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Abstract. Let w(x) = (1 − x)α(1 + x)β on [−1, 1], α, β ≥ −1/2 and
for each function f let Snf be the n-th expansion in the corresponding
orthonormal polynomials. We show that the operators f −→ uSn(u−1f)
are not of weak (p, p)-type, where u is another Jacobi weight and p is
an endpoint of the interval of mean convergence. The same result is
shown for expansions associated to measures of the form dν = w(x)dx+∑k

i=1 Miδai
.

§1. Introduction and main results.

Let µ be a positive measure on R with infinitely many points of increase and such that
all the moments ∫

R
xndµ (n = 0, 1, . . .)

exist. Let {Pn}n≥0 stand for the corresponding orthonormal polynomials. For f ∈ L1(dµ),
let Snf denote the n-th partial sum of the orthonormal Fourier expansion of f in {Pn}n≥0:

Sn(f, x) =
∫

R
f(y)Kn(x, y)dµ(y), Kn(x, y) =

n∑
k=1

Pk(x)Pk(y).

The problem of the uniform boundedness of the partial sum operators Sn in weighted
Lp spaces, that is,

‖uSnf‖Lp(dµ) ≤ C‖uf‖Lp(dµ) ∀n ≥ 0, ∀f ∈ Lp(updµ) (1)

has been completely solved only in some specific cases (this boundedness implies, in rather
general situations, the Lp convergence of Snf to f). For example, Badkov gave in [3]
necessary and sufficient conditions for (1) when dµ and u are generalized Jacobi weights
(earlier results can be found in [22], [24], [21], [15]). Orthogonal Hermite and Laguerre series
were studied by Askey and Wainger ([1]) and Muckenhoupt ([16], [17]).

Let us consider the case of a Jacobi weight on the interval [−1, 1], that is, dµ = w(x)dx,

w(x) = (1− x)α(1 + x)β
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and let 1 < p < ∞. If α, β ≥ −1/2, then (see [15])

‖Snf‖Lp(w) ≤ C‖f‖Lp(w) ∀n ≥ 0, ∀f ∈ Lp(w) (2)

if and only if p belongs to the open interval (p0, p1), where

p0 =
4(α + 1)
2α + 3

, p1 =
4(α + 1)
2α + 1

when α ≥ β (and the analogous formulas with α replaced by β if β ≥ α).
If both α, β > −1/2, the authors proved (see [6]) that the n-th partial sum operators

are not of weak (p, p)-type when p is an endpoint of the interval of mean convergence. In
theorem 1 we extend this result to the weighted case f −→ uSn(u−1f), where u is also a
Jacobi weight, u(x) = (1− x)a(1 + x)b, a, b ∈ R. Now, the weighted uniform boundedness
(1) holds (see [15]) if and only if

|a + (α + 1)(
1
p
− 1

2
)| < min{1

4
,
α + 1

2
},

|b + (β + 1)(
1
p
− 1

2
)| < min{1

4
,
β + 1

2
}.

(3)

Let us state our first result.

Theorem 1. Let α, β ≥ −1/2, w(x) = (1−x)α(1+x)β , u(x) = (1−x)a(1+x)b, 1 < p < ∞.
Let Sn be the partial sum operators associated to w. If there exists a constant C > 0 such
that for every f ∈ Lp(upw) and for every n ≥ 0

‖uSnf‖Lp
∗(w) ≤ C‖uf‖Lp(w),

then the inequalities

|a + (α + 1)(
1
p
− 1

2
)| < 1

4
, |b + (β + 1)(

1
p
− 1

2
)| < 1

4

are verified.

On the other hand, we also study the weak boundedness of the operators Sn associated
to a measure dν = dµ +

∑k
i=1 Miδai

, where µ{ai} = 0. In the particular case of a Jacobi
weight and two mass points on 1 and −1, the corresponding orthonormal polynomials were
studied by Koornwinder in [10] from the point of view of differential equations (see also
[4], [2], [11], [12]). The authors have found (see [7]) some estimates for the orthonormal
polynomials and kernels relative to this type of measures.

In this context, let us consider the polynomial expansion associated to a measure dν =
w(x)dx+

∑k
i=1 Miδai

, where w(x) = (1−x)α(1+x)β , Mi > 0 and take u(x) = (1−x)a(1+
x)b for x 6= ai, 0 < u(ai) < ∞. With this notation, we can state the following result.

Theorem 2. Let α, β ≥ −1/2, 1 < p < ∞. Then, there exists a constant C > 0 such that

‖uSnf‖Lp
∗(dν) ≤ C‖uf‖Lp(dν) ∀f ∈ Lp(updν), ∀n ≥ 0,
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if and only if the inequalities

|a + (α + 1)(
1
p
− 1

2
)| < 1

4
, |b + (β + 1)(

1
p
− 1

2
)| < 1

4

are verified.

§2. Preliminary lemmas.

A basic tool in the study of Fourier series on the interval [−1, 1] is Pollard’s decompo-
sition of the kernels Kn(x, t) (see [22], [15]): if {Pn}n≥0 is the sequence of polynomials
orthonormal with respect to w(x)dx and {Qn}n≥0 is the sequence of polynomials relating
to (1− x2)w(x)dx, then

Kn(x, t) = rnT1,n(x, t) + snT2,n(x, t) + snT3,n(x, t),

where
T1,n(x, t) = Pn+1(x)Pn+1(t),

T2,n(x, t) = (1− t2)
Pn+1(x)Qn(t)

x− t
,

T3,n(x, t) = (1− x2)
Pn+1(t)Qn(x)

t− x

and {rn}, {sn} are bounded sequences. In fact, for any measure µ on [−1, 1] with µ′ > 0
a.e. (in particular, for w(x)dx),

lim
n→∞

rn = −1/2, lim
n→∞

sn = 1/2

(this can be deduced from [22] and [23] or [13]). Therefore, we can write

Snf = rnW1,nf + snW2,nf − snW3,nf,

where

W1,nf(x) = Pn+1(x)
∫ 1

−1

Pn+1(t)f(t)w(t)dt,

W2,nf(x) = Pn+1(x)H((1− t2)Qn(t)f(t)w(t), x)

and
W3,nf(x) = (1− x2)Qn(x)H(Pn+1(t)f(t)w(t), x),

H being the Hilbert transform on the interval [−1, 1]. Thus, the study of Sn can be reduced
to that of Wi,n (i = 1, 2, 3).

The boundedness of the Hilbert transform can be stated in terms of Muckenhoupt’s Ap

classes of weights (see [9] and [19]; throughout this paper, the Hilbert transform, as well as
the Ap classes, are taken on the interval [−1, 1]): if u is a weight on [−1, 1] and 1 < p < ∞,
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then u ∈ Ap if and only if H is a bounded operator in Lp(u), with a constant which depends
only on the Ap constant of u.

Concerning mixed weak norm inequalities for the Hilbert transform, we can state the
following property, which can be proved in the same way as in theorem 3 of [18]: assume
that u1(x), u2(x), v(x) ≥ 0, 1 < p < ∞ and there is a constant C > 0 such that

‖u2Hg‖Lp
∗(u1) ≤ C‖g‖Lp(v) ∀g ∈ Lp(v);

then, there exists another constant B > 0 which depends only on C, such that for every
interval I

‖u2χI‖Lp
∗(u1)

(∫ 1

−1

v(x)−1/(p−1)

(|I|+ |x− xI |)q
dx

)1/q

≤ B, (4)

xI being the centre of I and 1/p + 1/q = 1.
The polynomials Pn satisfy the estimate

|Pn(x)| ≤ C(1− x)−(2α+1)/4(1 + x)−(2β+1)/4 ∀n,∀x ∈ [−1, 1] (5)

with a constant C > 0 independent of x and n. A similar estimate is verified by Qn, with
α + 1 and β + 1 instead of α and β:

|Qn(x)| ≤ C(1− x)−(2α+3)/4(1 + x)−(2β+3)/4 ∀n,∀x ∈ [−1, 1]. (6)

Thus, the following easy result will be useful.

Lemma 3. Let r ∈ R. Then, |x|r ∈ Ap([−1, 1]) ⇐⇒ −1 < r < p− 1.

The same property holds if we replace x by x − a, with a ∈ [−1, 1]. Even more, it is
not difficult to show that in order to see whether a finite product of this type of expressions
belongs to Ap, we only need to check the above inequalities for each factor separately.

We will eventually need to show that some of the operators are not of strong or weak
type. In this sense, this lemma (see [14]) will be used:

Lemma 4. Let supp dα = [−1, 1], α′ > 0 a.e. in [−1, 1], and 0 < p ≤ ∞. There exists a
constant C > 0 such that if g is a Lebesgue-measurable function on [−1, 1], then

‖α′(x)−1/2(1− x2)−1/4‖Lp(|g|pdx) ≤ C lim inf
n→∞

‖Pn‖Lp(|g|pdx).

There is a weak version of this property: it is a consequence of Kolmogorov’s condition
(see [5], lemma V.2.8, p. 485) and the previous lemma.

Lemma 5. Let supp dα = [−1, 1], α′ > 0 a.e. in [−1, 1], and 0 < p < ∞. There exists a
constant C > 0 such that if g, h are Lebesgue-measurable functions on [−1, 1], then

‖α′(x)−1/2(1− x2)−1/4g(x)‖Lp
∗(|h|pdx) ≤ C lim inf

n→∞
‖Png‖Lp

∗(|h|pdx).

The following lemma will be useful to estimate some weighted Lp
∗ norms:
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Lemma 6. Let 1 ≤ p < ∞, r, s ∈ R, a > 0. Then,

χ(0,a)(x)xr ∈ Lp
∗(x

sdx) ⇐⇒ pr + s + 1 ≥ 0, (r, s) 6= (0,−1).

Moreover, in this case there is a constant K depending on r, s, p such that

‖χ(0,a)(x)xr‖Lp
∗(x

sdx) = Kar+(s+1)/p.

§3. Proof of theorem 1.

The weak boundedness
‖uSnf‖Lp

∗(w) ≤ C‖uf‖Lp(w)

implies the following conditions (see [6], theorem 1, with the appropriate changes):

u ∈ Lp
∗(w),

u−1 ∈ Lq(w),

u(x)w(x)−1/2(1− x2)−1/4 ∈ Lp
∗(w),

u(x)−1w(x)−1/2(1− x2)−1/4 ∈ Lq(w),

where 1/p + 1/q = 1. With the weight u(x) = (1 − x)a(1 + x)b and having in mind that
α, β ≥ −1/2, this means

−1
4
≤ a + (α + 1)(

1
p
− 1

2
) <

1
4
,

−1
4
≤ b + (β + 1)(

1
p
− 1

2
) <

1
4
.

Therefore, we only need to show that the equality cannot occur in the left hand side of these
equations. Assume, for example,

−1
4

= a + (α + 1)(
1
p
− 1

2
). (7)

Let us consider again Pollard’s decomposition of the partial sums Snf . We will prove that
there exists a constant C such that

‖uW1,nf‖Lp
∗(w) ≤ C‖uf‖Lp(w)

and
‖uW3,nf‖Lp(w) ≤ C‖uf‖Lp(w).

This, together with the boundedness of Sn, implies the same property for W2,n and will lead
to a contradiction.

a) Boundedness of W1,n. From its definition, we have

‖uW1,nf‖Lp
∗(w) ≤ ‖uPn+1‖Lp

∗(w)‖u−1Pn+1‖Lq(w)‖uf‖Lp(w).
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So, we only need to prove

‖uPn‖Lp
∗(w) ≤ C ∀n ∈ N

and

‖u−1Pn‖Lq(w) ≤ C ∀n ∈ N,

which follows from lemma 6, (5) and the dominate convergence theorem.

b) Boundedness of W3,n. Using again (5) and (6), it is enough to obtain

‖Hg‖Lp(v) ≤ C‖g‖Lp(v) ∀g ∈ Lp(v),

with

v(x) = (1− x)α+ap+p(1−2α)/4(1 + x)β+ap+p(1−2β)/4.

Now, we only need to prove that v ∈ Ap. This can be deduced from lemma 3.

c) From a), b) and the hypothesis, we have a constant C such that for all f ∈ Lp(upw)
and every n ∈ N

‖uW2,nf‖Lp
∗(w) ≤ C‖uf‖Lp(w),

that is,

‖uPn+1Hg‖Lp
∗(w) ≤ C‖u(x)(1− x2)−1Qn(x)−1w(x)−1g‖Lp(w).

Applying (4), we have

‖uPn+1χI‖Lp
∗(w)

(∫ 1

−1

u(x)−q(1− x2)q|Qn(x)|qw(x)
(|I|+ |x− xI |)q

dx

)1/q

≤ C

for every interval I ⊆ [−1, 1], with a constant C > 0 independent of n and I; by lemma 5
with I = [1− ε, 1], it follows

‖xa−α/2−1/4χ[0,ε]‖Lp
∗(x

α)

(∫ 1

0

x−aq+q/4+α(1−q/2)

(ε + |x− ε/2|)q
dx

)1/q

≤ C. (8)

Now, by lemma 6 and (7)

‖xa−α/2−1/4χ[0,ε]‖Lp
∗(x

α) = K (9)

and∫ 1

0

x−aq+q/4+α(1−q/2)

(ε + |x− ε/2|)q
dx =

∫ 1

0

x1/(p−1)

(ε + |x− ε/2|)q
dx ≥ C

∫ 1

ε

x1/(p−1)−qdx = C| log ε|,

which, together with (9), leads to a contradiction in (8). Therefore, (7) cannot be true and
the theorem is proved.
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§4. Adding mass points.

Let dµ be a positive measure on R, dν = dµ +
∑k

i=1 Miδai
, where Mi > 0, µ{ai} = 0.

Let also u be a weight such that 0 < u(ai) < ∞ (i = 1, . . . , k). We will denote by {Kn(x, y)}
the kernels relative to dµ and by {Ln(x, y)} the kernels relative to dν. Then, the n-th partial
sum of the Fourier series with respect to dν is given by

Snf(x) =
∫

R
Ln(x, y)f(y)dν(y).

Let us take 1 < p < ∞, 1/p + 1/q = 1 and

Tnf(x) =
∫

R
Ln(x, y)f(y)dµ(y).

Then

Theorem 7. With the above notation, there exists a constant C such that

‖uSnf‖Lp
∗(dν) ≤ C‖uf‖Lp(dν) ∀n ≥ 0, ∀f ∈ Lp(updν) (10)

if and only if there exists another constant C such that:

a) ‖uTnf‖Lp
∗(dµ) ≤ C‖uf‖Lp(dµ) ∀n ≥ 0, ∀f ∈ Lp(updµ);

b) u(ai)‖u−1Ln(x, ai)‖Lq(dµ) ≤ C ∀n ≥ 0, (i = 1, . . . , k);

c) ‖uLn(x, ai)‖Lp
∗(dµ) ≤ Cu(ai) ∀n ≥ 0, (i = 1, . . . , k).

The same holds replacing Lp
∗(dν) by Lp(dν) and Lp

∗(dµ) by Lp(dµ).

Proof. From the definition, it follows

Snf(x) = Tnf(x) +
k∑

i=1

MiLn(x, ai)f(ai). (11)

Now, suppose (10) holds. If f ∈ Lp(updν), let us define g(x) = f(x) for x 6= ai (i = 1, . . . , k)
and g(ai) = 0 (i = 1, . . . , k). Since µ({ai}) = 0, we have Sng = Tnf and

‖ug‖Lp(dν) = ‖uf‖Lp(dµ).

Therefore, (10) implies

‖uTnf‖Lp
∗(dν) ≤ C‖uf‖Lp(dµ) ∀n ≥ 0, ∀f ∈ Lp(updν). (12)

Taking now f = χ{ai} we obtain Snf(x) = MiLn(x, ai) and ‖uf‖Lp(dν) = M
1/p
i u(ai).

Thus, (10) also implies

‖uLn(x, ai)‖Lp
∗(dν) ≤ Cu(ai) ∀n ≥ 0, (i = 1, . . . , k). (13)
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Actually, since ‖uf‖Lp(dµ), u(ai)|f(ai)| ≤ ‖uf‖Lp(dν) it is immediate from (11) that (12)
and (13) imply (10). So, we only need to show that (12) is equivalent to a) and b) and that
(13) is the same as c).

It is easy to see that

‖uLn(x, ai)‖p
Lp
∗(dν)

≤ ‖uLn(x, ai)‖p
Lp
∗(dµ)

+
k∑

j=1

Mju(aj)p|Ln(aj , ai)|p.

Now, by Schwarz inequality we have

|Ln(aj , ai)| ≤ Ln(aj , aj)1/2Ln(ai, ai)1/2

and {Ln(ai, ai)}n≥0 is a bounded sequence, since µ({ai}) > 0. Therefore

‖uLn(x, ai)‖p
Lp
∗(dµ)

≤ ‖uLn(x, ai)‖p
Lp
∗(dν)

≤ ‖uLn(x, ai)‖p
Lp
∗(dµ)

+ C

and (13) is actually equivalent to c).
Let us examine now condition (12). It is easy to see that

‖uTnf‖p
Lp
∗(dν)

≤ ‖uTnf‖p
Lp
∗(dµ)

+
k∑

i=1

Miu(ai)p|Tnf(ai)|p,

‖uTnf‖p
Lp
∗(dµ)

≤ ‖uTnf‖p
Lp
∗(dν)

and
Miu(ai)p|Tnf(ai)|p ≤ ‖uTnf‖p

Lp
∗(dν)

.

Thus, (12) holds if and only if condition a) holds together with

u(ai)|Tnf(ai)| ≤ C‖uf‖Lp(dµ) ∀n ≥ 0 ∀f ∈ Lp(updµ) (i = 1, . . . , k).

Taking into account that

Tnf(ai) =
∫

R
Ln(ai, x)f(x)dµ(x),

this last inequality is simply b).

The proof can be rewritten with Lp norms instead of Lp
∗ norms.

The operators Tn can be handled in a similar way to expansions with respect to dµ. As
to like in parts b) and c), let us introduce the following notation:

dµc(x) = (x− c)2dµ(x);

{P c
n} is the sequence of orthonormal polynomials relative to dµc;

P c
n(x) = kc

nxn + . . . , kc
n > 0;

{Kc
n(x, y)} is the sequence of kernels relative to dµc.

Then (see [7])

8



Proposition 8. Let dµ be a positive measure on R, c ∈ R, M > 0. Let {P̃n}n≥0 be the
polynomials orthonormal with respect to dµ + Mδc. Then, for each n ∈ N there exist two
constants An, Bn ∈ (0, 1) such that

P̃n(x) = AnPn(x) + Bn(x− c)P c
n−1(x).

Furthermore, if supp dµ = [−1, 1], µ′ > 0 a.e. and c ∈ [−1, 1], then

lim
n→∞

AnKn−1(c, c) =
1

λ(c) + M

and

lim
n→∞

Bn =
M

λ(c) + M
,

where

λ(c) = lim
n→∞

1
Kn(c, c)

.

We can also find some relations which involve the kernels.

Proposition 9. Let dµ be a positive measure on R, c ∈ R and M > 0. Let {K̃n}n≥0 be
the kernels relative to dµ + Mδc. Then ∀n ∈ N

K̃n(x, y) =
1

1 + MKn(c, c)
Kn(x, y) +

MKn(c, c)
1 + MKn(c, c)

(x− c)(y − c)Kc
n−1(x, y).

Propositions 8 and 9 lead to bounds for P̃n and K̃n, provided bounds for Pn, P c
n, Kn,

Kc
n are known. These bounds, together with theorem 7, can be used to prove theorem 2 (see

[8]).
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