Some challenging formulas for π Jesús Guillera

Abstract

In this note we show some Ramanujan-like series for π of hypergeometric type which remain unproven.

1. Introduction

In the last decade I have discovered and proved by the WZ-method four series for $1 / \pi^{2}$ of a new kind, similar to those found for Ramanujan for the constant $1 / \pi$. In this note we show a list of hypergeometric series of the same style which remain unproven.

Formulae for $1 / \pi^{2}$ by Jesús Guillera (Spain)

October 2003 in Exp. Math.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{2^{10 n}}\left(1640 n^{2}+278 n+15\right)=\frac{256 \sqrt{3}}{\pi^{2}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{48^{n}}\left(252 n^{2}+63 n+5\right)=\frac{48}{\pi^{2}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{80^{3 n}}\left(5418 n^{2}+693 n+29\right)=\frac{128 \sqrt{5}}{\pi^{2}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{8}\right)_{n}\left(\frac{3}{8}\right)_{n}\left(\frac{5}{8}\right)_{n}\left(\frac{7}{8}\right)_{n}}{(1)_{n}^{5}} \frac{1}{7^{4 n}}\left(1920 n^{2}+304 n+15\right)=\frac{56 \sqrt{7}}{\pi^{2}} \tag{4}
\end{equation*}
$$

J. Guillera, About a new kind of Ramanujan type series. Exp. Math. 12, 507-510, (2003).

July 2010 in arXiv, March 2012 in Exp. Math.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}}(-1)^{n}\left(\frac{3}{4}\right)^{6 n}\left(1930 n^{2}+549 n+45\right)=\frac{384}{\pi^{2}} \tag{5}
\end{equation*}
$$

and
(6) $\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{5}}\left(\frac{15 \sqrt{5}-33}{2}\right)^{3 n} \times$

$$
\left[(1220 / 3-180 \sqrt{5}) n^{2}+(303-135 \sqrt{5}) n+(56-25 \sqrt{5})\right]=\frac{1}{\pi^{2}}
$$

J. Guillera, Mosaic supercongruences of Ramanujan-type. Exp. Math. 21, 65-68, (2012), (e-print arXiv:1007.2290).

Formula by Gert Almkvist (Sweden) and Jesús Guillera (Spain)
September 2010 in arXiv, 2012 in Exp. Math.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}}\left(\frac{3}{5}\right)^{6 n}\left(532 n^{2}+126 n+9\right)=\frac{375}{\pi^{2}} \tag{7}
\end{equation*}
$$

G. Almkvist and J. Guillera, Ramanujan-like series and String theory, Exp. Math., (e-print arXiv:1009.5202).

Formula for $1 / \pi^{3}$ by Boris Gourevitch (Russia)

October 2003 in Exp. Math.

$$
\begin{equation*}
\frac{1}{32} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{7}}{(1)_{n}^{7}} \frac{1}{2^{6 n}}\left(168 n^{3}+76 n^{2}+14 n+1\right)=\frac{1}{\pi^{3}} \tag{8}
\end{equation*}
$$

J. Guillera, About a new kind of Ramanujan type series. Exp. Math. 12, 507-510, (2003).

Formula for $1 / \pi^{4}$ by Jim Cullen (U.S.A.)

February 2011 in Russian Math. Surveys.

(9) $\frac{1}{2048} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{7}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{9}} \frac{1}{2^{12 n}} \times$

$$
\left(43680 n^{4}+20632 n^{3}+4340 n^{2}+466 n+21\right)=\frac{1}{\pi^{4}} .
$$

W. Zudilin, Arithmetic hypergeometric series Russian Math. Surveys 66:2 (2011), 369-420. Russian version in Uspekhi Mat. Nauk 66:2 (2011), 163-216.

