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About this talk

This talk is based on my paper

Some sums over the non-trivial zeros
of the Riemann zeta function

The most interesting results that we will show are

Some asymptotic behaviors involving the zeros of the Riemann
zeta function related to the work by Crámer but more explicit.

New representations of the main arithmetical functions in
terms of the zeros of zeta.
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Introduction 1

In 1737 Euler proved that for s > 1, the series and the product
below are convergent and that

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
,

In 1859 Riemann extends the function to the set C

ζ(1− s) = 2(2π)−sΓ(s) cos
(πs

2

)
ζ(s).

The function ζ(s) has trivial zeros at s = −2n. The other zeros
ρ = β + iγ are complex. Hasse in 1930 gives

ζ(s) =
1

1− 21−s

∞∑
n=0

1

2n+1

n∑
k=0

(−1)k
(
n

k

)
(k + 1)−s ,

which is convergent for all s 6= 1.
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Introduction 2

Riemann also defines the function

ξ(s) = Γ
(

1 +
s

2

)
(s − 1)π−

s
2 ζ(s), ξ(1− s) = ξ(s),

and proves that (rigorously proved by Hadamard):

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
. Hence

ζ(s) =
1

2

πs/2

(s − 1)Γ
(
1 + s

2

) ∏
γ>0

{(
1− s

ρ

)(
1− s

ρ̄

)}
.

Riemann relates π(x) to the zeros of zeta. A simpler variant is

ψ(x) =
∑
n≤x

Λ(n) = x − log 2π − 1

2

(
1− 1

x2

)
−
∑
ρ

xρ

ρ
,

valid for x 6= pk , where Λ(n) is the Mangoldt function.
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Introduction 3

The asymptotic approximation ψ(x) ∼ x is equivalent to the Prime
Number Theorem conjectured by Gauss, namely

π(x) ∼ x

log x
.

From the functional equation of zeta, Riemann proved that all
the non-trivial zeros of zeta are in the band β ∈ [0, 1].

In 1.896 Hadamard and de La Vallée Poussin achieved to
prove the Prime Number Theorem by showing that ζ(s) has
no zeros of the form ρ = 1 + iγ.

The Riemann’s famous conjecture stating that the real part of
all the non-trivial zeros was equal to 1/2 remains unproved.
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Introduction 4

In addition, Riemann gives the asymptotic behavior, as T → +∞:

N (T ) ∼ T

2π
log

T

2π
− T

2π
,

for the number of complex zeros with positive imaginary part less
or equal than T . It was proved by von Mangoldt (1905):

N (T ) =
T

2π
log

T

2π
− T

2π
+O(logT ).

Backlund (1912) derived an exact formula for counting the zeros:

N (T ) =
1

π
θ(T ) +

1

π
arg ζ

(
1

2
+ iT

)
+ 1, where

θ(T ) = arg Γ

(
1

4
+

i

2
T

)
− log π

2
T .

is the Riemann-Siegel theta function.
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Notation

ρ = β + iγ for the non-trivial zeros.

Following Riemann, we define τ = −i(ρ− 1
2). Hence

ρ = 1/2 + iτ (Riemann used the notation α instead of τ).

The Riemann Hypothesis is the statement that all the τ ′s are
real.

We use C for Euler’s constant as Euler did.

As usual in papers of Number Theory, log denotes the
naperian logarithm.
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Landau’s formula

In 1911 Landau proved the following formula

Λ(t) =
−2π

T

√
t

∑
0<Re τ≤T

cos(τ log t) +O(
logT

T
),

which implies

Λ(t) = −2π
√
t lim
T→+∞

1

T

∑
0<Re τ≤T

cos(τ log t).

It has the surprising property that neglecting a finite number of
zeros of zeta we still recover the Mangoldt function.

If we assume the Riemann Hypothesis then we can replace τ and
Re τ with γ.
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Formula with Mangoldt (1)⇒ (2)

Theorem

The following identity

(1)
∑

Re τ>0

sinh zτ

sinhπτ
−
∞∑
n=1

Λ(n)

2π
√
n

(
ie iz

e iz + n
− ie−iz

e−iz + n

)
= f (z),

where

f (z) = sin
z

2
− 1

8
tan

z

4
− C + log 8π

4π
tan

z

2
− 1

4π cos z
2

log
1− tan z

4

1 + tan z
4

,

holds for |Re(z)| < π. If in addition |Im(z)| < log 2, then we have

(2)
∑

Re τ>0

sinh zτ

sinhπτ
+

1

π

∞∑
n=1

(−1)n
ζ ′(n + 1

2)

ζ(n + 1
2)

sin nz = f (z).
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Example from formula (2)

Example

Differentiating (2) with respect to z at z = 0, we get

∞∑
n=1

(−1)nn
ζ ′(n + 1

2)

ζ(n + 1
2)

+
∑

Re τ>0

πτ

sinhπτ
=

− 3

8
log 2− 1

8
log π +

15

32
π − 1

8
C +

1

8
.

As γ1 ' 14.134725, the sum over the zeros is of order 10−18.

Jesús Guillera Arithmetical functions and zeros of zeta



Asymptotic behavior

If we let z = π − 1/T in formula (2), then as T →∞ we have

∑
Re τ>0

exp
(
− τ
T

)
=

1

2π
T logT − C + log 2 + log π

2π
T +

7

8

+
1

48π

logT

T
+ A

1

T
− 9

64

1

T 2
+

7

11520π

logT

T 3
+O(

1

T 3
),

where A is the constant

A =
1

16
+

4C − 1 + 16 log 2 + 4 log π

96π
+

1

π

∞∑
n=1

n
ζ ′(n + 1

2)

ζ(n + 1
2)

+
∑

Re τ>0

τe−πτ

sinhπτ
= −0.759578 . . . .
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Other asymptotic behaviors

Differentiating with respect to T once and twice, we get∑
Re τ>0

τ exp
(
− τ
T

)
=

1

2π
T 2 logT +

1− C − log 2− log π

2π
T 2

− 1

48π
logT +

(
1

48π
− A

)
+

9

32T
+O(

1

T 2
),

and ∑
Re τ>0

τ2 exp
(
− τ
T

)
=

1

π
T 3 logT +

3− 2C − 2 log 2π

2π
T 3

− 1

48π
T − 9

32
+O(

1

T
).

as T →∞.
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Formula with Mangold (3)

Corollary

For t > 1, we obtain the identity

(3) lim
x→π−

(
1

4π

Λ(t)√
t

tan
x

2
+
∑

Re τ>0

sinh xτ

sinhπτ
cos(τ log t)

)

=
1

2

(
t + 1

t
− t

t2 − 1

)√
t,

If we assume the RH then we can replace τ and Re τ with γ.
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Proof of formula (3)

Let z = x − i log t in (1) and take real parts. Observe that

Re

∞∑
n=1

Λ(n)

2π
√
n

ie ix t

e ix t + n
= − sin x

∞∑
n=1

Λ(n)

2π
√
n

tn

(e ix t + n)(e−ix t + n)
.

We have to prove that for t > 1, the limit of

− sin x
∞∑
n=1

Λ(n)

2π
√
n

tn

(e ix t + n)(e−ix t + n)
+

Λ(t)

2π
√
t

sin x

2(1 + cos x)
,

as x → π−, is equal to 0. But it is evident if t is not the power pk

of a prime p. When t = pk it comes observing that the only term
that contributes to the sum is n = pk .
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Representation of the Mangoldt function

Corollary

From (3), as x → π− we get

(4) Λ(t) = −4π
√
t cot

x

2

∑
Re τ>0

sinh xτ

sinhπτ
cos(τ log t) +O

(
cot

x

2

)
.

and

Λ(t) =− 4π
√
t cot

x

2

∑
Re τ>0

sinh xτ

sinhπτ
cos(τ log t)

+ 2π

(
t + 1− t2

t2 + 1

)
cot

x

2
+ o

(
cot

x

2

)
.(5)

If we assume the Riemann Hypothesis then we can replace τ and
Re τ with γ.
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Comparing representations

Landau’s formula (T →∞):

Λ(t) =
−2π

T

√
t
∑

0<γ≤T
cos(γ log t) +O(

logT

T
).

G1 formula (x → π−):

Λ(t) = −4π
√
t cot

x

2

∑
γ>0

sinh xγ

sinhπγ
cos(γ log t) +O

(
cot

x

2

)
.

G2 formula (x → π−):

Λ(t) =− 4π
√
t cot

x

2

∑
γ>0

sinh xγ

sinhπγ
cos(γ log t)

+ 2π

(
t + 1− t2

t2 + 1

)
cot

x

2
+ o

(
cot

x

2

)
.
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Sage code for the Mangoldt function (G1)

(x = 3.14, γk for k = 1 to k = 10000)

Here is the Sage code:

var(’t’)

z=sage.databases.odlyzko.zeta_zeros()

p=pi.n(digits=15); x=3.14; ran=range(0,10000)

v(t)=sum([sinh(x*z[j])/sinh(p*z[j])*cos(log(t)*z[j])

for j in ran])

r(t)=-4*p*sqrt(t)*v(t)*cot(x/2)

plot(r(t),t,2,26)+plot(log(t),t,2,26, color=’red’)
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Mangoldt from G1

(x = 3.14, γk for k = 1 to k = 10000)
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Mangoldt from G2

(x = 3.14, γk for k = 1 to k = 10000)
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Mangoldt from Landau’s formula

(T = 10000, γk for k = 1 to 10141)
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Why the graphic with Landau’s formula is so bad?

plot+plot+plot+plot+plot+plot+plot+plot+plot+plot
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Corollary

The following formula holds

lim
x→π−

∑
γ>0

sinh xγ

sinhπγ

(
log 2√

2
cos(γ log t)− Λ(t)√

t
cos(γ log 2)

)

=
log 2√

2

(√
t

2
− 1

2(t2 − 1)
√
t

)
− Λ(t)√

t

5
√

2

12
.(6)

Corollary

The following formula:

(7) lim
z→1−

∞∑
j=0

cos(γj+1 log t) z j =

√
t

2
− 1

2(t2 − 1)
√
t
,

holds whenever t is not a prime nor a power of prime. Otherwise
the limit is infinite.
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Formula with Moebius

Theorem

The following identity

(8)
∞∑
n=1

µ(n)

2π
√
n

ie iz

e iz + n
=
∑
γ

1

ζ ′(12 + iγ)

e−zγ

sinhπγ
+

i

2πζ(12)

−
∞∑
n=1

(−1)n(2π)2n

(2n)!ζ(2n + 1)
ie−

4n+1
2

iz +
1

2π

∞∑
n=1

(−1)n

ζ(12 − n)
ie−

n
2
iz ,

holds for |Re(z)| < π and Im(z) < 0 assuming the RH and that all
the zeros of zeta are simple.
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Representation of the Moebius function

Corollary

For the Moebius function µ(t), we get the following representation
as x → π−:

µ(t) =4π
√
t cot

x

2

∑
γ>0

[
Re

(
1

ζ ′(12 + iγ)

)
sinh xγ

sinhπγ
cos(γ log t)

−Im

(
1

ζ ′(12 + iγ)

)
cosh xγ

sinhπγ
sin(γ log t)

]

+ 4π cot
x

2

∞∑
n=1

(−1)n(2π)2n

(2n)!ζ(2n + 1)
t−2n + o

(
cot

x

2

)
,(9)

assuming the RH and that all the zeros of zeta are simple.

Observe that neglecting a finite number of zeros of zeta, we still
recover the Moebius function.
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Moebius

(x = 3.14, γk for k = 1 to k = 10000)
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Example

Taking t = 1 in formula (9), we get

lim
x→π−

cot
x

2

∑
γ>0

sinh xγ

sinhπγ

(
1

ζ ′(12 + iγ)
+

1

ζ ′(12 − iγ)

)
=

1

2π
.

Then, with the substitution x = π + log z , we get

lim
z→1−

(1− z)
∑
γ>0

(
1

ζ ′(12 + iγ)
+

1

ζ ′(12 − iγ)

)
zγ =

1

π
.
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Formula involving the Euler-Phi function

Theorem

If we assume the Riemann Hypothesis and that all the zeros of
zeta are simple, then the identity

(10)

i
ζ(12)

2πζ(32)
e iz − e iz

∞∑
n=1

ϕ(n)

2πn3/2
ie iz

e iz + n
=
∑
γ

ζ(−1
2 + iγ)

ζ ′(12 + iγ)

e−zγ

sinhπγ

+ i
ζ(−1

2)

2πζ(12)
+ i

3

π2
e

3
2
iz − 1

2π2

∞∑
n=1

(2n + 1)
ζ(2n + 2)

ζ(2n + 1)
ie−

4n+1
2

iz

+
1

4π3

∞∑
n=1

(−1)n
ζ(−1

2 − n)

ζ(12 − n)
ie−

n
2
iz ,

holds for |Re(z)| < π and Im(z) < 0.
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Representation of the Euler-Phi function

Corollary

As x → π−, for the Euler-Phi function ϕ(t) we get

ϕ(t) =4π
√
t cot

x

2

∑
γ>0

[
Re

(
ζ(−1

2 + iγ)

ζ ′(12 + iγ)

)
sinh xγ

sinhπγ
cos(γ log t)

−Im

(
ζ(−1

2 + iγ)

ζ ′(12 + iγ)

)
cosh xγ

sinhπγ
sin(γ log t)

]
+

12

π
t2 cot

x

2

− 2

π
cot

x

2

∞∑
n=1

(2n + 1)
ζ(2n + 2)

ζ(2n + 1)
t−2n + o

(
cot

x

2

)
,(11)

assuming the RH and that all the zeros of zeta are simple.

Observe that neglecting a finite number of zeros of zeta, we still
recover the Euler-Phi function.
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Euler-Phi

(x = 3.14, γk for k = 1 to k = 10000)
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Proof of (1). Integral along z = −1/2

Let I (z) be the analytic continuation of the integral I (z) along the
vertical axis z = −1/2, where

I (z) =
1

2πi

∫ −1/2+i∞

−1/2−i∞

ζ ′(s + 1
2)

ζ(s + 1
2)

π

sinπs
zsds.

The poles of the integrand to the right of z = −1/2 are at

s =
1

2
, s = n, ρ− 1

2
, n ∈ {0, 1, 2 . . . }.

The poles of the integrand to the left of z = −1/2 are at

s = −2n − 1

2
, s = −n, n ∈ {1, 2, 3 . . . }.
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Proof of (1). Contour of integration

1
2 − 2bT c − iT

1
2 − 2bT c+ iT

1
2 + bT c − iT

1
2 + bT c+ iT

−1
2 − iT

−1
2 + iT

|z | < 1|z | > 1
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Proof of (1). Application of the residues theorem

For |z | < 1, we have

I = −π
√
z +

∞∑
n=0

(−1)n
ζ ′(n + 1

2)

ζ(n + 1
2)

zn + π
∑
ρ

zρ−
1
2

sinπ(ρ− 1
2)
.

For |z | > 1, we have

I =
∞∑
n=1

ζ ′(−2n)

ζ(−2n)
sin(2πn)z−2n−

1
2 +

∞∑
n=1

(−1)n
ζ ′(12 − n)

ζ(12 − n)
z−n.

To simplify it we use the functional equation:

ζ ′(1− s)

ζ(1− s)
= log 2π − ψ(s)− π

2
tan

πs

2
− ζ ′(s)

ζ(s)
.

Jesús Guillera Arithmetical functions and zeros of zeta



Proof of (1). The function I (z) for |z | < 1 and |z | > 1

For |z | < 1, we have

I = −π
√
z +

∞∑
n=0

(−1)n
ζ ′(n + 1

2)

ζ(n + 1
2)

zn + π
∑
ρ

zρ−
1
2

sinπ(ρ− 1
2)
.

For |z | > 1, we have

I =
π√

z(z2 − 1)
+

log 2π

z + 1
+

C + log 4

z + 1
− π

2z − 2

+ i

√
z

z + 1
log

√
z + i√
z − i

+
∞∑
n=1

(−1)n
ζ ′(n + 1

2)

ζ(n + 1
2)

z−n.

Analytic continuation to C− (−∞, 0].

Jesús Guillera Arithmetical functions and zeros of zeta



Proof of (1). Analytic continuation

The following identities are valid in C− (−∞, 0]:

I = −π
√
z +

ζ ′(12)

ζ(12)
+
∞∑
n=1

Λ(n)z√
n(z + n)

+ π
∑
ρ

zρ−
1
2

sinπ(ρ− 1
2)

and

I =
π√

z(z2 − 1)
+

C + log 8π

z + 1
− π

2z − 2

+ i

√
z

z + 1
log

√
z + i√
z − i

+
∞∑
n=1

Λ(n)√
n(1 + zn)

.

Identifying both identities and replacing z with e iz we arrive at (1).
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Gracias
Thank you
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