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has a companion G(n, k) (it can be automatically found using the Wilf-Zeilberger algo-
rithm):
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such that the pair formed by F (n, k) and G(n, k) is a WZ pair. This means that

G(n, k + 1)−G(n, k) = F (n+ 1, k)− F (n, k).

An important property due to Wilf and Zeilberger is
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Applying it, we obtain
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where G is the Catalan constant. Another important property is that all the functions
F (in, k + jn), where i ∈ N and j ∈ Z have companions. Using the Wilf-Zeilberger
algorithm to get the companion G2(n, k) of F2(n, k) = F (2n, k + n), and applying the
identity
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we obtain
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which converge to G giving approximately

log10
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64
≈ 2.4879

digits per term.
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