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Contents

We will discuss the following results:

1. Generalizations of some Ramanujan series for 1/π
which can be automatically proved.

2. Hypergeometric identities which lead us to conjectures
related to Ramanujan series.

3. A conjecture for the Ramanujan-Sato series.

4. A new kind of similar series for 1/π2.

5. Generalizations, hypergeometric identities and
conjectures for the new kind of series for 1/π2.
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Rising factorials

The rising factorial or Pochhammer symbol is defined by

(a)n = a(a + 1)(a + 2) · · · (a + n − 1), (a)x =
Γ(a + x)

Γ(a)
.

It generalizes the concept of factorial: n! = (1)n.
We will need the following properties:

(0)0 = 1, (0)n = 0, n = 1, 2, 3 . . .

If we define Cj(n) =
(

1
j

)

n

(

2
j

)

n
· · ·
(

j−1
j

)

n
, then

Cj(n) =
1

jjn

(jn)!

n!
, j = 2, 3, . . .
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Ramanujan type series for 1/π

They are of the form:

∞
∑

n=0

znC(n)

(1)3n
(an + b) =

1

π
, −1 ≤ z < 1,

where z, a and b are algebraic numbers and C(n) is the
product of 3 Pochhammer symbols obtained joining blocks:

(1/2)n, (1/3)n(2/3)n, (1/4)n(3/4)n, (1/6)n(5/6)n.

Conversion to factorials:

(1/6)n(5/6)n =
C6(n)

C2(n)C3(n)
=

1

24n · 33n

(6n)!n!

(2n)!(3n)!
.
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An example and different kind of proofs

An example is

∞
∑

n=0

1

34n

(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(1)3n
(10n + 1) =

9
√

2

4π
.

It gives approximately log 81 ≃ 1.9 digits of π per term.

1. All of them can be proved by finding some functions

z = z(q), a = a(q), b = b(q),

which are related to elliptic modular functions and
evaluating them at q = e−π

√
N for rational values of N .

2. We have proved 8 of them with the WZ-method; a
method developed by Wilf and Zeilberger (Steele Prize).
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The WZ-method

We say that A(n, k) is hypergeometric or closed form if

A(n + 1, k)

A(n, k)
and

A(n, k + 1)

A(n, k)

are both rational functions.
We say that F (n, k) and G(n, k) is a WZ pair if F and G are
closed forms which satisfy

F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k).

If in addition we have F (0, k) = 0, then

∞
∑

n=0

G(n, k) =
∞
∑

n=0

G(n, k + 1).
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Carlson’s Theorem

If f(z) is an entire function, f(z) = 0 for z = 0, 1, 2, · · · and
f(z) = O(ec|z|) for c < π and ℜ(z) ≥ 0, then f(z) = 0.

For the functions G(n, k) that we will consider, the function

f(z) =
∞
∑

n=0

G(n, z) −
∞
∑

n=0

G(n, 0),

satisfies the hypothesis of Carlson’s theorem, and so

∞
∑

n=0

G(n, k) = CONST.

Is there a method to determine F from G and G from F?
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EKHAD

The answer is YES, H. Wilf and D. Zeilberger have
discovered an algorithm that finds a rational function
C(n, k), called certificate, such that F (n, k) = C(n, k)G(n, k).

In addition Zeilberger has written the Maple package
EKHAD which implements the algorithm.

So, the proofs of the identities of the form

∞
∑

n=0

G(n, k) = CONST.,

with G(n, k) being a closed form, can be automatically
carried over by a computer and are mathematically
rigorous.
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WZ method and 8 Ramanujan’s series

∞
∑

n=0

(−1)n
(

1
2

)3

n

(1)3n
(4n + 1) =

2

π
,

∞
∑

n=0

1

22n

(

1
2

)3

n

(1)3n
(6n + 1) =

4

π
,

∞
∑

n=0

(−1)n

23n

(

1
2

)3

n

(1)3n
(6n + 1) =

2
√

2

π
,

∞
∑

n=0

1

26n

(

1
2

)3

n

(1)3n
(42n + 5) =

16

π
,
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WZ method and 8 ramanujan’s series. Cont.

∞
∑

n=0

(−1)n

22n

(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(1)3n
(20n + 3) =

8

π
,

∞
∑

n=0

1

32n

(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(1)3n
(8n + 1) =

2
√

3

π
,

∞
∑

n=0

(−1)n

48n

(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(1)3n
(28n + 3) =

16
√

3

3π
,

∞
∑

n=0

(−1)n33n

29n

(

1
2

)

n

(

1
6

)

n

(

5
6

)

n

(1)3n
(154n + 15) =

32
√

2

π
.
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Can WZ prove all Ramanujan type series?

The most impressive Ramanujan type series with rational z
are:

∞
∑

n=0

(−1)n

8822n

(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(1)3n
(21460n + 1123) =

3528

π
,

∞
∑

n=0

1

994n

(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(1)3n
(26390n + 1103) =

9801
√

2

4π
,

∞
∑

n=0

(−1)n

533603n

(

1
2

)

n

(

1
6

)

n

(

5
6

)

n

(1)3n

545140134n + 13591409

426880
=

√
10005

π
.

Can they be proved by the WZ method?
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Series for 1/π. WZ1+Carlson’s Th.

∞
∑

n=0

(−1)n
(

1
2

)3

n

(1)3n
(4n + 1) =

2

π
, Ramanujan.

Generalized series (proved by Zeilberger):

∞
∑

n=0

(−1)n
(

1
2

)2

n

(

1
2 − k

)

n

(1 + k)n(1)2n
(4n + 1)

(2k
k

)

22k
=

2

π
.

S(n, k) =
n2

2n − 2k − 1
.

The value 2/π has been obtained for k = 1/2, by observing
that n 6= 0 ⇒ (0)n = 0 and

( 1
1/2

)

= 4
π .
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Program 1

We have written a program to look for functions G(n, k)
characterized by:

1. They have 3 rising factorials in the numerator and in the
denominator.

2. The rational part is a polynomial of first degree in the
symbols n and k.

3. One of the rising factorials in the numerator produces
(0)n at k = 1/2.

4. The exclusive function of k produces the constant when
it is evaluated at k = 1/2.

The program includes a function of EKHAD to certify if
G(n, k) is the second component of a WZ pair.
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Series for 1/π. WZ2+Carlson’s Th.

∞
∑

n=0

1

22n

(

1
2

)3

n

(1)3n
(6n + 1) =

4

π
, Ramanujan.

Generalized series:

∞
∑

n=0

1

22n

(

1
2

)

n

(

1
2 − k

)

n

(

1
2 + k

)

n

(1)2n(1 + k)n
(6n + 2k + 1)

(2k
k

)

22k
=

4

π
.

S(n, k) =
16n2

2n − 2k − 1
.

The value 4/π has been obtained for k = 1/2, by observing
that n 6= 0 ⇒ (0)n = 0 and

( 1
1/2

)

= 4
π .
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Series for 1/π. WZ3+Carlson’s Th.

∞
∑

n=0

(−1)n

23n

(

1
2

)3

n

(1)3n
(6n + 1) =

2
√

2

π
, Ramanujan.

Generalized series:

∞
∑

n=0

(−1)n

23n

(

1
2 − k

)

n

(

1
2 + k

)

n

(

1
2 + k

)

n

(1)2n(1 + k)n
(6n + 2k + 1)

(2k
k

)

23k
=

2
√

2

π
.

S(n, k) =
16n2

2n − 2k − 1
.

The value 2
√

2/π has been obtained by taking k = 1/2.
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Series for 1/π. WZ4+Carlson’s Th.

∞
∑

n=0

(−1)n

22n

(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(1)3n
(20n + 3) =

8

π
, Ramanujan.

Generalized series:

∞
∑

n=0

(−1)n

22n

(

1
2

)

n

(

1
4 − k

2

)

n

(

3
4 − k

2

)

n

(1)2n(1 + k)n
(20n + 2k + 3)

(2k
k

)

22k
=

8

π
.

S(n, k) =
64n2

4n − 2k − 1
.

The value 8/π has been obtained by taking k = 1/2.
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Series for 1/π. WZ5+Carlson’s Th.

∞
∑

n=0

1

32n

(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(1)3n
(8n + 1) =

2
√

3

π
, Ramanujan.

Generalized series:

∞
∑

n=0

1

32n

(

1
2 + k

)

n

(

1
4 − k

2

)

n

(

3
4 − k

2

)

n

(1)2n(1 + k)n
(8n + 2k + 1)

3k
(2k

k

)

24k
=

2
√

3

π
.

S(n, k) =
128n2

2n − 2k − 1
.

The value 2
√

3/π has been obtained by taking k = 1/2.
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Chains of WZ pairs

Let F (n, k) and G(n, k) be the two components of a WZ pair
such that F (0, k) = 0. If we define

Fs,t(n, k) = F (sn, k + tn), s ∈ Z − {0}, t ∈ Z,

then Fs,t(n, k) and Gs,t(n, k) are also the components of WZ
pairs such that Fs,t(0, k) = 0 and

∞
∑

n=0

Gs,t(n, k) =
∞
∑

n=0

G(n, k) = CONST.

The proofs of the Ramanujan type series that we are going
to see now are based on these kind of transformations.
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Series for 1/π. WZ6+Carlson’s Th.

We make the transformation F (n, k) = F4(n, k + n).

∞
∑

n=0

1

26n

(

1
2

)

n

(

1
2 − k

)

n

(

1
2 + k

)

n

(

1
2 + k

)

n

(1)2n
(

1 + k
2

)

n

(

1
2 + k

2

)

n

× (2n + 2k + 1)(42n + 2k + 5) − 30kn

2n + k + 1

(2k
k

)

22k
=

16

π
.

The value 16/π has been obtained by taking k = 1/2.
Setting k = 0, we get

∞
∑

n=0

1

26n

(

1
2

)3

n

(1)3n
(42n + 5) =

16

π
, Ramanujan.
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Series for 1/π. WZ7+Carlson’s Th.

We make the transformation F (n, k) = F5(n, k + n).

∞
∑

n=0

(−1)n

24n3n

(

1
2 − k

)

n

(

1
4 + k

2

)

n

(

3
4 + k

2

)

n

(

1
2 + k

)

n

(1)2n
(

1 + k
2

)

n

(

1
2 + k

2

)

n

× (2n + 2k + 1)(28n + 2k + 3) − 24kn

2n + k + 1

3k
(2k

k

)

24k
=

16
√

3

3π
.

The value (16/3)
√

3/π has been obtained by taking k = 1/2.
Setting k = 0, we get

∞
∑

n=0

(−1)

24n3n

(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(1)3n
(28n + 3) =

16
√

3

3π
, Ramanujan
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Series for 1/π. WZ8+Carlson’s Th.

We finally prove the following Ramanujan type series

∞
∑

n=0

(−1)n33n

29n

(

1
2

)

n

(

1
6

)

n

(

5
6

)

n

(1)3n
(154n + 15) =

32
√

2

π
.

Proof: We make the transformation F (n, k) = F3(2n, k − n)
and use package EKHAD to obtain G(n, k). Then we have

∞
∑

n=0

G(n, k) = CONST.

To obtain the value of the constant we evaluate at k = 1/2.
Finally we take k = 0.
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Modifying WZ pairs

If (F (n, k), G(n, k)) is a WZ pair, then Zeilberger has proved
the identity

∞
∑

n=0

G(n, 0) = lim
k→∞

∞
∑

n=0

G(n, k) +
∞
∑

k=0

F (0, k).

We can define a family of WZ pairs by means of

Fx(n, k) = F (n + x, k), Gx(n, k) = G(n + x, k),

So, Zeilberger’s theorem implies

∞
∑

n=0

G(n + x, 0) = lim
k→∞

∞
∑

n=0

G(n + x, k) +
∞
∑

k=0

F (x, k).
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Reduction with WZ1

For
∑∞

n=0 G(n + x, 0) one obtains

f(x) =
∞
∑

n=0

(−1)n
(

1
2

)3

n+x

(1)3n+x

[

2(n + x) +
1

2

]

,

and for limk→∞
∑∞

n=0 G(n + x, k) +
∑∞

k=0 F (x, k), one obtains

f(x) =
1

π

1

cos πx
+ x2 4

(

1
2

)3

x

(2x − 1)(1)3x

∞
∑

n=0

(

1
2

)2

n

(x + 1)n
(

3
2 − x

)

n

,

that we will call a reduction. From it, we get the expansion

f(x) =
1

π
− π

2
x2 + O(x3).
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Reduction with WZ2

f(x) :=
∞
∑

n=0

1

4n+x

(

1
2

)3

n+x

(1)3n+x

[

3

2
(n + x) +

1

4

]

.

Reduction:

f(x) =
1

π

1

cos2 πx
+ x2 4

(

1
2

)3

x

(2x − 1)4x(1)3x

∞
∑

n=0

(

1
2

)

n

(

1
2 + x

)

n

(1 + x)n
(

3
2 − x

)

n

.

We get the expansion

f(x) =
1

π
− πx2 + O(x3).
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Reduction with WZ3

f(x) =
∞
∑

n=0

(−1)n

8n+x

(

1
2

)3

n+x

(1)3n+x

[

3
√

2

2
(n + x) +

√
2

4

]

.

Reduction:

f(x) =
1

π

1

cos πx
+ x2 4

√
2
(

1
2

)3

x

(2x − 1)8x(1)3x

∞
∑

n=0

(

1
2 + x

)2

n

2n(1 + x)n
(

3
2 − x

)

n

.

We get the expansion

f(x) =
1

π
− 3

2
πx2 + O(x3).
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Reduction with WZ4

f(x) =
∞
∑

n=0

(−1)n

4n+x

(

1
2

)

n+x

(

1
4

)

n+x

(

3
4

)

n+x

(1)3n+x

[

5

2
(n + x) +

3

8

]

.

Reduction:

f(x) =
1

π

1

cos πx
+ x26

(

1
2

)

x

(

1
4

)

x

(

3
4

)

x

(2x − 1)4x(1)3x

∞
∑

n=0

(

1
2 + x

)

n

(

1
2 + 2x

)

n

4n(1 + x)n
(

3
2 − x

)

n

.

We get the expansion

f(x) =
1

π
− 3

2
πx2 + O(x3).
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Reductions with WZ5 and WZ6

f(x) =
∞
∑

n=0

1

9n+x

(

1
2

)

n+x

(

1
4

)

n+x

(

3
4

)

n+x

(1)3n+x

[

4
√

3

3
(n + x) +

√
3

6

]

.

g(x) =
∞
∑

n=0

1

64n+x

(

1
2

)3

n+x

(1)3n+x

[

21

8
(n + x) +

5

16

]

.

We get the expansions

f(x) =
1

π
− 2πx2 + O(x3), g(x) =

1

π
− 3πx2 + O(x3).
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Reductions with WZ7 and WZ8

f(x) =
∞
∑

n=0

(−1)n

48n+x

(

1
2

)

n+x

(

1
4

)

n+x

(

3
4

)

n+x

(1)3n+x

[

7
√

3

4
(n + x) +

3
√

3

16

]

.

g(x) =
∞
∑

n=0

(−1)n
(

1
2

)

n+x

(

1
6

)

n+x

(

5
6

)

n+x
(

8
3

)3(n+x)
(1)3n+x

[

77
√

2

32
(n + x) +

15
√

2

64

]

.

We get the expansions

f(x) =
1

π
− 7

2
πx2 + O(x3), g(x) =

1

π
− 7

2
πx2 + O(x3).
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Program 2

We have written a program to look for functions F (n, k)
characterized by:

1. They have 3 rising factorials in the numerator and in the
denominator.

2. All the signs in the rising factorials are positive.

3. The rational part is just n

4. The product of k and the exclusive function of k
produces the constant when we take the limit as k → ∞.

The program includes a function of EKHAD to certify if
F (n, k) is the first component of a WZ pair.
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WZ9. Series and reduction

∞
∑

n=0

(−1)n
(

1
2

)2

n

(

1
2 + k

)

n

(1 + k)2n(1)n
(4n + 2k + 1)

(2k
k

)2

24k
=

2

π
.

lim
k→∞

∞
∑

n=0

G(n, k) = lim
k→∞

G(0, k) = lim
k→∞

(2k
k

)2

24k
(2k + 1) =

2

π
.

f(x) =
∞
∑

n=0

(−1)n
(

x + 1
2

)3

n

(x + 1)3n
[4(n + x) + 1].

f(x) = 2x
∞
∑

n=0

(

1
2

)

n

(

1
2 + x

)

n

(x + 1)2n
, f

(

1

2

)

= 2G,

where G is the Catalan constant.
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WZ10. Series and reduction

∞
∑

n=0

1

22n

(

1
2

)3

n

(1 + k)2n(1)n
(6n + 4k + 1)

(2k
k

)2

24k
=

4

π
.

f(x) =
∞
∑

n=0

1

22n

(

x + 1
2

)3

n

(x + 1)3n
[6(n + x) + 1],

f(x) = 8x
∞
∑

n=0

(

1
2

)2

n

(x + 1)2n
, f

(

1

2

)

=
π2

2
.

– p. 32/56



WZ11. Series and reduction

∞
∑

n=0

(−1)n

23n

(

1
2 + 2k

)

n

(

1
2

)2

n

(1 + k)2n(1)n
(6n + 4k + 1)

(3k
k

)(4k
k

)

26k
=

2
√

2

π
.

f(x) =
∞
∑

n=0

(−1)n

23n

(

x + 1
2

)3

n

(x + 1)3n
[6(n + x) + 1],

f(x) = 4x
∞
∑

n=0

(

x
2 + 1

4

)

n

(

x
2 + 3

4

)

n

(x + 1)2n
, f

(

1

2

)

= 4G.
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WZ12. Series and reduction

We make the transformation F (n, k) = F9(n, k + n).

∞
∑

n=0

(−1)n

22n

(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(

1
2 + k

)

n

(1)n(1 + k)n
(

1 + k
2

)

n

(

1
2 + k

2

)

n

(2k
k

)2

24k

× (2n + 2k + 1)(20n + 4k + 3) − 16kn

2n + k + 1
=

8

π
.

f(x) =
∞
∑

n=0

(−1)n

22n

(

x + 1
2

)

n

(

x + 1
4

)

n

(

x + 3
4

)

n

(x + 1)3n
[20(n + x) + 3],

f(x) = 16x
∞
∑

n=0

(

1
2

)

n

(

x + 1
2

)

n

(x + 1)n(2x + 1)n
, f

(

1

2

)

= 16 ln 2.
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WZ13. Series and reduction

We make the transformation F (n, k) = F10(n, k + n).

∞
∑

n=0

1

26n

(

1
2 + k

)2

n

(

1
2

)3

n
(

1 + k
2

)2

n

(

1
2 + k

2

)2

n
(1)n

R(n, k)

(2k
k

)2

24k
=

16

π
,

R(n, k) =
(2n + 2k + 1)2(42n + 4k + 5) − 32kn(4n + 3k + 2)

(2n + k + 1)2
.

f(x) =
∞
∑

n=0

1

26n

(

x + 1
2

)3

n

(x + 1)3n
[42(n + x) + 5],

f(x) = 32x
∞
∑

n=0

(

x + 1
2

)2

n

(2x + 1)2n
, f

(

1

2

)

=
8

3
π2.
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WZ14. Series and reduction

∞
∑

n=0

(−1)n33n

29n

(

1
2

)

n

(

1
6

)

n

(

5
6

)

n

(

1
2 + 2k

)

n

(1)n(1 + k)n
(

1 + k
2

)

n

(

1
2 + k

2

)

n

(3k
k

)(4k
k

)

26k

× (2n + 4k + 1)(154n + 16k + 15) − 384kn

2n + k + 1
=

32
√

2

π
.

f(x) =
∞
∑

n=0

(−1)n33n

29n

(

x + 1
2

)

n

(

x + 1
6

)

n

(

x + 5
6

)

n

(x + 1)3n
[154(n+x)+15],

f(x) = 128x
∞
∑

n=0

(

x
2 + 1

4

)

n

(

x
2 + 3

4

)

n

(x + 1)n(2x + 1)n
, f

(

1

2

)

= 128 ln 2.
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The PSLQ algorithm

If (x1, . . . xn) is a vector of real numbers, then the PSLQ
algorithm finds a vector (a1, . . . , an) of integers (with aj 6= 0

for some j), such that (with the number of decimals that we
are using)

a1x1 + · · · + anxn = 0.

The vector it finds has the smallest possible norm.

The PSLQ algorithm is very useful to discover identities but
we need another method to obtain rigourous proofs of them.
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Evaluations at x = 1/2

Let B(n, x) =
(

1
2 + x

)

n

(

1
4 + x

)

n

(

3
4 + x

)

n
(1 + x)−3

n , and

f(x) =
∞
∑

n=0

(−1)n
(

1

8822

)n+x+ 1

2

·B(n, x)

[

5365(n + x) +
1123

4

]

,

g(x) =
∞
∑

n=0

(

1

994

)n+x+ 1

2

· B(n, x)

[

13195√
2

(n + x) +
1103

2
√

2

]

,

f(0) = g(0) = 1/π. With the PSLQ algorithm, we find that

f (1/2) = ln 2 + 10 ln 3 − 6 ln 7,

g (1/2) =
13

2
π − 16 arctan

√
2

2
− 24 arctan

√
2

3
.
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Conjecture

Let us consider the function (u = 1 or u = −1)

R(x) =
∞
∑

n=0

unB(n + x)zn+x[a + b(n + x)].

If R(0) = 1/π with z, a, b algebraic numbers, then there is a
rational number k, such that

R(x) =
1

π
− kπ

2
x2 + O(x3).

It implies that u, B(n) and k determine z, a and b by solving
(numerically and then using identify) the equations

R(0) =
1

π
, R′(0) = 0 and R′′(0) = −kπ.
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How to solve the equations

If we define the functions of x (and also of z):

S(x) =
∞
∑

n=0

unB(n+x)zn+x, T (x) =
∞
∑

n=0

unB(n+x)zn+x(n+x).

Then z, a and b are the solutions of the equations

aS(0) + bT (0) =
1

π
, aS′(0) + bT ′(0) = 0,

aS′′(0) + bT ′′(0) = −kπ.

We have conjectured that the last equation is equivalent to

S′(0) = −π
√

NS(0),
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Series of positive terms. Example k = 8

The sum is always 1/π.

∞
∑

n=0

(

1
2

)3

n

(1)3n
(97 − 56

√
3)n
(√

78
√

3 − 135 + 6

√

14
√

3 − 24 · n
)

,

∞
∑

n=0

(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(1)3n

(

1

81

)n
(

2
√

2

9
+

20
√

2

9
n

)

,

∞
∑

n=0

(

1
2

)

n

(

1
3

)

n

(

2
3

)

n

(1)3n

(

13
√

7 − 34

54

)n(

7
√

7 − 10

27
+

13
√

7 − 7

9
n

)

,

∞
∑

n=0

(

1
2

)

n

(

1
6

)

n

(

5
6

)

n

(1)3n

(

4

125

)n
(

2
√

15

25
+

22
√

15

25
n

)

.
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Ramanujan-Sato’s series

∞
∑

n=0

Bn

(√
5 − 1

2

)12n

(20n + 10 − 3
√

5) =
20
√

3 + 9
√

15

6π
,

where Bn are the Apéry numbers, defined by

Bn =
n
∑

k=0

(

n

k

)2(
n + k

k

)2

,

which satisfy the recurrence:

n3Bn − (2n − 3)(17n2 − 17n + 5)Bn−1 + (n − 1)3Bn−2 = 0.
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A method to obtain families of series

Let S(z) and W (z) be the functions

S(z) =
∞
∑

n=0

Bnzn, W (z) =
∞
∑

n=0

B
′

nzn.

Then if z(q) is the solution of the equation

q = ±e−π
√

N = z exp
W (z)

S(z)
,

the functions b(q) and a(q) are given by

b =
√

N
q

zS

dz

dq
, a =

1

S

[

1

π
− q

√
N

S

dS

dq

]

.
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Example

For Bn =
∑n

j=0

(2j
j

)2(2n−2j
n−j

)2
, we get

z = q−8q2+44q3−192q4+718q5−2400q6+7352q7−20992q8+· · · ,

S = 1+8q+24q2 +32q3 +24q4 +48q5 +96q6 +64q7 +28q8 + · · · .

These expansions seem to correspond to

z =
θ4
2(q)

16θ4
3(q)

, S = θ4
3(q),

θ2(q) =
n=∞
∑

n=−∞
q(n+1/2)2 , θ3(q) =

n=∞
∑

n=−∞
qn2

.

To prove that z and S are right use Yifan Yang’s method.
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Similar series for 1/π2

∞
∑

n=0

znC(n)

(1)5n
(an2 + bn + c) =

1

π2
, −1 ≤ z < 1,

where z, a, b and c are algebraic numbers and C(n) is the
product of 5 Pochhammer symbols obtained joining blocks:

(1/2)n, (1/3)n(2/3)n, (1/4)n(3/4)n, (1/6)n(5/6)n,

(1/5)n(2/5)n(3/5)n(4/5)n, (1/10)n(3/10)n(7/10)n(9/10)n,

(1/8)n(3/8)n(5/8)n(7/8)n, (1/12)n(5/12)n(7/12)n(11/12)n.

(1/8)n(3/8)n(5/8)n(7/8)n =
C8(n)

C4(n)
=

1

48n

(8n)!

(4n)!
.

We have proved some of them with the WZ-method.
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Series for 1/π2. WZ15

F (n, k) =

(

1
2

)5

n

22n(1)n(1 + k)4n
· 8n(2n + 4k + 1)

(2k
k

)4

28k

∞
∑

n=0

(

1
2

)5

n

22n(1)n(1 + k)4n
(20n2 +8n+1+24kn+8k2 +4k)

(2k
k

)4

28k
=

8

π2

k → ∞ determine the constant 8/π2. For k = 0, we obtain

∞
∑

n=0

(−1)n

22n

(

1
2

)5

n

(1)5n
(20n2 + 8n + 1) =

8

π2
.
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Reduction obtained with WZ15

f(x) =
∞
∑

n=0

(−1)n

22n

(

x + 1
2

)5

n

(x + 1)5n

[

20(n + x)2 + 8(n + x) + 1
]

.

f(x) = 8x
∞
∑

n=0

(

1
2

)4

n

(x + 1)4n
(4n + 2x + 1), f

(

1

2

)

= 7ζ(3).
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Series for 1/π2. WZ16 y WZ17

F (n, k) =
1

24n

(

1
2

)3

n

(

1
4

)

n

(

3
4

)

n

(

1
2 + k

)2

n

(1)n(1 + k)2n
(

1 + k
2

)2

n

(

1
2 + k

2

)2

n

(2k
k

)4

28k
·32n(4n+4k+1)

∞
∑

n=0

1

24n

(

1
2

)3

n

(

1
4

)

n

(

3
4

)

n

(1)5n
(120n2 + 34n + 3) =

32

π2
.

F (n, k) =
(−1)n

210n

(

1
2

)5

n

(

1
2 + k

)4

n
(

1 + k
2

)4

n

(

1
2 + k

2

)4

n
(1)n

(2k
k

)4

28k
·128n(6n+4k+1)

∞
∑

n=0

(−1)n

210n

(

1
2

)5

n

(1)5n
(820n2 + 180n + 13) =

128

π2
.
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Reduction obtained with WZ17

f(x) =
∞
∑

n=0

(−1)n

210n

(

x+ 1
2

)5

n

(x + 1)5n

[

820(n + x)2 + 180(n + x) + 13
]

.

f(x) = 128x
∞
∑

n=0

(

x + 1
2

)4

n

(2x + 1)4n
(4n + 6x + 1), f

(

1

2

)

= 256ζ(3).

(This series for ζ(3) was first obtained by T. Amdeberhan).
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Expansions in powers series

∞
∑

n=0

(−1)n

22(n+x)

(

1
2

)5

n+x

(1)5n+x

[20(n+x)2+8(n+x)+1] =
8

π2
−4x2+O(x4),

∞
∑

n=0

(−1)n

210(n+x)

(

1
2

)5

n+x

(1)5n+x

[820(n + x)2 + 180(n + x) + 13]

=
128

π2
− 320x2 + O(x4).

The above expansions have been found by experimental
methods and suggest the following conjecture.
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Conjecture

Let us consider the function (u = 1 or u = −1)

R(x) =
∞
∑

n=0

unB(n + x)zn+x[a(n + x)2 + b(n + x) + c],

If R(0) = 1/π2 with a, b, c, z algebraic, then there is a rational
number k, such that

R(x) =
1

π2
− k

2
x2 + O(x4).

It implies that u,B(n), k determine z, a, b, c by means of

R(0) =
1

π2
, R′(0) = 0, R′′(0) = −k, R′′′(0) = 0.
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Conjecture: Examples k = 1, 2, 3

For k = 1

∞
∑

n=0

(−1)n

22n

(

1
2

)5

n

(1)5n
(20n2 + 8n + 1) =

8

π2
.

For k = 2

∞
∑

n=0

1

24n

(

1
2

)3

n

(

1
4

)

n

(

3
4

)

n

(1)5n
(120n2 + 34n + 3) =

32

π2
,

For k = 3

∞
∑

n=0

(−1)n
(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(

1
3

)

n

(

2
3

)

n

n!548n
(252n2 + 63n + 5) =

48

π2
.
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Conjecture: Examples k = 5, 7, 8

For k = 5

∞
∑

n=0

(−1)n

210n

(

1
2

)5

n

(1)5n
(820n2 + 180n + 13) =

128

π2
.

For k = 7

∞
∑

n=0

(−1)n
(

1
2

)

n

(

1
4

)

n

(

3
4

)

n

(

1
6

)

n

(

5
6

)

n

n!5210n
(1640n2+278n+15) =

256
√

3

3π2
,

For k = 8

∞
∑

n=0

(

1
2

)

n

(

1
8

)

n

(

3
8

)

n

(

5
8

)

n

(

7
8

)

n

n!574n
(1920n2 + 304n + 15) =

56
√

7

π2
,
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Conjecture: Example k = 15

For k = 15

∞
∑

n=0

(−1)n
(

1
2

)

n

(

1
3

)

n

(

2
3

)

n

(

1
6

)

n

(

5
6

)

n

n!5803n
(5418n2+693n+29) =

128
√

5

π2
.

(

1

6

)

n

(

1

3

)

n

(

1

2

)

n

(

2

3

)

n

(

5

6

)

n

= C6(n) =
1

66n

(6n)!

n!
.

∞
∑

n=0

(6n)!

n!6
(−1)n

28803n
(5418n2 + 693n + 29) =

128
√

5

π2
.
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Series for 1/π Series for 1/π2

Theory of modular functions Modular-like theory?

Equations for z, a and b Equations for z, a, b and c

The eq. for z is reducible Is the eq. for z reducible?

WZ method, all? WZ method, all?
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Publications

Some binomial series obtained by the WZ-method.
Adv. in Appl. Math. 29 (2002) 599-603.

About a new kind of Ramanujan-type series.
Exp. Math. 12 pp. 507-510, (2003).

Generators of some Ramanujan’s formulas.
The Ramanujan J. (2006) 11 pp. 41-48.

A new method to obtain series for 1/π and 1/π2.
Exp. Math. 15 pp. 83-89, (2006).

A class of conjectured series representations for 1/π.
Exp. Math. 15 pp. 409-414, (2006).

Hypergeometric identities for 10 extended
Ramanujan-type formulas.
The Ramanujan J. (to appear)
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