Ramanujan-like series and String Theory

Jesús Guillera

Talk given in Ávila, Dublín, Zaragoza and Bilbao

Formulas proved by the WZ-method

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}} \frac{(-1)^{n}}{2^{10 n}}\left(820 n^{2}+180 n+13\right) & =\frac{128}{\pi^{2}}, \tag{2002}\\
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{5}} \frac{1}{2^{4 n}}\left(120 n^{2}+34 n+3\right) & =\frac{32}{\pi^{2}}, \tag{2002}\\
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}} \frac{(-1)^{n}}{2^{2 n}}\left(20 n^{2}+8 n+1\right) & =\frac{8}{\pi^{2}}, \tag{2003}\\
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{5}}\left(\frac{3}{4}\right)^{3 n}\left(74 n^{2}+27 n+3\right) & =\frac{48}{\pi^{2}}, \tag{2010}
\end{align*}
$$

where $(s)_{n}=s(s+1) \cdots(s+n-1)$ is the Pochhammer symbol.

Formulas discovered by the PSLQ-algorithm

In 2003 I conjectured the following formulas:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{2^{10 n}}\left(1640 n^{2}+278 n+15\right)=\frac{256 \sqrt{3}}{\pi^{2}} \\
& \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{48^{n}}\left(252 n^{2}+63 n+5\right)=\frac{48}{\pi^{2}} \\
& \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{80^{3 n}}\left(5418 n^{2}+693 n+29\right)=\frac{128 \sqrt{5}}{\pi^{2}} \\
& \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{8}\right)_{n}\left(\frac{3}{8}\right)_{n}\left(\frac{5}{8}\right)_{n}\left(\frac{7}{8}\right)_{n}}{(1)_{n}^{5}} \frac{1}{7^{4 n}}\left(1920 n^{2}+304 n+15\right)=\frac{56 \sqrt{7}}{\pi^{2}}
\end{aligned}
$$

which I discovered with the help of the PSLQ algorithm.

The PSLQ and WZ algorithms

The PSLQ algorithm is very good to discover formulas but it does not prove them. For example, looking for integer relations among the numbers t_{0}, t_{1}, t_{2} and $1 / \pi^{2}$, where

$$
t_{i}=\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}} \frac{(-1)^{n}}{2^{2 n}} n^{i}, \quad \text { we get the vector } \quad(1,8,20,-8)
$$

The PSLQ and WZ algorithms

The PSLQ algorithm is very good to discover formulas but it does not prove them. For example, looking for integer relations among the numbers t_{0}, t_{1}, t_{2} and $1 / \pi^{2}$, where

$$
t_{i}=\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}} \frac{(-1)^{n}}{2^{2 n}} n^{i}, \quad \text { we get the vector }(1,8,20,-8)
$$

With the WZ-method we can prove that
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2 n}} \frac{\left(\frac{1}{2}\right)_{n}^{5}\left(\frac{1}{2}\right)_{k}^{4}}{(1)_{n}(1+k)_{n}^{4}(1)_{k}^{4}}\left(20 n^{2}+8 n+1+24 k n+8 k^{2}+4 k\right)=\frac{8}{\pi^{2}}$
because it is an algorithm which can prove every identity of the form $\sum_{n=0}^{\infty} G(n, k)=$ constant, in case $G(n, k)$ is hypergeometric in its two variables.

- Although the WZ-proofs are beautiful and interesting they do not give us any insight of why there is is a family of similar formulas for the constant $1 / \pi^{2}$.
- The theory we are going to explain now is a trial to solve this problem but it has the following important deficiencies:
- We can only solve the equations by numerical approximations and not in an exact way.
- We are unable to prove the main conjecture.
- For the moment the unique existing proofs, and only for some particular formulas, are by the WZ-method.

The theory we are going to explain is mainly based on the papers
圊 J. Guillera, A matrix form of Ramanujan-type series for $1 / \pi$. Contemp. Math. 517 (2010), 189-206,

嗇 G. Almkvist and J. Guillera, Ramanujan-like series for $1 / \pi^{2}$ and String Theory,

The theory we are going to explain is mainly based on the papers
圊 J．Guillera，A matrix form of Ramanujan－type series for $1 / \pi$ ．Contemp．Math． 517 （2010），189－206，
圊 G．Almkvist and J．Guillera，Ramanujan－like series for $1 / \pi^{2}$ and String Theory，
which are mainly inspired in：
圊 J．Guillera，A new method to obtain series for $1 / \pi$ and $1 / \pi^{2}$ ，Exp．Math． 15 （2006），83－89，

居 Y．Yang and W．Zudilin，On Sp_{4} modularity of Picard－ Fuchs differential equations for Calabi－Yau threefolds．
Contemp．Math． 517 （2010），381－413．

Ramanujan-like series for $1 / \pi^{2}$

Let $s_{0}=1 / 2, s_{3}=1-s_{1}, s_{4}=1-s_{2}$ and

$$
\begin{aligned}
\left(s_{1}, s_{2}\right)= & (1 / 2,1 / 2),(1 / 2,1 / 3),(1 / 2,1 / 4),(1 / 2,1 / 6),(1 / 3,1 / 3), \\
& (1 / 3,1 / 4),(1 / 3,1 / 6),(1 / 4,1 / 4),(1 / 4,1 / 6),(1 / 6,1 / 6), \\
& (1 / 5,2 / 5),(1 / 8,3 / 8),(1 / 10,3 / 10),(1 / 12,5 / 12) .
\end{aligned}
$$

We will call Ramanujan-like series for $1 / \pi^{2}$ to the series which are of the form

$$
\begin{aligned}
& \sum_{n=0}^{\infty} z^{n}\left[\prod_{i=0}^{4} \frac{\left(s_{i}\right)_{n}}{(1)_{n}}\right]\left(a+b n+c n^{2}\right)=\frac{1}{\pi^{2}}, 0<z<1, \text { or of the form } \\
& \sum_{n=0}^{\infty}(-1)^{n} z^{n}\left[\prod_{i=0}^{4} \frac{\left(s_{i}\right)_{n}}{(1)_{n}}\right]\left(a+b n+c n^{2}\right)=\frac{1}{\pi^{2}}, 0<z \leq 1
\end{aligned}
$$

where z, a, b and c are algebraic numbers.

Expansions related to Ramanujan-like series for $1 / \pi^{2}$

I propose a conjecture which motivate the study, that I am going to make, of the following expansions as $x \rightarrow 0$:

$$
\begin{gathered}
\sum_{n=0}^{\infty} z^{n+x}\left[\prod_{i=0}^{4} \frac{\left(s_{i}\right)_{n+x}}{(1)_{n+x}}\right]\left(a+b(n+x)+c(n+x)^{2}\right) \text { or } \\
\sum_{n=0}^{\infty}(-1)^{n} z^{n+x}\left[\prod_{i=0}^{4} \frac{\left(s_{i}\right)_{n+x}}{(1)_{n+x}}\right]\left(a+b(n+x)+c(n+x)^{2}\right) \\
\quad=\frac{1}{\pi^{2}}\left(1-\frac{k}{2} \pi^{2} x^{2}+\frac{j}{24} \pi^{4} x^{4}\right)+O\left(x^{5}\right)
\end{gathered}
$$

where now we use the generalized definition $(s)_{x}=\Gamma(s+x) / \Gamma(s)$.

Expansions related to Ramanujan-like series for $1 / \pi^{2}$

I propose a conjecture which motivate the study, that I am going to make, of the following expansions as $x \rightarrow 0$:

$$
\begin{gathered}
\sum_{n=0}^{\infty} z^{n+x}\left[\prod_{i=0}^{4} \frac{\left(s_{i}\right)_{n+x}}{(1)_{n+x}}\right]\left(a+b(n+x)+c(n+x)^{2}\right) \text { or } \\
\sum_{n=0}^{\infty}(-1)^{n} z^{n+x}\left[\prod_{i=0}^{4} \frac{\left(s_{i}\right)_{n+x}}{(1)_{n+x}}\right]\left(a+b(n+x)+c(n+x)^{2}\right) \\
\quad=\frac{1}{\pi^{2}}\left(1-\frac{k}{2} \pi^{2} x^{2}+\frac{j}{24} \pi^{4} x^{4}\right)+O\left(x^{5}\right)
\end{gathered}
$$

where now we use the generalized definition $(s)_{x}=\Gamma(s+x) / \Gamma(s)$.
Conjecture: The series at $x=0$ is a Ramanujan-like series for $1 / \pi^{2}$ if and only k and j are rational.

Expansions related to Ramanujan-like series for $1 / \pi^{2}$

I propose a conjecture which motivate the study, that I am going to make, of the following expansions as $x \rightarrow 0$:

$$
\begin{gathered}
\sum_{n=0}^{\infty} z^{n+x}\left[\prod_{i=0}^{4} \frac{\left(s_{i}\right)_{n+x}}{(1)_{n+x}}\right]\left(a+b(n+x)+c(n+x)^{2}\right) \text { or } \\
\sum_{n=0}^{\infty}(-1)^{n} z^{n+x}\left[\prod_{i=0}^{4} \frac{\left(s_{i}\right)_{n+x}}{(1)_{n+x}}\right]\left(a+b(n+x)+c(n+x)^{2}\right) \\
\quad=\frac{1}{\pi^{2}}\left(1-\frac{k}{2} \pi^{2} x^{2}+\frac{j}{24} \pi^{4} x^{4}\right)+O\left(x^{5}\right)
\end{gathered}
$$

where now we use the generalized definition $(s)_{x}=\Gamma(s+x) / \Gamma(s)$.
Conjecture: The series at $x=0$ is a Ramanujan-like series for $1 / \pi^{2}$ if and only k and j are rational.

But k and j are not independent!.

Expansion in matrix form

Using the property $(s)_{n+x}=(s+x)_{n}(s)_{x}$, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} z^{n}\left[\prod_{i=0}^{4} \frac{\left(s_{i}+x\right)_{n}}{(1+x)_{n}}\right]\left(a+b(n+x)+c(n+x)^{2}\right) \quad \text { or } \\
& \sum_{n=0}^{\infty}(-1)^{n} z^{n}\left[\prod_{i=0}^{4} \frac{\left(s_{i}+x\right)_{n}}{(1+x)_{n}}\right]\left(a+b(n+x)+c(n+x)^{2}\right) \\
= & z^{-x}\left[\prod_{i=0}^{4} \frac{(1)_{x}}{\left(s_{i}\right)_{x}}\right] L_{x}+O\left(x^{5}\right), \quad L_{x}=\frac{1}{\pi^{2}}-\frac{k}{2} x^{2}+\frac{j}{24} \pi^{2} x^{4} .
\end{aligned}
$$

IDEA: We will replace the variable x with a fix nilpotent matrix X of order five.

Expansion in matrix form

Using the property $(s)_{n+x}=(s+x)_{n}(s)_{x}$, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} z^{n}\left[\prod_{i=0}^{4} \frac{\left(s_{i}+x\right)_{n}}{(1+x)_{n}}\right]\left(a+b(n+x)+c(n+x)^{2}\right) \quad \text { or } \\
& \sum_{n=0}^{\infty}(-1)^{n} z^{n}\left[\prod_{i=0}^{4} \frac{\left(s_{i}+x\right)_{n}}{(1+x)_{n}}\right]\left(a+b(n+x)+c(n+x)^{2}\right) \\
= & z^{-x}\left[\prod_{i=0}^{4} \frac{(1)_{x}}{\left(s_{i}\right)_{x}}\right] L_{x}+O\left(x^{5}\right), \quad L_{x}=\frac{1}{\pi^{2}}-\frac{k}{2} x^{2}+\frac{j}{24} \pi^{2} x^{4} .
\end{aligned}
$$

IDEA: We will replace the variable x with a fix nilpotent matrix X of order five. In this way we truncate the series in a natural way and we get rid of the derivatives with respect to x.

The matrices A, B, C and M

We define the matrices (series of positive terms)

$$
\begin{aligned}
& A=\sum_{n=0}^{\infty} z^{n}\left[\prod_{i=0}^{4} \frac{\left(s_{i}+X\right)_{n}}{(1+X)_{n}}\right], B=\sum_{n=0}^{\infty} z^{n}\left[\prod_{i=0}^{4} \frac{\left(s_{i}+X\right)_{n}}{(1+X)_{n}}\right](n l+X), \\
& C=\sum_{n=0}^{\infty} z^{n}\left[\prod_{i=0}^{4} \frac{\left(s_{i}+X\right)_{n}}{(1+X)_{n}}\right](n l+X)^{2}, \quad M=z^{-X}\left[\prod_{i=0}^{4} \frac{(1)_{X}}{\left(s_{i}\right)_{X}}\right] L_{X} .
\end{aligned}
$$

Then $a A+b B+c C=M, A=a_{0} I+a_{1} X+a_{2} X^{2}+a_{3} X^{3}+a_{4} X^{4}$, etc.
All components a_{0}, a_{1}, a_{2}, etc are power series of z with rational coefficients. Let $\theta=z d / d z$. The easy relations $B=X A+\theta A$ and $C=X B+\theta B$, imply that ($\mathrm{i}=1,2,3,4$)

$$
b_{0}=\theta a_{0}, \quad c_{0}=\theta b_{0}, \quad b_{i}=a_{i-1}+\theta a_{i}, \quad c_{i}=b_{i-1}+\theta b_{i} .
$$

The matrix M

It is the product of the matrices

$$
\begin{aligned}
L_{X} & =\frac{1}{\pi^{2}}\left(I-\frac{k}{2} \pi^{2} X^{2}+\frac{j}{24} \pi^{4} X^{4}\right) \\
z^{-X} & =I-(\ln z) X+\frac{1}{2}\left(\ln ^{2} z\right) X^{2}-\frac{1}{6}\left(\ln ^{3} z\right) X^{3}+\frac{1}{24}\left(\ln ^{4} z\right) X^{4}
\end{aligned}
$$

$\prod_{i=0}^{4} \frac{(1)_{X}}{\left(s_{i}\right)_{X}}=\rho_{0}^{-X}\left(1-\frac{\rho_{1}}{2} \pi^{2} X^{2}+\rho_{2} \zeta(3) X^{3}-\frac{\rho_{1}^{2}-4 \rho_{3}}{8} \pi^{4} X^{4}\right)$.
Here

$$
\begin{aligned}
& \rho_{0}=\frac{1}{4} \exp \left\{4 \gamma+\psi\left(s_{1}\right)+\psi\left(s_{2}\right)+\psi\left(1-s_{1}\right)+\psi\left(1-s_{2}\right)\right\} \\
& \rho_{1}=\frac{5}{3}+\cot ^{2}\left(\pi s_{1}\right)+\cot ^{2}\left(\pi s_{2}\right), \quad \rho_{3}=\frac{1}{\sin ^{2}\left(\pi s_{1}\right) \sin ^{2}\left(\pi s_{2}\right)} \\
& \rho_{2}=\frac{2}{\zeta(3)}\left\{\zeta(3,1 / 2)+\zeta\left(3, s_{1}\right)+\zeta\left(3, s_{2}\right)+\zeta\left(3,1-s_{1}\right)+\zeta\left(3,1-s_{2}\right)\right\} .
\end{aligned}
$$

Components of the matrix M

We get the following results:

$$
\begin{aligned}
& m_{0}=\frac{1}{\pi^{2}} \\
& m_{1}=\frac{1}{\pi^{2}}\left\{-\ln \left(\rho_{0} z\right)\right\} \\
& m_{2}=\frac{1}{\pi^{2}}\left\{\frac{\ln ^{2}\left(\rho_{0} z\right)}{2}-\frac{\pi^{2}}{2}\left(k+\rho_{1}\right)\right\}, \\
& m_{3}=\frac{1}{\pi^{2}}\left\{-\frac{\ln ^{3}\left(\rho_{0} z\right)}{6}+\frac{\pi^{2}}{2}\left(k+\rho_{1}\right) \ln \left(\rho_{0} z\right)+\rho_{2} \zeta(3)\right\},
\end{aligned}
$$

and

$$
2 m_{0} m_{4}-2 m_{1} m_{3}+m_{2}^{2}=\frac{j}{12}+\frac{k^{2}}{4}+\rho_{1} k+\rho_{3} .
$$

Picard-Fuchs differential equations

The matrix $G=z^{X} A$ is a solution of the differential equation

$$
\theta^{5} G=z(\theta+1 / 2)\left(\theta+s_{1}\right)\left(\theta+s_{2}\right)\left(\theta+1-s_{1}\right)\left(\theta+1-s_{2}\right) G .
$$

We prove the case $\left(s_{1}, s_{2}\right)=(1 / 2,1 / 2)$. Writing

$$
A=\sum_{n=0}^{\infty} E_{n} z^{n}, \quad \text { where } \quad E_{n}=\frac{\left(\frac{1}{2} I+X\right)_{n}^{5}}{(I+X)_{n}^{5}}
$$

we have $E_{n+1}[(n+1) I+X]^{5}=E_{n}\left[\left(n+\frac{1}{2}\right) I+X\right]^{5}$.
If we substitute $G=z^{X} A$ in the differential equation, we obtain

$$
z^{X} \sum_{n=0}^{\infty} E_{n}(n l+X)^{5} z^{n}-z^{X} \sum_{n=0}^{\infty} E_{n}\left[\left(n+\frac{1}{2}\right) I+X\right]^{5} z^{n+1}=0
$$

Fundamental solutions

The fundamental solutions of the differential equation

$$
\theta^{5} g=z(\theta+1 / 2)\left(\theta+s_{1}\right)\left(\theta+s_{2}\right)\left(\theta+1-s_{1}\right)\left(\theta+1-s_{2}\right) g
$$

are the components of the matrix $G=z^{X} A$.

Fundamental solutions

The fundamental solutions of the differential equation

$$
\theta^{5} g=z(\theta+1 / 2)\left(\theta+s_{1}\right)\left(\theta+s_{2}\right)\left(\theta+1-s_{1}\right)\left(\theta+1-s_{2}\right) g
$$

are the components of the matrix $G=z^{X} A$. That is, they are the functions

$$
\begin{gathered}
g_{0}=a_{0}, \quad g_{1}=a_{0} \ln z+a_{1}, \quad g_{2}=a_{0} \frac{\ln ^{2} z}{2}+a_{1} \ln z+a_{2}, \\
g_{3}=a_{0} \frac{\ln ^{3} z}{6}+a_{1} \frac{\ln ^{2} z}{2}+a_{2} \ln z+a_{3}, \\
g_{4}= \\
a_{0} \frac{\ln ^{4} z}{24}+a_{1} \frac{\ln ^{3} z}{6}+a_{2} \frac{\ln ^{2} z}{2}+a_{3} \ln z+a_{4} .
\end{gathered}
$$

Fundamental solutions

The fundamental solutions of the differential equation

$$
\theta^{5} g=z(\theta+1 / 2)\left(\theta+s_{1}\right)\left(\theta+s_{2}\right)\left(\theta+1-s_{1}\right)\left(\theta+1-s_{2}\right) g
$$

are the components of the matrix $G=z^{X} A$. That is, they are the functions

$$
\begin{gathered}
g_{0}=a_{0}, \quad g_{1}=a_{0} \ln z+a_{1}, \quad g_{2}=a_{0} \frac{\ln ^{2} z}{2}+a_{1} \ln z+a_{2}, \\
g_{3}=a_{0} \frac{\ln ^{3} z}{6}+a_{1} \frac{\ln ^{2} z}{2}+a_{2} \ln z+a_{3}, \\
g_{4}= \\
a_{0} \frac{\ln ^{4} z}{24}+a_{1} \frac{\ln ^{3} z}{6}+a_{2} \frac{\ln ^{2} z}{2}+a_{3} \ln z+a_{4} .
\end{gathered}
$$

Applying θ once and twice we obtain $\theta G=z^{X} B$ and $\theta^{2} G=z^{X} C$.

Pullback

It is known that there exists functions $y_{0}, y_{1}, y_{2}, y_{3}$ satisfying a Calabi-Yau diff. equation $\theta^{4} y=e_{3}(z) \theta^{3} y+\cdots$, such that

$$
\begin{gathered}
g_{0}=\left|\begin{array}{cc}
y_{0} & y_{1} \\
\theta y_{0} & \theta y_{1}
\end{array}\right|, \quad g_{1}=\left|\begin{array}{cc}
y_{0} & y_{2} \\
\theta y_{0} & \theta y_{2}
\end{array}\right|, \quad g_{3}=\frac{1}{2}\left|\begin{array}{cc}
y_{1} & y_{3} \\
\theta y_{1} & \theta y_{3}
\end{array}\right|, \\
g_{4}=\frac{1}{2}\left|\begin{array}{cc}
y_{2} & y_{3} \\
\theta y_{2} & \theta y_{3}
\end{array}\right|, \quad g_{2}=\left|\begin{array}{cc}
y_{0} & y_{3} \\
\theta y_{0} & \theta y_{3}
\end{array}\right|=\left|\begin{array}{cc}
y_{1} & y_{2} \\
\theta y_{1} & \theta y_{2}
\end{array}\right| .
\end{gathered}
$$

Pullback

It is known that there exists functions $y_{0}, y_{1}, y_{2}, y_{3}$ satisfying a Calabi-Yau diff. equation $\theta^{4} y=e_{3}(z) \theta^{3} y+\cdots$, such that

$$
\begin{gathered}
g_{0}=\left|\begin{array}{cc}
y_{0} & y_{1} \\
\theta y_{0} & \theta y_{1}
\end{array}\right|, \quad g_{1}=\left|\begin{array}{cc}
y_{0} & y_{2} \\
\theta y_{0} & \theta y_{2}
\end{array}\right|, \quad g_{3}=\frac{1}{2}\left|\begin{array}{cc}
y_{1} & y_{3} \\
\theta y_{1} & \theta y_{3}
\end{array}\right|, \\
g_{4}=\frac{1}{2}\left|\begin{array}{cc}
y_{2} & y_{3} \\
\theta y_{2} & \theta y_{3}
\end{array}\right|, \quad g_{2}=\left|\begin{array}{cc}
y_{0} & y_{3} \\
\theta y_{0} & \theta y_{3}
\end{array}\right|=\left|\begin{array}{cc}
y_{1} & y_{2} \\
\theta y_{1} & \theta y_{2}
\end{array}\right| .
\end{gathered}
$$

The following relations hold:

$$
\begin{aligned}
2 g_{0} g_{4}-2 g_{1} g_{3}+g_{2}^{2} & =0 \\
2\left(\theta g_{0}\right)\left(\theta g_{4}\right)-2\left(\theta g_{1}\right)\left(\theta g_{3}\right)+\left(\theta g_{2}\right)^{2} & =0 \\
2\left(\theta^{2} g_{0}\right)\left(\theta^{2} g_{4}\right)-2\left(\theta^{2} g_{1}\right)\left(\theta^{2} g_{3}\right)+\left(\theta^{2} g_{2}\right)^{2} & =f^{2} \\
\text { where } f=\exp \left(\int \frac{e_{3}(z)}{2 z} d z\right) &
\end{aligned}
$$

Proof of the third identity

$$
\begin{gathered}
2\left(\theta^{2} g_{0}\right)\left(\theta^{2} g_{4}\right)-2\left(\theta^{2} g_{1}\right)\left(\theta^{2} g_{3}\right)+\left(\theta^{2} g_{2}\right)^{2}=f^{2}, \\
f=\left|\begin{array}{cc}
y_{0} & y_{3} \\
\theta^{3} y_{0} & \theta^{3} y_{3}
\end{array}\right|-\left|\begin{array}{cc}
y_{1} & y_{2} \\
\theta^{3} y_{1} & \theta^{3} y_{2}
\end{array}\right|=\left|\begin{array}{cc}
\theta y_{1} & \theta y_{2} \\
\theta^{2} y_{1} & \theta^{2} y_{2}
\end{array}\right|-\left|\begin{array}{cc}
\theta y_{0} & \theta y_{3} \\
\theta^{2} y_{0} & \theta^{2} y_{3}
\end{array}\right|
\end{gathered}
$$

Then we obtain

$$
2 \theta f=\left|\begin{array}{cc}
y_{0} & y_{3} \\
\theta^{4} y_{0} & \theta^{4} y_{3}
\end{array}\right|-\left|\begin{array}{cc}
y_{1} & y_{2} \\
\theta^{4} y_{1} & \theta^{4} y_{2}
\end{array}\right| .
$$

But $\theta^{4} y=e_{3}(z) \theta^{3} y+e_{2}(z) \theta^{2} y+e_{1}(z) \theta y+e_{0}(z) y$. Hence

$$
2 \theta f=e_{3}(z) f, \quad \text { and } \quad \ln f=\int \frac{e_{3}(z)}{2 z} d z
$$

As $e_{3}(z)=z /(1-z)$, we obtain $f=1 / \sqrt{1-z}$ (hyperg. cases).

Relations among the components of A, B and C

The following non-trivial relations hold:

$$
\begin{aligned}
& 2 a_{0} a_{4}-2 a_{1} a_{3}+a_{2}^{2}=0, \\
& 2 b_{0} b_{4}-2 b_{1} b_{3}+b_{2}^{2}=0, \\
& 2 c_{0} c_{4}-2 c_{1} c_{3}+c_{2}^{2}=f^{2}
\end{aligned}
$$

From them we get some more important relations

$$
\begin{array}{r}
a_{0} b_{4}+a_{4} b_{0}-a_{1} b_{3}-a_{3} b_{1}+a_{2} b_{2}=0 \\
a_{0} c_{4}+a_{4} c_{0}-a_{1} c_{3}-a_{3} c_{1}+a_{2} c_{2}=0 \\
b_{0} c_{4}+b_{4} c_{0}-b_{1} c_{3}-b_{3} c_{1}+b_{2} c_{2}=0
\end{array}
$$

Main relations among determinants

$$
\begin{aligned}
& M_{3}=\left|\begin{array}{lll}
a_{0} & b_{0} & c_{0} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=f\left|\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1}
\end{array}\right|, \\
& M_{2}=\left|\begin{array}{lll}
a_{0} & b_{0} & c_{0} \\
a_{1} & b_{1} & c_{1} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=f\left|\begin{array}{ll}
a_{0} & b_{0} \\
a_{2} & b_{2}
\end{array}\right|, \\
& M_{1}=\left|\begin{array}{lll}
a_{0} & b_{0} & c_{0} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=f\left|\begin{array}{ll}
a_{0} & b_{0} \\
a_{3} & b_{3}
\end{array}\right|, \\
& M_{0}=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=f\left|\begin{array}{ll}
a_{0} & b_{0} \\
a_{4} & b_{4}
\end{array}\right| .
\end{aligned}
$$

The system of equations

We have to solve the equation $a A+b B+c C=M$, which is the (overdetermined) system

$$
\left(\begin{array}{lll}
a_{0} & b_{0} & c_{0} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3} \\
a_{4} & b_{4} & c_{4}
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
m_{0} \\
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right) .
$$

As we want the system to be compatible we first impose that

$$
\left|\begin{array}{llll}
a_{0} & b_{0} & c_{0} & m_{0} \\
a_{1} & b_{1} & c_{1} & m_{1} \\
a_{2} & b_{2} & c_{2} & m_{2} \\
a_{3} & b_{3} & c_{3} & m_{3}
\end{array}\right|=m_{0} M_{0}-m_{1} M_{1}+m_{2} M_{2}-m_{3} M_{3}=0
$$

First equation in q

Dividing by M_{3} we have $m_{3}=m_{0} H_{0}-m_{1} H_{1}+m_{2} H_{2}$, where

$$
H_{2}=\frac{a_{0} b_{2}-a_{2} b_{0}}{a_{0} b_{1}-a_{1} b_{0}}, \quad H_{1}=\frac{a_{0} b_{3}-a_{3} b_{0}}{a_{0} b_{1}-a_{1} b_{0}}, \quad H_{0}=\frac{a_{0} b_{4}-a_{4} b_{0}}{a_{0} b_{1}-a_{1} b_{0}}
$$

and we can prove the relation $H_{2}^{2}=2 H_{1}$. We define

$$
q=\rho_{0} z e^{H_{2}(z)}
$$

Inverting it we get z as a power series of q. We also have

$$
\begin{gathered}
\ln \left(\rho_{0} z\right)=\ln q-H_{2} \\
\frac{1}{6} \ln ^{3} q-\frac{\pi^{2}}{2}\left(k+\rho_{1}\right) \ln q-\rho_{2} \zeta(3)-T(q)=0, \quad T=\frac{1}{6} H_{2}^{3}-H_{0}
\end{gathered}
$$

Second equation in q

From the system $a_{i} a+b_{i} b+c_{i} c=m_{i}, i=0,1,2,3,4$, we get

$$
\begin{aligned}
\tau^{2}:=2 m_{0} m_{4}-2 m_{1} m_{3}+m_{2}^{2} & =\left(2 c_{0} c_{4}-2 c_{1} c_{3}+c_{2}^{2}\right) c^{2}=f^{2} c^{2}, \\
& =\frac{j}{12}+\frac{k^{2}}{4}+\rho_{1} k+\rho_{3} .
\end{aligned}
$$

Solving c by Cramer's rule from the three first equations, we obtain

$$
c=m_{0} \frac{a_{1} b_{2}-a_{2} b_{1}}{M_{3}}-m_{1} \frac{a_{0} b_{2}-a_{2} b_{0}}{M_{3}}+m_{2} \frac{a_{0} b_{1}-a_{1} b_{0}}{M_{3}} .
$$

Hence $\tau=m_{0} J-m_{1} H_{2}+m_{2}, \quad J=\left(a_{1} b_{2}-a_{2} b_{1}\right) /\left(a_{0} b_{1}-a_{1} b_{0}\right)$,

$$
\frac{1}{2} \ln ^{2} q-\frac{\pi^{2}}{2}\left(2 \tau+k+\rho_{1}\right)-U(q)=0, \quad U=H_{1}-J
$$

Fortunately we can prove that $U(q)=\theta_{q} T(q)$.

The main equations and how to solve them.

Let $t=\ln q$. In case of series of positive terms the equations are

$$
\begin{gathered}
\frac{1}{6} t^{3}-\frac{\pi^{2}}{2}\left(k+\rho_{1}\right) t-\rho_{2} \zeta(3)-T\left(e^{t}\right)=0 \\
\frac{1}{2} t^{2}-\frac{\pi^{2}}{2}\left(2 \tau+k+\rho_{1}\right)-U\left(e^{t}\right)=0
\end{gathered}
$$

and

$$
\tau^{2}=\frac{j}{12}+\frac{k^{2}}{4}+\rho_{1} k+\rho_{3}, \quad c=\frac{\tau}{f} .
$$

For alternating series we replace $z(q)$ with $-z(-q), T(q)$ with $T(-q)$ and $U(q)$ with $U(-q)$. I wrote a program with two parts

1. It obtains the function $T(q)$ from the matrices A and B and the function $z(q)$.
2. It solves the equations with the Maple function fsolve.

Two new Ramanujan-like series

Let $\left(s_{1}, s_{2}\right)=(1 / 2,1 / 3)$. For $k=8 / 3$ we get $j=112.0000000$, and we guess that $j=112$.

Two new Ramanujan-like series

Let $\left(s_{1}, s_{2}\right)=(1 / 2,1 / 3)$. For $k=8 / 3$ we get $j=112.0000000$, and we guess that $j=112$. With the PSLQ algorithm we guess that $z, a, b, c \in \mathbb{Q}(\sqrt{5})$ and we discover the formula

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{5}}\left(\frac{15 \sqrt{5}-33}{2}\right)^{3 n}\left[(1220 / 3-180 \sqrt{5}) n^{2}+\right. \\
\quad(303-135 \sqrt{5}) n+(56-25 \sqrt{5})]=\frac{1}{\pi^{2}}
\end{array}
$$

Two new Ramanujan-like series

Let $\left(s_{1}, s_{2}\right)=(1 / 2,1 / 3)$. For $k=8 / 3$ we get $j=112.0000000$, and we guess that $j=112$. With the PSLQ algorithm we guess that $z, a, b, c \in \mathbb{Q}(\sqrt{5})$ and we discover the formula

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{5}}\left(\frac{15 \sqrt{5}-33}{2}\right)^{3 n}\left[(1220 / 3-180 \sqrt{5}) n^{2}+\right. \\
(303-135 \sqrt{5}) n+(56-25 \sqrt{5})]=\frac{1}{\pi^{2}}
\end{array}
$$

Let $\left(s_{1}, s_{2}\right)=(1 / 3,1 / 6)$. For $k=5 / 3$ we guess that $j=85$

Two new Ramanujan-like series

Let $\left(s_{1}, s_{2}\right)=(1 / 2,1 / 3)$. For $k=8 / 3$ we get $j=112.0000000$, and we guess that $j=112$. With the PSLQ algorithm we guess that $z, a, b, c \in \mathbb{Q}(\sqrt{5})$ and we discover the formula

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{5}}\left(\frac{15 \sqrt{5}-33}{2}\right)^{3 n}\left[(1220 / 3-180 \sqrt{5}) n^{2}+\right. \\
(303-135 \sqrt{5}) n+(56-25 \sqrt{5})]=\frac{1}{\pi^{2}}
\end{array}
$$

Let $\left(s_{1}, s_{2}\right)=(1 / 3,1 / 6)$. For $k=5 / 3$ we guess that $j=85$ and we find
$\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}}\left(\frac{3}{4}\right)^{6 n}\left(1930 n^{2}+549 n+45\right)=\frac{384}{\pi^{2}}$.
I have discovered these two formulas in 2010.

Calabi-Yau differential equations

It is a $4^{\text {th }}$ order differential equation with rational coefficients

$$
\theta^{4} y=\left(e_{3}(z) \theta^{3}+e_{2}(z) \theta^{2}+e_{1}(z) \theta+e_{0}(z)\right) y
$$

satisfying the following conditions:

1. It has a solution of the form

$$
\begin{gathered}
y_{0}=\alpha_{0}, \quad y_{1}=\alpha_{0} \ln (z)+\alpha_{1}, \quad y_{2}=\alpha_{0} \frac{\ln ^{2}(z)}{2}+\alpha_{1} \ln (z)+\alpha_{2} \\
y_{3}=\alpha_{0} \frac{\ln ^{3}(z)}{6}+\alpha_{1} \frac{\ln ^{2}(z)}{2}+\alpha_{2} \ln (z)+\alpha_{3}
\end{gathered}
$$

where the functions $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are power series of z and $\alpha_{0}(0)=1$, and $\alpha_{1}(0)=\alpha_{2}(0)=\alpha_{3}(0)=0$.
2. The coefficients satisfy a relation which imply that

$$
\left|\begin{array}{cc}
y_{0} & y_{3} \\
\theta y_{0} & \theta y_{3}
\end{array}\right|=\left|\begin{array}{cc}
y_{1} & y_{2} \\
\theta y_{1} & \theta y_{2}
\end{array}\right|
$$

The mirror map and the Yukawa coupling

Let $q=\exp \left(y_{1} / y_{0}\right)$. We can invert it to get $z=z(q)$ which is called the "mirror map". The Yukawa coupling is defined by

$$
K(q)=\theta_{q}^{2}\left(\frac{y_{2}}{y_{0}}\right), \quad \theta_{q}=q \frac{d}{d q} .
$$

The following equivalence is known $K(q)=\theta_{q}^{3} \Phi$, where

$$
\Phi=\frac{1}{2}\left(\frac{y_{1}}{y_{0}} \frac{y_{2}}{y_{0}}-\frac{y_{3}}{y_{0}}\right)
$$

is known in String Theory as the Gromov-Witten potential. Wadim Zudilin suggested to me that the functions $z(q)$ and $T(q)$ that I was using were related to the mirror map and the Yukawa coupling of the Calabi-Yau pullback respectively.

Almkvist theorem

Gert Almkvist has proved that

$$
H_{2}=\frac{y_{1}}{y_{0}}-\ln \rho_{0} z
$$

Comparing with

$$
H_{2}=\ln (q)-\ln \rho_{0} z
$$

we see that

$$
\ln q=\frac{y_{1}}{y_{0}}
$$

Hence the $z(q)$ which we have been using is precisely the mirror map. He also has proved that

$$
\frac{1}{6} H_{2}^{3}-H_{0}=\frac{1}{6} \ln ^{3} q-\Phi(q)
$$

Hence

$$
T(q)=\frac{1}{6} \ln ^{3} q-\Phi(q)
$$

One more Ramanujan-like series for $1 / \pi^{2}$

Gert Almkvist modified the first part of my program to obtain $T(q)$ from the Calabi-Yau diff. equation. This new version of the program is so fast that we could try all values of k of the form $k=i / 60$ for $i=0, \cdots, 1200$ for the 14 hypergeometric cases. However we only found ($k=8 / 3, j=160$) the new formula

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}}\left(\frac{3}{5}\right)^{6 n}\left(532 n^{2}+126 n+9\right)=\frac{375}{\pi^{2}}
$$

It can be written in the nice form

$$
\frac{1}{\pi^{2}}=32 \sum_{n=0}^{\infty} \frac{(6 n)!}{3 n!^{6}} \frac{1}{10^{6 n+3}}\left(532 n^{2}+126 n+9\right)
$$

where the summands contain no infinite decimal fractions.

Special values of Φ and $\theta_{q} \Phi$: A proven example.

One of the formulas I proved by the WZ-method is

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{5}} \frac{1}{2^{4 n}}\left(120 n^{2}+34 n+3\right)=\frac{32}{\pi^{2}}
$$

and later I also proved by the WZ-method that the corresponding value of k is $k=2$. From the establish formula $\tau^{2}=c^{2} /(1-z)$ we get $\tau=\sqrt{15}$. We also know that $\rho_{1}=8 / 3$ and $\rho_{2}=24$. Substituting all these values in our formulas, and using Almkvist theorem, we arrive to the following result:

Special values of Φ and $\theta_{q} \Phi$: A proven example.

One of the formulas I proved by the WZ-method is

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{5}} \frac{1}{2^{4 n}}\left(120 n^{2}+34 n+3\right)=\frac{32}{\pi^{2}}
$$

and later I also proved by the WZ-method that the corresponding value of k is $k=2$. From the establish formula $\tau^{2}=c^{2} /(1-z)$ we get $\tau=\sqrt{15}$. We also know that $\rho_{1}=8 / 3$ and $\rho_{2}=24$. Substituting all these values in our formulas, and using Almkvist theorem, we arrive to the following result:

Theorem: Let $q=q(k)$ and $q_{0}=q(2)$. Then $z\left(q_{0}\right)=1 / 16$ and

$$
\Phi\left(q_{0}\right)=\frac{14}{3} \pi^{2} \ln q_{0}+24 \zeta(3), \quad\left(\theta_{q} \Phi\right)\left(q_{0}\right)=\left(\frac{7}{3}+\sqrt{15}\right) \pi^{2}
$$

When the theory works?

Let

$$
g_{0}=\sum_{n=0}^{\infty} E_{n} z^{n}
$$

The theory works if

1. g_{0} is the solution of a fifth order differential equation.
2. The fifth order differential equation has a pullback to a forth order Calabi-Yau differential equation.
3. E_{X} has an expansion of the form

$$
E_{x}=\rho_{0}^{x}\left(1+\frac{\rho_{1}}{2} \pi^{2} x^{2}-\rho_{2} \zeta(3) x^{3}+\frac{3 \rho_{1}^{2}-4 \rho_{3}}{8} \pi^{4} x^{4}+O\left(x^{5}\right)\right)
$$

where $\rho_{0}, \rho_{1}, \rho_{2}$ and ρ_{3} are rational numbers.

A non-hypergeometric example

Let

$$
E_{n}=\frac{\left(\frac{1}{2}\right)_{n}^{2}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{4}} \sum_{i=0}^{n} \frac{\left(\frac{1}{2}\right)_{i}^{2}(-n)_{i}^{2}}{(1)_{i}^{2}\left(\frac{1}{2}-n\right)_{i}^{2}}, \quad g_{0}=\sum_{n=0}^{\infty} E_{n} z^{n}
$$

The pullback is a differential equation of Calabi-Yau type:

$$
\theta^{4}=\frac{2 z}{1-z} \theta^{3}+\cdots
$$

We get the relation $c=\tau(1-z)$. In addition E_{X} has the expansion required with $\rho_{0}=2^{4} \cdot 3^{3}, \rho_{1}=2, \rho_{2}=7, \rho_{3}=13 / 12$. For $k=-2 / 3$ we get $j=10$ and we obtain

$$
\sum_{n=0}^{\infty} E_{n}\left(\frac{27}{32}\right)^{n}\left(25 n^{2}-15 n-6\right)=\frac{192}{\pi^{2}}
$$

A higher Ramanujan-like series

At the end of 2002 B. Gourevitch discovered (PSLQ) the following series for $1 / \pi^{3}$:

$$
\frac{1}{32} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{7}}{(1)_{n}^{7}} \frac{1}{2^{6 n}}\left(168 n^{3}+7 n^{2}+14 n+1\right)=\frac{1}{\pi^{3}}
$$

The corresponding extended series has the expansion

$$
\frac{1}{\pi^{3}}\left(1-2 \frac{\pi^{2} x^{2}}{2!}+32 \frac{\pi^{4} x^{4}}{4!}-4112 \frac{\pi^{6} x^{6}}{6!}\right)+O\left(x^{7}\right)
$$

The highest known Ramanujan-like series

At the end of 2010 Jim Cullen discovered (PSLQ) the following series for $1 / \pi^{4}$:

$$
\begin{aligned}
\frac{1}{2048} \sum_{n=0}^{\infty} & \frac{\left(\frac{1}{2}\right)_{n}^{7}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{9}} \frac{1}{2^{12 n}} \times \\
& \left(43680 n^{4}+20632 n^{3}+4340 n^{2}+466 n+21\right)=\frac{1}{\pi^{4}}
\end{aligned}
$$

The corresponding extended series has the expansion

$$
\begin{aligned}
\frac{1}{\pi^{4}}\left(1-2^{2} \frac{\pi^{2} x^{2}}{2!}+2^{3} \cdot 11 \frac{\pi^{4} x^{4}}{4!}-2^{5} \cdot 227 \frac{\pi^{6} x^{6}}{6!}+\right. \\
\left.2^{8} \cdot 97 \cdot 139 \frac{\pi^{8} x^{8}}{8!}\right)+O\left(x^{9}\right)
\end{aligned}
$$

