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Abstract. General expressions are found for the orthonormal polyno-
mials and the kernels relative to measures on the real line of the form
µ+Mδc, in terms of those of the measures dµ and (x−c)2dµ. In particu-
lar, these relations allow us to obtain that Nevai’s class M(0, 1) is closed
for adding a mass point, as well as several bounds for the polynomials
and kernels relative to a generalized Jacobi weight with a finite number
of mass points.

§0. Introduction.

Let µ be a positive measure on R with infinitely many points of increase and such
that all the moments ∫

R
xndµ (n = 0, 1, . . .)

exist. Then, there exists a unique sequence {Pn}n≥0 of orthonormal polynomials

Pn(x) = knxn + . . . , kn > 0

such that ∫
R

PnPmdµ =
{

0, if n 6= m;
1, if n = m.

As usual, {Kn(x, y)}n≥0 denotes the sequence of kernels associated to µ, that is,

Kn(x, y) =
n∑

j=0

Pj(x)Pj(y).

It is well known that the polynomials {Pn}n≥0 satisfy a three-term recurrence relation

xPn(x) = an+1Pn+1(x) + bnPn(x) + anPn−1(x), n ≥ 0,

where P−1 = 0, an = kn−1/kn and

bn =
∫

R
xPn(x)2dµ(x).
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A particularly important class of measures is Nevai’s class M(0, 1) consisting of those mea-
sures µ for which lim

n
an = 1/2 and lim

n
bn = 0 hold. For such a measure, the polynomials

{Pn}n≥0 have the so called ratio asymptotic property. We refer the reader to [7], [4], [8] for
further details on M(0, 1). We must remark that every measure µ with suppµ = [−1, 1]
and µ′ > 0 a.e. on [−1, 1] belongs to M(0, 1) (see [9], p. 212, or [4], theorem 10). Here, µ′

denotes the absolutely continuous part of µ.
An interesting problem in the theory of orthogonal polynomials is that of finding

asymptotic estimates for {Pn}, their leading coefficients {kn}, the sequence {Kn(x, x)}
(x ∈ suppµ), etc. (see, for example, [10] and [5] for Jacobi polynomials, [2] and [7] for
generalized Jacobi polynomials, [1] and [6] for Laguerre and Hermite; general results can be
found in [9], [7], etc.). We will study this problem for orthonormal polynomials associated
to modification of measures by mass points.

Let M be a positive constant and let δc denote a Dirac measure on a point c ∈ R,
that is, ∫

R
fδc = f(c)

for every function f . Then, associated to the measure ν = µ+Mδc there exists a sequence
{Qn}n≥0 of orthonormal polynomials. We will find expressions which relate the sequences
{Qn} and {Pn} in order to deduce estimates for {Qn} whenever they are known for {Pn}.
A precedent of this type of results is Koornwinder’s paper [3], where it is considered the case
of Jacobi weights modified by two delta functions at 1 and −1. Koornwinder obtained an
explicit formula which relates the new polynomials with the Jacobi polynomials and their
derivatives (which are Jacobi polynomials again). This point of view is useful in order to
get second order differential equations satisfied by the new polynomials. However, our main
interest is addressed to study the convergence of Fourier series relative to modifications of
Jacobi (and more general) weights by a finite number of mass points on all the interval
[−1, 1]. In this sense, it is more useful to find relations which involve the polynomials
{Pn}, {Qn} and the polynomials orthonormal with respect to the measure (x− c)2dµ(x).

The organization of this paper is as follows: in §1 we obtain algebraic relations among
the different sequences of orthogonal polynomials and kernels for general measures. When
supp µ = [−1, 1] and µ ∈ M(0, 1), these relations provide a good information about their
asymptotic behaviour. As an application of the previous results, in §2 we obtain several
estimates in the particular case of generalized Jacobi weights.

§1. General results.

The following notation will be used from now on:

dµc(x) = (x− c)2dµ(x);

{P c
n} is the sequence of orthonormal polynomials relative to µc;

P c
n(x) = kc

nxn + . . . , kc
n > 0;

{Kc
n(x, y)} is the sequence of kernels relative to µc.
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Lemma 1. With the above notation,

Kn(x, c) =
kn

kc
n

Pn(c)P c
n(x)−

kc
n−1

kn+1
Pn+1(c)P c

n−1(x) ∀n ≥ 1.

Proof. We can put

Kn(x, c) =
n∑

j=0

αjP
c
j (x),

with
αj =

∫
R

Kn(x, c)P c
j (x)(x− c)2dµ(x).

Therefore, we only need to show that

a) αn =
kn

kc
n

Pn(c); b) αn−1 = −
kc

n−1

kn+1
Pn+1(c); c) αj = 0, j = 0, 1, . . . , n− 2.

Part a) can be obtained by looking at the leading coefficients. Part c) is an easy
consequence of a well-known property of the kernels Kn: if Rn is a polynomial of degree
at most n, then ∫

R
Kn(x, c)Rn(x)dµ(x) = Rn(c).

In order to prove equation b), we use Christoffel-Darboux formula (see [10], for example)
and the orthonormality of {Pn} with respect to µ:

αn−1 =
∫

R
Kn(x, c)P c

n−1(x)(x− c)2dµ(x) =
∫

R
[Kn(x, c)(x− c)][P c

n−1(x)(x− c)]dµ(x)

=
∫

R

kn

kn+1
[Pn(c)Pn+1(x)− Pn+1(c)Pn(x)][P c

n−1(x)(x− c)]dµ(x)

= − kn

kn+1
Pn+1(c)

∫
R

Pn(x)[P c
n−1(x)(x− c)]dµ(x) = −

kc
n−1

kn+1
Pn+1(c)

and the lemma is proved.

In order to find bounds for the orthogonal polynomials and the kernels, it is important
to know the size of the coefficients which appear in the formulae we are going to deal with.
In the case of measures in M(0, 1), we have:

Lemma 2. Assume supp µ = [−1, 1], µ ∈ M(0, 1). Let c ∈ [−1, 1]. Then

lim
n→∞

kn

kc
n

=
1
2
, lim

n→∞

kc
n−1

kn+1
=

1
2
, lim

n→∞

kn

kc
n−1

= 1.

Proof. The first limit is a consequence of a result of Máté, Nevai and Totik (see [4],
theorem 11), from which it follows

lim
n→∞

kc
n

kn
= exp(− 1

4π

∫ 2π

0

log(cos t− c)2dt).

It is not difficult to see that the integral is equal to −4π log 2, for every c ∈ [−1, 1].
The other limits can be obtained from the first one, since from our hypothesis it

follows that kn−1/kn = an −→ 1/2. The lemma is proved.
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Lemma 3. Let µ be a measure on R and n ≥ 1. With the above notation,∫
R

P c
n−1(x)(x− c)dµ(x) = −

kc
n−1

kn

Pn(c)
Kn−1(c, c)

.

Proof. We can write

P c
n−1(x)(x− c) =

n∑
j=0

αjPj(x).

By looking at the leading coefficients, αn =
kc

n−1

kn
. If j = 1, 2, . . . , n−1, the orthonormality

properties of {Pn} and {P c
n} yield

αj =
∫

R
P c

n−1(x)(x− c)Pj(x)dµ(x)

=
∫

R
P c

n−1(x)
Pj(x)− Pj(c)

x− c
(x− c)2dµ(x) +

∫
R

P c
n−1(x)Pj(c)(x− c)dµ(x)

= Pj(c)
∫

R
P c

n−1(x)(x− c)dµ(x).

For α0 we obtain the same expression, because P0(x) is a constant:

α0 =
∫

R
P c

n−1(x)(x− c)P0(x)dµ(x) = P0(c)
∫

R
P c

n−1(x)(x− c)dµ(x).

Therefore

P c
n−1(x)(x− c) =

kc
n−1

kn
Pn(x) +

n−1∑
j=0

Pj(c)[
∫

R
P c

n−1(u)(u− c)dµ(u)]Pj(x)

=
kc

n−1

kn
Pn(x) + Kn−1(x, c)

∫
R

P c
n−1(u)(u− c)dµ(u).

The lemma follows immediately taking x = c in this equality.

We can now obtain an expression for the polynomials orthonormal with respect to the
measure µ + Mδc in terms of the polynomials {Pn} and {P c

n}.

Proposition 4. Let µ be a measure on R, c ∈ R, M > 0. Let {Qn}n≥0 be the polynomials
orthonormal with respect to µ + Mδc. Then, for each n ∈ N there exist two constants
An, Bn ∈ (0, 1) such that

Qn(x) = AnPn(x) + Bn(x− c)P c
n−1(x). (1)

Furthermore, if suppµ = [−1, 1], µ ∈ M(0, 1) and c ∈ [−1, 1], then

lim
n→∞

AnKn−1(c, c) =
1

λ(c) + M
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and

lim
n→∞

Bn =
M

λ(c) + M
,

where

λ(c) = lim
n→∞

1
Kn(c, c)

.

Proof. We will find firstly a constant Cn such that Pn(x) + Cn(x − c)P c
n−1(x) is

orthogonal to the polynomials of degree at most n−1 with respect to the measure µ+Mδc.
We only need to obtain∫

R
[Pn(x) + Cn(x− c)P c

n−1(x)](x− c)j [dµ(x) + Mδc(x)] = 0, j = 0, 1, . . . , n− 1. (2)

Let j ≥ 1. Then∫
R
[Pn(x) + Cn(x− c)P c

n−1(x)](x− c)j [dµ(x) + Mδc(x)]

=
∫

R
[Pn(x) + Cn(x− c)P c

n−1(x)](x− c)jdµ(x)

=
∫

R
Pn(x)(x− c)jdµ(x) + Cn

∫
R

P c
n−1(x)(x− c)j−1dµc(x) = 0.

Therefore, all we have to do is to find a constant Cn for which (2) is verified with j = 0.
In this case, we can calculate the integral in (2):∫

R
[Pn(x) + Cn(x− c)P c

n−1(x)][dµ(x) + Mδc(x)]

= MPn(c) +
∫

R
[Pn(x) + Cn(x− c)P c

n−1(x)]dµ(x)

= MPn(c) + Cn

∫
R
(x− c)P c

n−1(x)dµ(x) = Pn(c)[M − Cn
kc

n−1

kn

1
Kn−1(c, c)

],

according to lemma 3. If we take

Cn = M
kn

kc
n−1

Kn−1(c, c),

then Pn(x) + Cn(x− c)P c
n−1(x) is orthogonal to every polynomial of degree at most n− 1.

As Cn > 0, it is a polynomial of degree n and leading coefficient positive. Thus, we will
obtain the orthonormal polynomial Qn by dividing it by its L2(µ + Mδc)–norm.

‖Pn(x) + Cn(x− c)P c
n−1(x)‖2

L2(dµ+Mδc)

= MPn(c)2 +
∫

R
[Pn(x) + Cn(x− c)P c

n−1(x)]2dµ(x)

= MPn(c)2 +
∫

R
Pn(x)2dµ(x) + C2

n

∫
R

P c
n−1(x)2(x− c)2dµ(x)

+ 2Cn

∫
R

Pn(x)(x− c)P c
n−1(x)dµ(x)

= MPn(c)2 + 1 + C2
n + 2Cn

kc
n−1

kn
.
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If we denote
Dn = [MPn(c)2 + 1 + C2

n + 2Cn
kc

n−1

kn
]1/2,

then we have
Qn(x) =

1
Dn

Pn(x) +
Cn

Dn
(x− c)P c

n−1(x),

that is, equation (1) with An = 1/Dn and Bn = Cn/Dn. From its definition, it is clear
that Dn > 1 and Dn > Cn, so An, Bn ∈ (0, 1).

For the second part, let us assume suppµ = [−1, 1], µ ∈ M(0, 1) and c ∈ [−1, 1]. From
the above definitions for An, Cn and Dn, we have

1
AnKn−1(c, c)

= [M
Pn(c)2

Kn−1(c, c)2
+

1
Kn−1(c, c)2

+ M2(
kn

kc
n−1

)2 +
2M

Kn−1(c, c)
]1/2. (3)

Now, from µ ∈ M(0, 1) it follows (see [7], theorem 3, p. 26, or [8])

lim
n→∞

Pn(x)2

Kn−1(x, x)
= 0 ∀x ∈ [−1, 1].

Since Kn−1(c, c) ≥ P 2
0 this also implies

lim
n→∞

Pn(c)2

Kn−1(c, c)2
= 0.

From this and lemma 2 we obtain

lim
n→∞

1
AnKn−1(c, c)

= λ(c) + M.

Finally,

lim
n→∞

Bn = lim
n→∞

AnM
kn

kc
n−1

Kn−1(c, c) =
M

λ(c) + M

and the proposition is completely proved.

Remark. If Pn(c) = 0, it is easy to show directly that Qn = Pn. This is not in con-
tradiction with our proposition, since in this case it can also be proved that Pn(x) =
(x− c)P c

n−1(x) and An + Bn = 1.

Corollary 5. Let suppµ = [−1, 1], c ∈ [−1, 1], M > 0. Then, µ ∈ M(0, 1) if and only if
µ + Mδc ∈ M(0, 1).

Proof. a) If µ ∈ M(0, 1), from [4], theorem 11, we have µc ∈ M(0, 1). Now, from (1)
and the fact that lim

n
(An + Bn) = 1, it is easy to deduce that µ + Mδc ∈ M(0, 1).

b) From [4], theorem 11 again, if µ + Mδc ∈ M(0, 1) then (x − c)2[dµ + Mδc] =
(x− c)2dµ ∈ M(0, 1) and this implies µ ∈ M(0, 1).

We can also find some relations which involve the kernels.
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Proposition 6. Let µ be a measure on R, c ∈ R and M > 0. Let {Ln}n≥0 be the kernels
relative to µ + Mδc. Then, for each n ∈ N

Ln(x, y) =
1

1 + MKn(c, c)
Kn(x, y) +

MKn(c, c)
1 + MKn(c, c)

(x− c)(y − c)Kc
n−1(x, y).

Proof. If y ∈ R, it is a well-known fact that the kernels {Kc
n} verify∫

R
Rn(x)Kc

n(x, y)(x− c)2dµ(x) = Rn(y)

for every polynomial Rn of degree at most n. Actually, this property characterizes the
kernels relative to any measure.

If we write

(x− c)(y − c)Kc
n−1(x, y) =

n∑
j=0

αj(y)Pj(x), (4)

then it is easy to show for j ≥ 1 that

αj(y) = (y − c)
∫

R
Kc

n−1(x, y)
Pj(x)− Pj(c)

x− c
(x− c)2dµ(x)

+(y − c)Pj(c)
∫

R
Kc

n−1(x, y)(x− c)dµ(x).

By the above property, we obtain

αj(y) = Pj(y)− Pj(c) + (y − c)Pj(c)
∫

R
Kc

n−1(x, y)(x− c)dµ(x)

and it is immediate to see that α0 also verifies this formula.
From this formula and (4) it follows

(x− c)(y − c)Kc
n−1(x, y)

= Kn(x, y)−Kn(x, c) + (y − c)Kn(x, c)
∫

R
Kc

n−1(u, y)(u− c)dµ(u).

If we let x = c, we obtain

(y − c)
∫

R
Kc

n−1(x, y)(x− c)dµ(x) = 1− Kn(c, y)
Kn(c, c)

and, replacing this equation into the previous one,
1

1 + MKn(c, c)
Kn(x, y) +

MKn(c, c)
1 + MKn(c, c)

(x− c)(y − c)Kc
n−1(x, y)

= Kn(x, y)− MKn(c, y)
1 + MKn(c, c)

Kn(x, c).

Therefore, it will be enough to prove that∫
R
[Kn(x, y)− MKn(c, y)

1 + MKn(c, c)
Kn(x, c)]Rn(x)[dµ(x) + Mδc(x)] = Rn(y)

whenever Rn is a polynomial of degree at most n. This is an easy consequence of the fact
that the kernels {Kn} verify the analogous property with respect to the measure µ. The
proposition is proved.
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§2. Generalized Jacobi weights with mass points.

Let w be a generalized Jacobi weight, that is:

w(x) = h(x)(1− x)α(1 + x)β
N∏

i=1

|x− ti|γi , x ∈ [−1, 1]

where:
a) α,β,γi > −1, ti ∈ (−1, 1), ti 6= tj ∀i 6= j;
b) h is a positive, continuous function on [−1, 1] and w(h, δ)δ−1 ∈ L1(0, 2), w(h, δ)

being the modulus of continuity of h.
If we define

d(x, n) = (1− x + n−2)−α/2−1/4(1 + x + n−2)−β/2−1/4
N∏

i=1

(|x− ti|+ n−1)−γi/2,

then the polynomials {Pn} orthonormal with respect to the measure w(x)dx on the interval
[−1, 1] verify the estimate

|Pn(x)| ≤ Cd(x, n) ∀x ∈ [−1, 1], ∀n ≥ 1, (5)

where C is a constant independent of n and x (see [2]). In the sequel C will denote a
constant independent of n and x, but possibly different in each occurrence.

As to the kernels, it can be shown (see [7], p. 120 and p. 4) that

Kn(x, x) ∼ n(1− x + n−2)−α−1/2(1 + x + n−2)−β−1/2
N∏

i=1

(|x− ti|+ n−1)−γi (6)

uniformly in |x| ≤ 1, n ≥ 1, where by f ∼ g in a domain D we mean that there exist some
positive constants C1 and C2 such that C1f(y) ≤ g(y) ≤ C2f(y) ∀y ∈ D.

Our aim is to prove similar bounds for the polynomials and the kernels relative to a
measure which consists of a generalized Jacobi weight and a finite number of mass points
on the interval [−1, 1]. So, let k ∈ N, ai ∈ [−1, 1] and Mi > 0, i = 1, . . . , k. We will denote

dν = w(x)dx +
k∑

i=1

Miδai

on the interval [−1, 1]. By {Qn} and {Ln} we mean, respectively, their orthonormal
polynomials and kernels. Without loss of generality we can assume ai ∈ {1,−1, t1, . . . , tN},
since in the definition of w we can allow some of the exponents to be 0. Furthermore, for
every t ∈ [−1, 1] we can speak of its exponent in w, referring to the exponent of the factor
|x − t|γ in w. Obviously, there are only finitely many points with an exponent different
from 0.

With this notation, we can deduce some bounds from the results of the previous
section. Notice that w > 0 a.e. on [−1, 1], so that the measure w(x)dx belongs to M(0, 1).
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Proposition 7. There exists a constant C such that for each n ≥ 1, x ∈ [−1, 1]

a) |Qn(x)| ≤ C(1− x + n−2)−α/2−1/4(1 + x + n−2)−β/2−1/4
N∏

i=1

(|x− ti|+ n−1)−γi/2;

b) |Ln(x, x)| ≤ Cn(1− x + n−2)−α−1/2(1 + x + n−2)−β−1/2
N∏

i=1

(|x− ti|+ n−1)−γi .

Proof. a) We are going to prove the bound for Qn by induction on the number k of
mass points. If k = 0, the measure is a generalized Jacobi weight and we already know
the formula (5). Let k > 0 and assume the property holds for k − 1 mass points.

Let {Pn} be the orthonormal polynomials with respect to the measure

dµ = w(x)dx +
k−1∑
i=1

Miδai

so that, according to the notation we used in section 1, {P ak
n } are the polynomials or-

thonormal with respect to

(x− ak)2dµ(x) = (x− ak)2w(x)dx +
k−1∑
i=1

(ai − ak)2Miδai
.

Since dν = dµ + Mkδak
, from proposition 4 it follows

Qn(x) = AnPn(x) + Bn(x− ak)P ak
n−1(x),

with An, Bn ∈ (0, 1). Taking into account that both dµ and (x−ak)2dµ(x) are generalized
Jacobi weights with k − 1 mass points, they satisfy the boundedness in the statement.
Now, it is easy to see that Qn satisfies that boundedness.

Therefore, part a) is proved. As to b), proposition 6 yields

Ln(x, x) = CnKn(x, x) + (1− Cn)(x− ak)2Kak
n−1(x, x) (7)

with Cn ∈ (0, 1). Similar arguments and formula (6) lead to this bound and the proposition
is completely proved.

The previous result establishes only upper bounds, which sometimes is not enough.
In some applications (for example, in the study of the convergence of the Fourier series)
it is necessary to estimate more exactly the rate of growth of Ln(x, x), at least at some
points. In the case of a generalized Jacobi weight, with no point masses, we have even
uniform estimates (formula (6)). These estimates cannot hold when the measure has mass
points, since there the kernels Ln(x, x) are bounded (see [7], p. 4, for example). However,
we can obtain such estimates uniformly on compact sets not containing mass points.
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Proposition 8. Let ε > 0. Then,

Ln(x, x) ∼ n(1− x + n−2)−α−1/2(1 + x + n−2)−β−1/2
N∏

i=1

(|x− ti|+ n−1)−γi

uniformly in |x− ai| ≥ ε (i = 1, . . . , k), |x| ≤ 1, n ∈ N.

Proof. We only need to prove that

Ln(x, x) ≥ Cn(1− x + n−2)−α−1/2(1 + x + n−2)−β−1/2
N∏

i=1

(|x− ti|+ n−1)−γi

uniformly in |x − ai| ≥ ε (i = 1, . . . , k), |x| ≤ 1 and n large enough. This follows by
induction, using formula (7) again and having in mind that 0 < Cn < 1.

As an application of the results of section 1, some bounds for Ln(x, ai) can also be
obtained.

Proposition 9. a) Let 1 ≤ i ≤ k and suppose ai 6= ±1. Then there exists a constant C
such that for each x ∈ [−1, 1] and n ≥ 1

|Ln(x, ai)| ≤ C(1− x + n−2)−α/2−1/4(1 + x + n−2)−β/2−1/4
∏

tj 6=ai

(|x− tj |+ n−1)−γj/2.

b) If 1 is a mass point, there exists a constant C such that for each x ∈ [−1, 1] and n ≥ 1

|Ln(x, 1)| ≤ C(1 + x + n−2)−β/2−1/4
N∏

i=1

(|x− ti|+ n−1)−γi/2.

c) If −1 is a mass point, there exists a constant C such that for each x ∈ [−1, 1] and n ≥ 1

|Ln(x,−1)| ≤ C(1− x + n−2)−α/2−1/4
N∏

i=1

(|x− ti|+ n−1)−γi/2.

Proof. a) Assume 1 ≤ i ≤ k and ai 6= ±1. Let γ be the exponent of |x− ai| in w. If
we denote

dµ = w(x)dx +
k∑

j=1,j 6=i

Mjδaj ,

then ν = µ + Miδai
. Let {Pn} and {Kn} be the orthonormal polynomials and the kernels

relative to µ and kn the leading coefficient of Pn. Analogously, {P ai
n }, {Kai

n } and {kai
n }

with respect to (x− ai)2dµ.
If we write

Ψn(x) = (1− x + n−2)−α/2−1/4(1 + x + n−2)−β/2−1/4
∏

tj 6=ai

(|x− tj |+ n−1)−γj/2
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what we have to prove is |Ln(x, ai)| ≤ CΨn(x). Now, from proposition 6 and lemma 1 we
obtain

Ln(x, ai) =
kn

kai
n

Pn(ai)
1 + MiKn(ai, ai)

P ai
n (x)−

kai
n−1

kn+1

Pn+1(ai)
1 + MiKn(ai, ai)

P ai
n−1(x).

We only need to estimate the right hand side. From proposition 7 we get

|Pn(ai)| ≤ Cnγ/2;

|Pn+1(ai)| ≤ Cnγ/2;

|P ai
n (x)| ≤ C(|x− ai|+ n−1)−(γ+2)/2Ψn(x);

|P ai
n−1(x)| ≤ C(|x− ai|+ n−1)−(γ+2)/2Ψn(x).

Since ai is not a mass point for µ, proposition 8 yields

Kn(ai, ai) ∼ n1+γ .

Finally, by lemma 2

lim
n→∞

kn

kai
n

=
1
2
; lim

n→∞

kai
n−1

kn+1
=

1
2
.

It is now easy to deduce

|Ln(x, ai)| ≤ Cn−1−γ/2(|x− ai|+ n−1)−1−γ/2Ψn(x) ≤ CΨn(x).

b) Assume 1 is a mass point. We define now

dµ = w(x)dx +
k∑

i=1,ai 6=1

Miδai
,

so dν = dµ+Mδ1, M > 0. If, according to our usual notation, {Pn}, {Kn} and {kn} refer
to dµ and {Rn} are the orthonormal polynomials relative to the measure (1− x)dµ, {rn}
being their leading coefficients, it is not difficult to show that

Kn(x, 1) =
kn

rn
Pn(1)Rn(x)

(only standard properties of Kn(x, 1) are needed). Thus, proposition 6 leads to

Ln(x, 1) =
kn

rn

Pn(1)
1 + MKn(1, 1)

Rn(x).

We proceed now analogously to part a), since dµ and (1 − x)dµ are generalized Jacobi
weights with masses at points different from 1. Notice that, by Hölder’s inequality

kn

rn
=

∫ 1

−1

Rn(x)Pn(x)(1− x)dµ(x)

≤ (
∫ 1

−1

Rn(x)2(1− x)2dµ(x))1/2(
∫ 1

−1

Pn(x)2dµ(x))1/2

≤
√

2(
∫ 1

−1

Rn(x)2(1− x)dµ(x))1/2(
∫ 1

−1

Pn(x)2dµ(x))1/2 =
√

2.

Part c) is similar to b). Thus, the result is proved.
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Remark. As it was pointed out in the introduction, the main application of this kind of
estimates would be in the study of the convergence of Fourier series. This will be considered
in a forthcoming paper.
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mials. II, Constr. Approx. 3 (1987), 51–72.

[5] B. Muckenhoupt, Mean convergence of Jacobi series, Proc. Amer. Math. Soc. 23
(1969), 306–310.

[6] B. Muckenhoupt, Mean convergence of Hermite and Laguerre series. II, Trans. Amer.
Math. Soc. 147 (1970), 433–460.

[7] P. Nevai, “Orthogonal Polynomials”, Memoirs of the Amer. Math. Soc., vol. 18, n.
213, Providence, RI, U.S.A., 1979.

[8] P. Nevai, J. Zhang and V. Totik, Orthogonal polynomials: their growth relative to their
sums, J. Approx. Theory 67 (1991), 215–234.

[9] E. A. Rahmanov, On the asymptotics of the ratio of orthogonal polynomials, Math.
USSR. Sb. 32 (1977), 199–213.
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