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ABSTRACT. Let By = {(z;) € R™; 307 |#4|” < 1} and let E be a k-dimensional
subspace of R™. We prove that |E N B;|i/k > |By }/", for1 <k<(n-1)/2
and £k = n — 1 whenever 1 < p < 2. We also consider 0 < p < 1 and other
related cases. We obtain sharp inequalities involving Gamma function in order

to get these results.

INTRODUCTION

In [13], J. D. Vaaler proved that all k-dimensional sections of the unit cube
[-1/2,1/2]™ in R™ have k-dimensional volume bigger than or equal to 1. If we
write By = {z € R [z1|P + -+ |za[F < 1}, 0 < p < 00, M. Meyer and A. Pajor
extended Vaaler’s result to the range p € {1} U[2, 0] in [8]. More precisely, they
showed that
(0.1) ERPARIVHES
for all F, k-dimensional subspace of R”. K. Ball (see [1], [2]), using Brascamp
and Lieb inequality, established (0.1) for the 1-dimensional sections of any ball
in R™ having a multiple of the euclidean ball as the ellipsoid of maximal volume
contained in it. More recently Schmuckenschlager (see [12]) estimated the volume
of the (n — 1)-dimensional sections of BJ, for I < p < 2, but the proof of the
inequality he proposed was not correct. The aim of this paper is to give a proof
of the inequality appearing in [12] (see Proposition 1.2 below), to prove (0.1) for
1 <k<(n—1)/2and 1 < p < 2 (see Proposition 2.2) and to give the right
estimate for (0.1) for 0 < p < 1 (see Proposition 2.5). Moreover, we prove (0.1) for
B = B} @p BY, 1 < p < 2 (see Proposition 2.4), answering a question raised to
the authors by M. Meyer.

In order to do this we need to establish sharp inequalities involving the Gamma
function which have their own interest. We state and prove these inequalities in
section 1 and the corresponding estimates for the volume of sections are given in
section 2.
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As usual we denote by ||z]|, = (Z?|xi|p)1/p, for ¢ = (x1...,2,) € R™ and
0<p<oo. If ACRF |Al; will represent the k-dimensional Lebesgue measure in
RE,

1. SoME INEQUALITIES FOR THE (GAMMA FUNCTION

Throughout this paper we are going to use Stirling’s formula, i.e.

I(1+2) =2 "V2rzexp p(z) (xz > 0),
where p(#) is a nonincreasing and nonnegative function for # > 1 defined by
1 1 e P3 i
o= L[l
122 3 Jy (t+2)

where p3(t) is a l-periodic function that for ¢ € [0,1] is defined by ps(t) = 3 —
%tz + %t (see, for instance, [11], pg. 62). Notice that |ps(t)| < % for all t > 0.

Proposition 1.1. The following inequalities hold:

() P+ 2)7 < @4 D +2)  (222)
<@t NE+)  (1<r<2),

™23
e%(a:-l—l)(x—l—?) (x> 1).

(2) T(1+4z)¥®

A

(3) T(1 + )%

v

ErEtn  (229),

(4) T(1 4 z)¥®

v

Proof. We are only going to prove (1) and (3) because (2) and (4) can be shown in
a similar way.
(1) Tt is enough to prove that for every x > 2

F(z) = logT(1 + 2) — glog (é(m F (e + 2)) <0.

Let us compute f’:

2 —log6 log (x 4+ 1)(x + 2) 1 1/2
() — _ _
flo) === +vlet1) 2 2zl
where (1 4 z) = (logT'(1 4+ z))’. Now using that

/2 1/12 1/120

vda)<logle+ D) - o - o T ey

for 1+ > 0 (see, for instance, [3], section 541) and considering y = xlﬁ we obtain
that
sup  f'(z) < sup g(y),
T€[2,400) y€(0,1/3]
where
2—log6 1 vy vy
—_ZTosb Ny 4 YL Y
9(v) 2 loely+ 1+ 5~ 5+ i

Since ¢ is concave on (0,1/3] and ¢'(1/3) > 0, we get

sup  g(y) = g¢(1/3) < 0.
ve(0,1/3]
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Hence f is a nonincreasing function on [2,4+00) and so for every > 2

6
(3) Consider the function F : [5, +00) — R defined by

log T'(1 + ) — glog (l(x F (e + 2)) < f(2) =0.

4 4
F(a) = —logT(z + 1) —2logz —log(x +3) — log(x +7) — log 5.

We are going to show that F'(z) > 0. We have

eF(x) =4logT(x + 1) — 2z loge — zlog(xz + 3) — zlog(x + 7) — x log 5372

4
>4 log (J;xe_x\/ 271'1‘) —2zloga — xlog(x 4+ 3) —xlog(x + 7) — zlog 237 = G(z).

4e*
2372

3 3 3 I
") = |1 1— —— = Z
(=) [og( x+3)+5x+x+3+2]

tlog(io T V4 24y T L5
& 2+7) " hx Tzx7 2|

Y4y sy

h(y) = log(1 — —_—
whenever y € [0,7/12], since h is concave and h(0),h(7/12) > 0. Tt is clear that
for every > 5, 7/(x + 7) and 3/(x + 3) belong to the interval [0,7/12], therefore
(' (z) > 0 on [5,+00). Hence we conclude that G(z) > G(5) > 0forall z € [5, +00),
and so F'(z) > 0, for all z > 5. O

If we denote 8 = —log

> 0, we get that

We have

Proposition 1.2. Let 1/2 <z <1 andy > 2. Then

(1.1) [(1+ay)'*y _ T(1+3)?
' (14 (y+2)x) ~ T(1+3x)
Proof. First of all note that for every y > 2, (1.1) holds for = 1 and «z = 1/2,

simply using Proposition 1.1 and because

LL+yt*y  T+y)?v
I34+y)  (y+2)y+1) ~

1
6
and

P+ Ta+9) 2 [y+4

re+%) 14+% T V23Vy+2°
Now we only have to prove that for every y > 2 the function f, : [%, 1] — R defined
by fy(x) = 3log T(142) —log T(1432) — (14 2) log I'(1 + zy) +log [ (1 + (y+2)x)
is concave. If we compute i1ts derivate, we obtain
£ (@) = 3¢ (14 2) = 99 (14 32) — y(y + 2)¢' (1 + 2y) + (y +2)°¢' (1L + (y + 2)).
Next we use that there exists a function @ : (0,400) — [0, 1] such that for every
z>0

o

V()= 4ot o= o)

z 222 623 3045
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(see [3] or [4]). Then we get that

4 x+ 3 —1+ 922 4+ 1223
B@ = 145 o |+ s
GrherH L T3 Grne+ ] T Ur P
s1 s2
1 2 1 r+ 7
. /y 1_|_ (y+ ) + —I—Oz(x,y),
(& + )+ 39) Wy+2) @+ D+ )
S3
where
9 yy+2)  yly+2) (y+2)°
afz,y) < -
30(1432)>  30(14+2y)®> 6(14+=zy)2  6(14 (y+2)z)3
< 9 y(y +2)
= 3001+ 32)®  30(1+ xy)®’
Notice that S1 and S3 can be deduced from the identity
—k(k+2) —k(k+2) (k+2)* (k+2)?
(14 ka) 20+ kx)? 14+ k+2)z  2(1+ (k4 2)2)?
_ 5 LS I 3
(x—I—%)(x—l—klﬁ) k(k+2) (x—l—%)(x-l—%)

applied to £ = 1 and k = y respectively.
Now we are going to study each summand separately:
S1: It is easy to check that

4 1

ce[i1 (z+1)(x+3)
S2: It can be shown that
92?4+ 1223 — 1 922 + 1223 21

max < ma = — (x =1).

e[ 1] (1+2)2(14+3x)2 & [% 11 (1+2)2(14+32)2 64

r+ L
S3: max |1+ 20y +1) . : y+l1 - = 1+M (x - 1)
b\ T G e+ o) W2+ 2

Notice that since

1 1
max (l‘-l-l Gk = by (x =1/2)
w€[3,1] (l‘+§)(l‘+ m) y+4
we get that for every 1/2 < a2 < 1 and every y > 2
. _Ay+3)
1/y 2(y+1) T+ y+1 y+4 (1 + (y+2)(y+4))
1 1+ ’ < 1
(& + )+ 533) vy +2) (z+ )+ 553) (z+1)(z+3)

55/36
“(z+1D)(x+1/3)
On the other hand
2 4277
< N y(y + )5 < (
30(1+3/2)° 39 (3/%2) 375000

az,y) < ~ 0.012).
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Therefore we obtain that for each y > 2,

" —21/4 21/64 55/36 4277
fy (@) < + + +
I+z)(1+32) (14+=z)(1+3x) (z+1)(x+1/3) 375000
4217 —B 4 B “0
375000 (z+ 1)(x + 1)
forall 1/2 <z < 1. O

Proposition 1.3. The function g : [1/2,400) X [2,4+00) — (0, +00) defined by

Yy F(l—i—xy)l/y
r(1+y)" vwI'(l+2)

g(x,y) =

verifies:

(1) For every y > 2, g(-,y) is nonincreasing in [1/2,+00).
(2) For every » > 1, g(x,-) is nonincreasing in [2,400) and for every 1/2 < z <
1, g(#,-) is nondecreasing in [2,4+00).

Proof. (1) Let y > 2. By using Stirling’s formula it is easy to see that

1/y . L x
h(z,y) = g(=, y)% =y (2mx) " % exp (% — u(x))

Since |ps(t)] < 1/20, we have

d(log h) _y—1_ 11 o ps() ps(Y)
Toe Y= ! ANC )

Ox 2xy 1222 12x%y2 t+zy)t (t+e

< y—14r 1 1 +1/+°° 1 1 "
- 2wy 1222 1222y 20/, t+2)* (4 zy)?

1 1 1 7
< (1-2)(-14—+—-L")<o
— 2 ( y) ( + 4z + 1201‘2) <

for all # > 1/2 (note that this result can be extended to « strictly smaller than 1/2).
Therefore log h(-, y) is a nonincreasing function in [1/2, 400) and so it is g(x, y).

(2) Let & > 1/2. If we again use Stirling’s expression of the Gamma function we
have

(&

_ ety (l N )
9(z,y) Tt P y(u(l‘y) 1)) -
Consider the function
1 1
o(z,y) = —logz + —(p(zy) — ply
(1) = 5 loga + - (u(ay) = 4(0)
defined for y > 1 and o > 1/2.

1 1 1 1 [~ 1 1
¢z, y) = @logl‘+@(;— 1) - @/0 p3(t) ((xy—l—t)?’ - (y+t)3) dt.

Then

0%¢ _ 1 1 < ps(t)
31‘3;{/(1" v)= a2 + 6223 49:/0 (zy + t)5dt'
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Since max{|ps(t)|;t > 0} < 21—0, we achieve

826 P U B
T _
Oxdy Y= 2yx  6x2y?  20x3yt

< ! 1 ! ! <0
- 2%z 6xr  40x2

Hence if z > 1,

d¢ d¢
— < —(1 =
oy DY = 5,y =0
for all y € [2,00) and if 1/2< 2 < 1,
0 0
=—1 < =
0=7,v =5 @y
for all y € [2,00) and thus the result holds. O

Proposition 1.4. The following inequality holds:

9% — 1 2z/(2z—1)
o)

2
L+20)0 (1+3) > 2°T(1 +2)T (1 +

for all x > 5/2.

Proof. We apply Stirling’s formula and so we only need to achieve

(1.2) (%1/2) Y > V2 (22 — 1))/ (4=
and
(13) (e + g (2 ) — i) —2u (5) <0

The inequality (1.2) is deduced from the fact that the function

1
Py) = y(1+y/2)log(1 +y™") = S1og2 -  log(ry)

is convex for y > 0. In particular since F'(4) > 0 and F'(4) > 0 we deduce F(y) > 0
for all y > 4 and so the inequality is true for > 5/2 (consider 2z — 1 = y).
In order to show (1.3) we use the corresponding expansion and we have

2x 20 —1 x 5 x
—pr) -2 (B) = —
2x—1“< 2 ) #(2e) “(2) 24z T 32e - 1)

2u(x) +

1 [ 2 2x 1 1 2
- 3/0 pS(t)((x—i—t)?’ T iU @ —10/2F  Zer? (t—l—x/?)?’)dt
5 x 1 [ 2 2
=T t3pe—1e 3/0 pa(t) ((t—l—x/?)?’ - (m—l—t)?’) dt

1 [ 2x 1 1
- 3/0 pa(l) (293_ T+ @e—1/27 (Qx—l—t)?’) dt

(e BL Sy e
200 2-1/x)? (2-1/2)*Q2z¢-1)) — 24« ’




INEQUALITIES FOR THE GAMMA FUNTION AND SECTIONS OF B} 7

since the function

S S - 55
200 2-1/2)2  (2-1/2)?*(2¢-1)
is nonincreasing for & > 2. Therefore the result follows. O

2. THE VOLUME OF CENTRAL SECTIONS
OF THE UNIT BALL IN £, 0 <p <2

We apply the preceding inequalities to estimate the volume of the k-dimensional
sections of By, stated in the introduction.

Proposition 2.1 (see [12]). Letn € N, n > 2, p € [1,2] and let E be any (n —1)-
dimenstonal subspace in R™. Then
nil/n-1 nil/n
|Eme |n—1 z |Bp |n :

Proof. Let E be a hyperplane in R™. A well-known result (see [6]) ensures that
BYNE|  Ley > ——|Br |0
4 n-1By Z \/ﬁ Pln
where Lpgx (the isotropy constant) is

CT(14 3)0(1 4 2)te2/n
Pr T ar(14 (14 1)3

(see [9]). Hence it is enough to prove that
3 nyl+2/n
{1+ p)££1+ p) T
n+t2 I3 =
{1+ - (1 + p)
for all n > 2 and all 1 < p < 2. Notice that this follows from Proposition 1.2. O

Proposition 2.2. Let n € N, n > 2, p € [1,2] and let FE be any k-dimensional
subspace in R™ with 1 <k < ”2;1 Then

|En B[/

1/n
Pk :

n
Z |Bp |n
Proof. Acording to K. Ball’s result quoted in the introduction, we only have to
consider the case n > 5.
Holder’s inequality implies that

/k

1

S =i ||

k

1/k

[z > [EantiBy .

1
k

(in fact n'/2=1/P B is the ellipsoid of maximal volume contained in B}). Hence it
is enough to show that

1

1_1 1/k
nz e |B§C

k
forall 1 <p<2andforalll <k< ”2;1, that is,

1/n

> |Bp],
n n k
LE+0" 4y

2.1
21 WP T(I1) = 2T 1)

(see for instance [10]).
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By using Proposition 1.3, for every 1 < p < 2 we get that g(1/p,n) > g(1,n);
therefore it is enough to prove (2.1) for p = 1. Furthermore, since T'(1 4+ ) is
log-convex on [0, +o0), the function f(z) = T'(1 + l‘)i is a nondecreasing function
on [0, 40), so

1 1/k 1 2
rG+1) < r(”T +1)

forall 1 <k < % On the other hand, since ”4;1 > 1, we can use Proposition
1.1, (1) and (2), and we obtain that

P+ _ 2
r(i+1)  ~Vr

Thus, it suffices to show that

(9%(71 +3)(n + 7))1/4 .

2.9 r(1 afn >

for all integers n > 5 and this is a consequence of Proposition 1.1. O

n*(n+3)(n+17)

Remark 2.3. If we consider
K={(r1,...,xm) ER"x -+ xR ||z1]5+ -+ ||lzm|h < 1},

with 1 < p < 2 and n,m € N, and we use the same method as in Proposition
2.2, 1t can be shown that for every k-dimensional linear subspace F in R™ with
1<k< ”mz_—l

1/k
P

1/nm
nm

(2.3) |[ENK K

for all p € [1,2] and all n,m € N. The only new tool we need is the inequality
1/2F 1 nyl/n
e 1( * 5) = (n>1)
T+ Di(n+ D7
which is a consequence of Proposition 1.3. Moreover we can achieve the inequality

(2.3) for all 1 < k < 2n, when m = 2, and this way extends the results in [8] in this
case, as is shown in the following result.

(2.4)

Proposition 2.4. Let 1 <p <2 neN and
K ={(x1,22) €R" x R"; [} + [laofls < 1}
Then (2.3) holds for all k-dimensional subspace in R?", with 1 < k < 2n.

Proof. Following the same methods as in Proposition 2.2, we only have to prove

M —1
(1 +2n)T(1 + g)z > 2°T(1 + n)?T(1 + ”T)Zn/@n—l)

for n > 2. The case n > 3 is Proposition 1.4 and n = 2 can be checked directly. O

Next we are going to estimate the volume of the sections through the origin for
the p-balls B, 0 < p < 1. We should notice that Koldobsky (see [7]) studied this
problem for the particular case of central hyperplane sections. He computed the
volume of these sections in terms of the Fourier transform of a power of the radial
function, for every p > 0, and he applied this result to confirm the conjecture of
Meyer and Pajor on the minimal volume of these particular sections of the unit
p-balls B, 0 <p < 2.
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Proposition 2.5. Let E be any k-dimensional subspace of R™, 1 < k < n, and let
0<p<l1. Then

el— 1/p

L(1+1/p)p!/r B

|B” nEel,
and the constant
61_1/p
r(1+1/p)pt/r

is the good order of magnitude for fived n when p — 0%,

€(0,1)

Proof. We use the results from [8]:

1/k 1/k

> =Y\ EN BY,
> n' P By /"

— pl-t/p L(1+4n/p)t/

|EN By,

l/n
)T+ 170
By Proposition 1.3
ni=1t/p ra+ n/P)l/n
(n)Yrr(1+1/p)

is nonincreasing with n and this implies the result, since

TR VS L) A

n—oo ()YnD(1+1/p) — T(1+ 1/p)pt/r
Note that this value belongs to (0, 1). Indeed

el=1/p e\/P

F(l n l/p)pl/p = \/ﬂ eXP(—/i(l/P))
e 1 p 1 [ ps(t)
_EeXP<§logp_ﬁ+§/o Wdt)

and

d (1 p L[ pslt) /
—(Zlogp— = A - :——— — dt
dp<2 ep 12+3/0 (1/p+1)3 1/p+t
1
>_____
=2 12 60

Finally we show that the result is sharp. It is easy to check that

el—1/p P +
—F(l—I—l/p)pl/PNeﬂﬁ when p —0

and if we consider the 1-dimensional subspace Ey = span{(1,...,1)} CR", then
it 1s easy to prove that

|Br 0 Eol, _ e+ n/p)n pt

|Bn|1/" L(1+41/p) (
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Remark 2.6. If we now consider
K={(r1,...,xm) ER"x -+ xR ||zg||} + -+ ||lzm|ff <1},

with 0 < p <1 and n,m € N, and we use the same ideas as in Proposition 2.5, it
can be shown that for every k-dimensional linear subspace £ in R® 1 < k < nm,

1-1/p
AL

L(1+1/p)pt/*

for all p € (0,1] and all n,m € N.

1/nm
nm

|ENK
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