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Introduction

Let dµ be a finite positive Borel measure on R such that supp(dµ) is an
infinite set and let pn(dµ) denote the corresponding orthonormal polynomials.
For f ∈ L1(dµ), Snf stands for the nth partial sum of the orthogonal Fourier
expansion of f in {pn(dµ)}∞n=0, that is,

Sn(f, x) =
n∑

k=0

akpk(x), ak = f̂(k) =
∫

R
fpk dµ.

The study of the convergence of Snf in Lp(dµ) (p 6= 2) has been discussed
for several classes of orthogonal polynomials (c.f. Askey-Wainger [1], Badkov
[2–4], Muckenhoupt [9–11], Newman-Rudin [13], Pollard [14–16], Wing [19]).
For instance, in the case of Jacobi polynomials {P (α,β)

n (x)}∞n=0 which are orthog-
onal in [−1, 1] with respect to the weight w(x) = (1−x)α(1+x)β , α, β ≥ −1/2,
Pollard proved that |1/p − 1/2| < min{1/(4α + 4), 1/(4β + 4)} is a sufficient
condition for the uniform boundedness ‖Snf‖p,w ≤ C‖f‖p,w, which is equiva-
lent to the convergence in Lp(w), 1 < p < ∞. Newman and Rudin showed that
the previous condition is also necessary and later Muckenhoupt extended these
results to α, β > −1.

On the other hand, Máté, Nevai and Totik [8] obtained, in a general way,
necessary conditions for the mean convergence of Fourier expansions:

Theorem (Máté-Nevai-Totik). Let dµ be such that supp(dµ) = [−1, 1],
µ′ > 0 almost everywhere, U and V nonnegative Borel measurable functions
such that neither of them vanishes almost everywhere in [−1, 1] and V is finite
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on a set with positive Lebesgue mea-sure. If Sn is uniformly bounded from
Lp(V p dµ) into Lp(Up dµ), then

(i) Up ∈ L1(dµ), V −q ∈ L1(dµ), q = p/(p− 1),

(ii)
∫ 1

−1
U(x)pµ′(x)1−p/2(1− x2)−p/4 dx < ∞,

(iii)
∫ 1

−1
V (x)−qµ′(x)1−q/2(1− x2)−q/4 dx < ∞.

Mean convergence

The main subject in this paper is the study of the mean and weak bound-
edness of the orthogonal Fourier expansion, in some particular cases, by using
Ap-theory, which plays a central role in the weighted norm inequalities for the
Hardy-Littlewood maximal operator and the Hilbert transform.

We start with the mean convergence recalling some definitions:

(i) (u, v) ∈ Ap(−1, 1), 1 < p < ∞, iff there exists a positive constant C

such that
(∫

I
u(x) dx

) (∫
I
v(x)−1/(p−1) dx

)p−1

≤ C|I|p for all intervals

I ⊂ [−1, 1], where |I| is the Lebesgue measure of I.

(ii) (u, v) ∈ Aδ
p(−1, 1) (δ > 1) iff (uδ, vδ) ∈ Ap(−1, 1).

(iii) Given a sequence {(un, vn)}n∈N, we say that (un, vn) ∈ Ap(−1, 1)
uniformly if there exists a constant C, independent of n, such that(∫

I
un(x) dx

) (∫
I
vn(x)−1/(p−1) dx

)p−1

≤ C|I|p for all intervals I ⊂

[−1, 1].

It is well known that (u, v) ∈ Ap is a necessary condition for the bound-
edness of the Hilbert transform H from Lp(v) into Lp(u) and that (u, v) ∈ Aδ

p

(for some δ > 1) is a sufficient condition [7], [12]. Analogous conditions work
for the uniform boundedness, modifying slightly the arguments in [12].

This is connected with the Fourier expansion, and the idea comes from
Pollard: let {pn(x)}∞n=0 denote the orthonormal polynomials with respect to
dµ = µ′(x) dx and {qn(x)}∞n=0 the orthonormal polynomials with respect to
(1− x2) dµ. Then

Sn(f, x) =
∫ 1

−1
f(t)Kn(x, t)µ′(t) dt

and the kernel Kn(x, t) can be decomposed in the form

Kn(x, t) = rnT1(n, x, t) + snT2(n, x, t) + snT3(n, x, t)
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where:

T1(n, x, t) = pn+1(x)pn+1(t),

T2(n, x, t) = (1− t2)
pn+1(x)qn(t)

x− t
,

T3(n, x, t) = T2(n, t, x) = (1− x2)
pn+1(t)qn(x)

t− x
.

If µ′ > 0 a.e., then {rn} and {sn} are bounded [17]. Let U and V be weights,
1 < p < ∞, and

Wi(f, x) = Wi,n(f, x) =
∫ 1

−1
f(t)Ti(n, x, t)µ′(t) dt (i = 1, 2, 3).

We try to estimate the three terms:

‖(Wif)U‖p,µ′ ≤ C‖fV ‖p,µ′ .

Denote:

un(x) = |pn+1(x)|pU(x)pµ′(x), vn(x) = |qn(x)|−p(1− x2)−pV (x)pµ′(x)1−p,

un(x) = |qn(x)|p(1− x2)pU(x)pµ′(x), vn(x) = |pn+1(x)|−pV (x)pµ′(x)1−p.

By using Hölder’s inequality and Ap results we obtain the following sufficient
conditions for the boundedness of Wi (i = 1, 2, 3):

(un, vn) ∈ Aδ
p(−1, 1) uniformly for some δ > 1,

(un, vn) ∈ Aδ
p(−1, 1) uniformly for some δ > 1.

On the other hand, the conditions

((1− x2)−p/4U(x)pµ′(x)1−p/2, (1− x2)−p/4V (x)pµ′(x)1−p/2) ∈ Ap(−1, 1) (1)

and

((1− x2)p/4U(x)pµ′(x)1−p/2, (1− x2)p/4V (x)pµ′(x)1−p/2) ∈ Ap(−1, 1) (2)

turn out to be necessary for the boundedness of Wi (i = 1, 2, 3). From (1), (2)
and Th. 2 in [8], Máté-Nevai-Totik’s conditions for the mean convergence of
Snf can be obtained.

Next, we introduce a particular kind of measures.

Definition. We say that dµ = µ′(x) dx ∈ H if µ′(x) = (1 − x)α(1 + x)βw(x),
where:

(i) w > 0 a.e. and C1 < w(x) < C2 for x ∈ (1− ε, 1) and x ∈ (−1,−1 + ε).

(ii) |pn(x)| ≤ C(1− x + an)−(α/2+1/4)(1 + x + bn)−(β/2+1/4)w(x)−1/2.
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(iii) |qn(x)| ≤ C(1−x+an)−(α/2+3/4)(1+x+bn)−(β/2+3/4)w(x)−1/2 and {an},
{bn} are positive sequences such that lim an = lim bn = 0.

There exist particular weights belonging to the class H: the generalized
Jacobi weights (GJ) dµ(x) = µ′(x) dx, being

µ′(x) = ϕ(x)(1− x)Γ1

N−1∏
k=2

|x− xk|Γk(1 + x)ΓN

where Γk ≥ 0 (k = 1, 2, . . . , N), 1 > x2 > · · · > xN−1 > −1, ϕ > 0 and
continuous on [−1, 1] and ω(δ)/δ ∈ L1(0, 1), ω being the modulus of continuity
of ϕ.

Theorem 1. Let dµ ∈ H, U(x) = (1− x)a(1 + x)bu(x), V (x) = (1− x)A(1 +
x)Bv(x), with u > 0 a.e., v > 0 a.e. and such that C1 < u(x), v(x) < C2 for
x ∈ (1− ε, 1) and x ∈ (−1,−1 + ε). If

|(α + 1)(1/p− 1/2) + (a + A)/2| < (a−A)/2 + min{1/4, (α + 1)/2}, A ≤ a,

|(β + 1)(1/p− 1/2) + (b + B)/2| < (b−B)/2 + min{1/4, (β + 1)/2}, B ≤ b,

and
(w1−p/2up, w1−p/2vp) ∈ Aδ

p(−1, 1) for some δ > 1,

then: ∫ 1

−1
|Sn(f, x)U(x)|pµ′(x) dx ≤ C

∫ 1

−1
|f(x)V (x)|pµ′(x) dx.

This theorem is a consequence of the following lemmas:

Lema 1. Let {un(x)}, {vn(x)}, {Un(x)}, {Vn(x)} be sequences of weights de-
fined on a finite interval (a, b). Let c ∈ (a, b) and ε > 0 be fixed and independent
of n. Assume that there exist some positive constants λi (i = 1, 2, 3, 4) such that
λ1 ≤ Un(x), Vn(x) ≤ λ2 on (a, c + ε) and λ3 ≤ un(x), vn(x) ≤ λ4 on (c− ε, b).
If (un, vn) ∈ Ap(a, c) and (Un, Vn) ∈ Ap(c, b) uniformly, then (unUn, vnVn) ∈
Ap(a, b) uniformly.

Lema 2. Let {xn} be a sequence of positive numbers which converges to zero.
Then (xr(x + xn)s, xR(x + xn)S) ∈ Aδ

p(0, 1) uniformly if and only if:

r > −1, R < p− 1, R ≤ r, R + S ≤ r + s, r + s > −1, R + S < p− 1.

From the above theorem, we have the following result, which was established
by Badkov [3] (using other methods and without the restriction Γk ≥ 0, 2 ≤
k ≤ N − 1):
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Corollary 1. Let w ∈ (GJ) and U(x) = (1− x)a(1 + x)b
∏N−1

k=2 |x− xk|ck . If

|(Γ1 + 1)(1/2− 1/p)− a| < min{1/4, (Γ1 + 1)/2},
|(ΓN + 1)(1/2− 1/p)− b| < min{1/4, (ΓN + 1)/2}

and

|(Γk + 1)(1/2− 1/p)− ck| < min{1/2, (Γk + 1)/2} (k = 2, . . . , N − 1),

then ∫ 1

−1
|Sn(f, x)U(x)|pµ′(x) dx ≤ C

∫ 1

−1
|f(x)U(x)|pµ′(x) dx.

Weak convergence

Another aim in this paper is to examine the weak behaviour of the orthogo-
nal Fourier expansion, that is to study if there exists a constant C, independent
of n, y and f , such that:∫

|Sn(f,x)|>y
dµ(x) ≤ Cy−p

∫ 1

−1
|f(x)|p dµ(x), y > 0,

i.e., if Sn is uniformly bounded from Lp(dµ) into Lp
∗(dµ), 1 < p < ∞.

The previous inequality only can be true, besides the mean convergence
interval, in its endpoints. For the Fourier-Legendre expansion (dµ = dx),
Chanillo [5] proved that the partial sum operator is not weak type (4, 4).

The following result gives necessary conditions for the weak boundedness [6].

Theorem 2. Let dµ be such that supp(dµ) = [−1, 1], µ′ > 0 a.e., U and V be
weights, 1 < p < ∞. If there exists a constant C such that

‖Snf‖Lp
∗(Up dµ) ≤ C‖f‖Lp(V p dµ)

holds for all integers n ≥ 0 and every f ∈ Lp(V p dµ), then:

(i) Up, V −q ∈ L1(dµ),

(ii) µ′(x)−1/2(1− x2)−1/4 ∈ Lp
∗(Upµ′ dx),

(iii) µ′(x)−1/2(1− x2)−1/4 ∈ Lq(V −qµ′ dx).

This result is a consequence of the following lemmas:

Lema 3. Let U and V be weights and 1 < p < ∞. If there exists a constant C
such that for every f ∈ Lp(V p dµ) the inequality

‖Snf‖Lp
∗(Up dµ) ≤ C‖f‖Lp(V p dµ)

holds for all integers n ≥ 0, then

‖pn‖Lq(V −q dµ)‖pn‖Lp
∗(Up dµ) ≤ C.
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Lema 4 ([8, Th. 2]). Let supp(dµ) = [−1, 1], µ′ > 0 a.e. in [−1, 1] and
0 < p ≤ ∞. There exists a constant C such that if g is a Lebesgue-measurable
function in [−1, 1], then

‖µ′(x)−1/2(1− x2)−1/4‖Lp(|g|p dx) ≤ lim inf
n→∞

‖pn‖Lp(|g|p dx).

In particular, if
lim inf
n→∞

‖pn‖Lp(|g|p dx) = 0

then g = 0 a.e.

We are going to study the weak boundedness of the Fourier-Jacobi expan-
sion. Since for −1 < α, β ≤ −1/2 the conditions |1/p − 1/2| < min{1/(4α +
4), 1/(4β + 4)} are trivial for p ∈ (1,∞), we suppose, by symmetry, α ≥ β and
α > −1/2. Then, the mean convergence interval is 4(α + 1)/(2α + 3) < p <
4(α + 1)/(2α + 1).

Remark 1. If U(x) = V (x) = 1, the inequality (α + 1)(1/p− 1/2) < 1/4 is not
satisfied for p = 4(α + 1)/(2α + 3). It implies that Sn is not weak type (p, p)
for the lower endpoint of the interval of mean convergence. The same happens
with generalized Jacobi polynomials.

Remark 2. The conditions in Theorem 2 are the same as those of Máté-Nevai-
Totik’s theorem. Thus, the conditions obtained by Máté, Nevai and Totik are
necessary not only for the mean convergence but also for the weak convergence.

Remark 3. It can be proved that Máté-Nevai-Totik’s conditions are not suffi-
cient for the weak convergence. In order to prove this, consider the Fourier-
Legendre expansion (dµ = dx), p = 4 and take

U(x) =
∣∣∣∣log

1 + x

4

∣∣∣∣−5/8 ∣∣∣∣log
1− x

4

∣∣∣∣−5/8

,

V (x) =
∣∣∣∣log

1 + x

4

∣∣∣∣−3/8 ∣∣∣∣log
1− x

4

∣∣∣∣−3/8

.

Let Sn denote the nth partial sum of the Fourier-Jacobi expansion with
respect to µ′(x) = (1 − x)α(1 + x)β , being α ≥ β and α > −1/2. Then,
the interval of mean convergence is given by 4(α + 1)/(2α + 3) < p < 4(α +
1)/(2α + 1). Theorem 2 works to prove that Sn is not weak type on Lp(µ′) for
p = 4(α + 1)/(2α + 3), but it is not useful to show that Sn is not weak type for
p = 4(α + 1)/(2α + 1). It leads us to make use of other arguments.

Theorem 3. Let r = 4(α + 1)/(2α + 1). Then, there exists no constant C,
independent of n and f ∈ Lr(µ′), such that

‖Snf‖Lr
∗(µ

′) ≤ C‖f‖Lr(µ′).
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Proof. Decompose the kernel Kn(x, t), as before, in the form

Kn(x, t) = rnT1(n, x, t) + snT2(n, x, t) + snT3(n, x, t).

By using the estimates

|pn(x)| ≤ C(1− x)−α/2−1/4, |qn(x)| ≤ C(1− x)−α/2−3/4, x ∈ (0, 1),

Hölder’s inequality and standard arguments of Ap theory, the boundedness of
T1 and T3 can be proved.

Now, it is not difficult to prove that∫
|pn(x)H(f(t)qn−1(t)(1−t2)µ′(t),x)|>y

µ′(x) dx ≤ Cy−r‖f‖r
r,µ′

is not satisfied for any fixed constant C. The proof is by contradiction, con-
structing a sequence of functions {fm,n} such that the constant C appearing in
the previous inequality grows with m.
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