormal polynomials with respect to the measure
(1− x2)w(x)dx, we have

|Qn(x)| ≤ C(1− x)−(2α+3)/4(1 + x)−(2β+3)/4
N∏

i=1

(|x− ti|)−γi/2.

For f ∈ L1(w), let Snf denote the n-th partial sum of the orthonormal Fourier
expansion of f in (Pn)n≥0, i.e.

Snf(x) =
∫ 1

−1

f(y)Kn(x, y)w(y) dy, Kn(x, y) =
n∑

k=0

Pk(x)Pk(y).

For a suitable function b ∈ BMO, consider the perturbed measure e2bw dx. The
classical Gram-Schmidt procedure applied to the orthonormal system (Pn)n≥0 leads
to a perturbed orthonormal system related to the measure e2bw dx. We then have
the perturbed Fourier expansion operators (Sn(b))n≥0. Thus, the sequences of
operators (Vn)n≥0 and (Tn)n≥0 are given by

Vn(b) = ebSn(b)e−b

and

Tn(b)(f)(x) = eb(x)Sn(e−bf)(x) =
∫ 1

−1

exp[b(x)− b(y)]Kn(x, y)f(y)w(y) dy.

Theorem 1. Let 1 < p < ∞, w as in (3) and assume
a) w1−p/2(1− x2)−p/4 ∈ L1,
b) w1−q/2(1− x2)−q/4 ∈ L1.

Then, there exist some constants C, δ > 0 such that for all b ∈ BMO with ‖b‖∗ < δ

sup
n
‖Tn(b)‖Lp(w)→Lp(w) ≤ C.

Remark. Conditions a) and b) are also necessary for the uniform boundedness of
Tn(b) in a neighbourhood of 0 ∈ BMO. More precisely, the uniform boundedness
of Tn(0) = Sn implies a) and b) ([9, Theorem 1]).

A real number p satisfies conditions a) and b) if and only if the following inequal-
ities hold: ∣∣∣∣(α + 1)

(
1
p
− 1

2

)∣∣∣∣ < min
{

1
4
,
α + 1

2

}
∣∣∣∣(β + 1)

(
1
p
− 1

2

)∣∣∣∣ < min
{

1
4
,
β + 1

2

}
∣∣∣∣(γi + 1)

(
1
p
− 1

2

)∣∣∣∣ < min
{

1
2
,
γi + 1

2

}
, i = 1, . . . , N.

It is clear that these conditions determine an interval containing p = 2.
The uniform boundedness in Theorem 1, together with the general arguments

pointed out in the introduction, lead to the following corollary.
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Corollary. Let w be as in (3). Then, the sequences of operators {Tn(b)} and
{Vn(b)}, acting on L2(w), are uniformly analytic in a neighbourhood of 0 in the
complexification of BMO.

Now, let Jα be the Bessel function or order α > −1, and put

jn(x) = 21/2|Jα(αn)|−1Jα(αnx),

where (αn)n≥1 is the increasing sequence of the zeros of Jα. The functions (jn)n≥1

constitute an complete orthonormal system in L2((0, 1);x dx), called the Bessel
system of order α ([13]).

For the sake of simplicity we will write Lp(x dx) for Lp((0, 1);x dx).
For f ∈ L1(x dx), let snf denote the n-th partial sum of the orthonormal Fourier-

Bessel of f in (jn)n≥1, i.e.

snf(x) =
∫ 1

0

f(y)Kn(x, y)y dy, Kn(x, y) =
n∑

k=1

jk(x)jk(y)

and in a similar way define
Vn(b) = ebsn(b)e−b

and

Tn(b)(f)(x) = eb(x)sn(e−bf)(x) =
∫ 1

0

exp[b(x)− b(y)]Kn(x, y)f(y)y dy.

Theorem 2. Let α > −1 and assume

a)
4
3

< p < 4, if −1
2
≤ α;

b)
2

α + 2
< p <

2
−α

, if −1 < α ≤ −1
2
.

Then, there exist some constants C, δ > 0 such that for all b ∈ BMO with ‖b‖∗ < δ

sup
n
‖Tn(b)‖Lp(x dx)→Lp(x dx) ≤ C.

Remark. Also, conditions a) and b) are necessary for the uniform boundedness of
Tn(0) = sn ([6, Theorem 2]).

The uniform analyticity follows as a consequence of Theorem 2.

Corollary. The sequences of operators {Tn(b)} and {Vn(b)}, acting on L2(x dx),
are uniformly analytic in a neighbourhood of 0 in the complexification of BMO.

2. Auxiliary results about the Ap class.

In this section, u, v, w, un, wn will denote weights on some subset Q ⊆ Rm which
we may thought of as (−1, 1) ⊆ R. A sequence (un)n≥1 is said to belong to Ap

uniformly if the corresponding sequence of Ap constants is bounded or, equivalently,
if some constant C, independent of n, satisfies the Ap condition for every weight
un.

With u ∼ v we mean C1 ≤ u/v ≤ C2 for some positive constants C1, C2. With
un

unif∼ vn we mean that the respective constants are independent of n.
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Lemma 1.
a) w ∈ Ap, λ ∈ (0,+∞) =⇒ λw ∈ Ap, Ap(λw) = Ap(w).
b) u ∼ v, v ∈ Ap =⇒ u ∈ Ap, Ap(u) ∼ Ap(v) (with constants depending only

on the ratio constants in u ∼ v).
c) u, v ∈ Ap =⇒ u + v ∈ Ap, Ap(u + v) ≤ Ap(u) + Ap(v).
d) u, v ∈ Ap, w−1 = u−1 + v−1 =⇒ w ∈ Ap, Ap(w) ≤ 2p[Ap(u) + Ap(v)].

Proof. a) and b) are immediate; d) is analogous to c).
c) We have(

1
|I|

∫
I

(u + v)−p′/p

)p/p′

≤ min

{(
1
|I|

∫
I

u−p′/p

)p/p′

,

(
1
|I|

∫
I

v−p′/p

)p/p′}
.

Therefore,
1
|I|

∫
I

(u + v)
(

1
|I|

∫
I

(u + v)−p′/p

)p/p′

≤

≤ 1
|I|

∫
I

u

(
1
|I|

∫
I

u−p′/p

)p/p′

+
1
|I|

∫
I

v

(
1
|I|

∫
I

v−p′/p

)p/p′

≤ Ap(u) + Ap(v). �

The properties above easily yield the following result.

Lemma 2.

a) un
unif∼ w + wn, w ∈ Ap, wn ∈ Ap uniformly =⇒ un ∈ Ap uniformly.

b) u−1
n

unif∼ w−1 + w−1
n , w ∈ Ap, wn ∈ Ap uniformly =⇒ un ∈ Ap uniformly.

Also, as a consequence of Hölder’s inequality we have:

Lemma 3. Let u and v be two weights, 1 < p < ∞, 1 < δ < ∞, 1/δ + 1/δ′ = 1. If
uδ, vδ′ ∈ Ap, then uv ∈ Ap and the Ap constants verify

Ap(uv) ≤ Ap(uδ)1/δAp(vδ′
)1/δ′

.

Corollary. Let r, R ∈ R, un(x) = (1− x)r(1− x + n−2)R. Then, un ∈ Ap(−1, 1)
uniformly ⇐⇒ −1 < r < p− 1, −1 < r + R < p− 1.

Remark. Analogous results hold when 1 − x is replaced by |x − t|, for some t ∈
(−1, 1).

Proof. =⇒) From the inequality

1
2

∫ 1

−1

un

(
1
2

∫ 1

−1

u−p′/p
n

)p/p′

≤ C

it follows −1 < r < p − 1 and taking limit in n yields −1 < r + R < p − 1, by
integrability.
⇐=) It is known that (1− x)r ∈ Ap(−1, 1) ⇐⇒ −1 < r < p− 1.

CASE R ≥ 0. We have

1
2

[
(1− x)R + n−2R

]
≤ (1− x + n−2)R ≤ 2R

[
(1− x)R + n−2R

]
,
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so that (1− x)r(1− x + n−2)R unif∼ (1− x)r+R + n−2R(1− x)r. Parts a) of Lemmas
1 and 2 show that un ∈ Ap(−1, 1) uniformly.

CASE R < 0. Now,

un(x)−1 = (1− x)−r(1− x + n−2)−R unif∼
[
(1− x)r+R

]−1

+
[
n−2R(1− x)r

]−1

and we can use part a) of Lemma 1 together with part b) of Lemma 2. �

3. Proof of Theorem 1.

The boundedness of
Tn(b) : Lp(w) −→ Lp(w)

is equivalent to the boundedness of

Sn : Lp(epbw) −→ Lp(epbw).

By using Pollard’s decomposition of the kernels Kn(x, y) (see [12, 10])

Kn(x, y) = rnA1,n(x, y) + snA2,n(x, y) + snA3,n(x, y),

where
A1,n(x, y) = Pn+1(x)Pn+1(y),

A2,n(x, y) = (1− y2)
Pn+1(x)Qn(y)

x− y
,

A3,n(x, y) = (1− x2)
Pn+1(y)Qn(x)

y − x

and (rn)n≥0, (sn)n≥0 are bounded sequences, the uniform boundedness of Sn can
be reduced to that of W1,n, W2,n, W3,n, where

W1,nf(x) = Pn+1(x)
∫ 1

−1

Pn+1fw dy,

W2,nf(x) = Pn+1(x)H((1− y2)Qnfw, x),

W3,nf(x) = (1− x2)Qn(x)H(Pn+1fw, x),

and H is the Hilbert transform on the interval [−1, 1]. For W1,n, by duality, it is
enough to show

‖Pneb‖Lp(w) ≤ C, ‖Pne−b‖Lq(w) ≤ C.

Now, by the estimates (4) for Pn and the dominated convergence theorem, it is
enough to prove

(5) ‖(1− x2)−1/4w−1/2eb‖Lp(w) ≤ C,

(6) ‖(1− x2)−1/4w−1/2e−b‖Lq(w) ≤ C.

By the definition of w and the hypothesis w1−p/2(1 − x2)−p/4 ∈ L1, there exists
some ε > 0 such that w1−p/2(1− x2)−p/4 ∈ L1+ε. On the other hand, there exists
some γ > 0 such that if ‖b‖∗ < γ then epb ∈ L

1+ε
ε (see [5, p. 409]).
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Now, inequality (5) follows easily from Hölder’s inequality. In a similar way (6)
follows.

The uniform boundedness of W2,n and W3,n is equivalent to that of the Hilbert
transform with pairs of weights

(epb|Pn+1|pw, epb|Qn|−p(1− x2)−pw1−p)

and
(epb|Qn|p(1− x2)pw, epb|Pn+1|−pw1−p).

Then the proof of Theorem 1 will be finished if we prove the following lemmas:

Lemma 4. With the above notation, there exist two constants C1, C2 > 0 and a
sequence (φn)n≥1 uniformly in Ap(−1, 1) such that

C1|Pn+1|pw ≤ φn ≤ C2|Qn|−p(1− x2)−pw1−p.

Lemma 5. With the above notation, there exist two constants C1, C2 > 0 and a
sequence (φn)n≥1 uniformly in Ap(−1, 1) such that

C1|Qn|p(1− x2)pw ≤ φn ≤ C2|Pn+1|−pw1−p.

Lemma 6. Let 1 < p < ∞. For each φ ∈ Ap, there exists some γ > 0 such that
epbφ ∈ Ap whenever b ∈ BMO with ‖b‖∗ < γ. Moreover, γ and the Ap constant of
epbφ depend only on the Ap constant of φ.

Proof of Lemma 4. Let w1 =
N∏

i=1

|x − ti|γi . From the estimates for Pn and Qn we

have

|Pn+1|pw ≤ Cw
1− p

2
1 (1− x)α(1 + x)β(1− x + n−2)−p( α

2 + 1
4 )(1 + x + n−2)−p( β

2 + 1
4 ),

|Qn|−p(1− x2)−pw1−p ≥ Cw
1− p

2
1 (1− x)−p+α(1−p)(1 + x)−p+β(1−p)

×(1− x + n−2)p( α
2 + 3

4 )(1 + x + n−2)p( β
2 + 3

4 ).

It is not difficult to see, from the hypothesis, that we can take a real number R
such that

−p + α(1− p) ≤R ≤ α,

−1 <R < p− 1

and choose S such that

−p + α(1− p) + p(α/2 + 3/4) ≤R + S ≤ α− p(α/2 + 1/4),

−1 <R + S < p− 1.

Now, it is a straightforward calculation to verify that

C(1− x)α(1− x + n−2)−p( α
2 + 1

4 ) ≤ (1− x)R(1− x + n−2)S

≤ C(1− x)−p+α(1−p)(1− x + n−2)p( α
2 + 3

4 ).
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We can also take R̃ and S̃ such that

−p + β(1− p) ≤R̃ ≤ β,

−1 <R̃ < p− 1,

−p + β(1− p) + p(β/2 + 3/4) ≤ R̃ + S̃ ≤ β − p(β/2 + 1/4),

−1 < R̃ + S̃ < p− 1,

so that

C(1 + x)β(1 + x + n−2)−p( β
2 + 1

4 ) ≤ (1 + x) eR(1 + x + n−2)eS
≤ C(1 + x)−p+β(1−p)(1 + x + n−2)p( β

2 + 3
4 ).

If we write
un(x) = (1− x)R(1− x + n−2)S ,

vn(x) = (1 + x) eR(1 + x + n−2)eS
then

C1|Pn+1|pw ≤ w
1−p/2
1 unvn ≤ C2|Qn|−p(1− x2)−pw1−p.

Now, from the Corollary in the previous section we have

un ∈ Ap uniformly,

vn ∈ Ap uniformly,

w
1−p/2
1 ∈ Ap.

Then, splitting in pieces the integrals appearing in the Ap condition it can be shown
that

φn = w
1−p/2
1 unvn ∈ Ap uniformly. �

The proof of Lemma 5 is entirely similar, so we omit it.

Proof of Lemma 6. If φ ∈ Ap, there exists some ε > 1 such that φε ∈ Ap. Moreover,
ε and the Ap constant of φε depend only on the Ap constant of φ [5, Theorem IV.2.7,
p. 399]. Take now 1/ε + 1/ε′ = 1. There exists some δ > 0 such that

‖b‖∗ < δ =⇒ epε′b ∈ Ap

and this in turn implies epbφ ∈ Ap, by Lemma 3. Also, δ and the Ap constant of
epε′b depend only on ε′ [5, p. 409]. This proves the lemma. �

4. Proof of Theorem 2.

The following result can be seen in [6].

Proposition 1. Let α ≥ −1/2, 1 < p < ∞ and let u be a weight. If x1−p/2up ∈
Ap(0, 1), then there exists some constant C > 0 such that

‖usn(u−1f)‖Lp(x dx) ≤ C‖f‖Lp(x dx)

for every n ≥ 0, f ∈ Lp(x dx).

For the case −1 < α < −1/2 we have:
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Proposition 2. Let −1 < α < −1/2, 1 < p < ∞ and let u be a weight. If

(7)

x1−p/2up ∈ Ap(0, 1)

x1+αpup ∈ Ap(0, 1)

x1−(α+1)pup ∈ Ap(0, 1)

then there exists some constant C > 0 such that

‖usn(u−1f)‖Lp(x dx) ≤ C‖f‖Lp(x dx)

for every n ≥ 0, f ∈ Lp(x dx).

Proof. As shown in [6] it is enough to have

x1+αpup(M−1
n + x)−p(α+1/2) ∈ Ap(0, 1)

x1−(α+1)pup(M−1
n + x)p(α+1/2) ∈ Ap(0, 1)

where Mn are certain positive constants with Mn −→ +∞. With the help of
Lemmas 1 and 2 this turns out to be equivalent to (7). �

Remark. In both cases, the constant C depends only on the Ap constants.

Proof of Theorem 2. Assume first −1/2 ≤ α. According to Proposition 1, we only
need to show that there exist some constants C, δ > 0 such that

‖b‖∗ < δ =⇒ x1−p/2eb(x) ∈ Ap

with a constant C. Since x1−p/2 ∈ Ap, there exists some ε > 1 such that xε(1−p/2) ∈
Ap [5, Theorem IV.2.7, p. 399]. Take 1

ε + 1
ε′ = 1; there also exist some constants

C, δ > 0 such that
‖b‖∗ < δ =⇒ eε′b ∈ Ap

with Ap constant C (see [5, p. 409]). Finally, apply Lemma 3. The case −1 < α <
−1/2 is analogous. �
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