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Abstract. Let B

n

p

= f(x

i

) 2R

n

;

P

n

1

jx

i

j

p

� 1g and let E be a k-dimensional

subspace of R

n

. We prove that jE \B

n

p

j

1=k

k

� jB

n

p

j

1=n

n

, for 1 � k � (n� 1)=2

and k = n � 1 whenever 1 < p < 2. We also consider 0 < p < 1 and other

related cases. We obtain sharp inequalities involving Gamma function in order

to get these results.

Introduction

In [13], J. D. Vaaler proved that all k-dimensional sections of the unit cube

[�1=2; 1=2]

n

in R

n

have k-dimensional volume bigger than or equal to 1. If we

write B

n

p

= fx 2 R

n

; jx

1

j

p

+ � � �+ jx

n

j

p

� 1g, 0 < p < 1, M. Meyer and A. Pajor

extended Vaaler's result to the range p 2 f1g [ [2;1] in [8]. More precisely, they

showed that

jE \B

n

p

j

1=k

k

� jB

n

p

j

1=n

n

;(0.1)

for all E, k-dimensional subspace of R

n

. K. Ball (see [1], [2]), using Brascamp

and Lieb inequality, established (0.1) for the 1-dimensional sections of any ball

in R

n

having a multiple of the euclidean ball as the ellipsoid of maximal volume

contained in it. More recently Schmuckenschl�ager (see [12]) estimated the volume

of the (n � 1)-dimensional sections of B

n

p

, for 1 < p < 2, but the proof of the

inequality he proposed was not correct. The aim of this paper is to give a proof

of the inequality appearing in [12] (see Proposition 1.2 below), to prove (0.1) for

1 � k � (n � 1)=2 and 1 < p < 2 (see Proposition 2.2) and to give the right

estimate for (0.1) for 0 < p < 1 (see Proposition 2.5). Moreover, we prove (0.1) for

B = B

n

2

L

p

B

n

2

, 1 � p � 2 (see Proposition 2.4), answering a question raised to

the authors by M. Meyer.

In order to do this we need to establish sharp inequalities involving the Gamma

function which have their own interest. We state and prove these inequalities in

section 1 and the corresponding estimates for the volume of sections are given in

section 2.
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As usual we denote by kxk

p

= (

P

n

1

jx

i

j

p

)

1=p

, for x = (x

1

: : : ; x

n

) 2 R

n

and

0 < p < 1. If A � R

k

, jAj

k

will represent the k-dimensional Lebesgue measure in

R

k

.

1. Some inequalities for the Gamma function

Throughout this paper we are going to use Stirling's formula, i.e.

�(1 + x) = x

x

e

�x

p

2�x exp�(x) (x > 0);

where �(x) is a nonincreasing and nonnegative function for x � 1 de�ned by

�(x) =

1

12x

�

1

3

Z

1

0

p

3

(t)

(t + x)

3

dt

where p

3

(t) is a 1-periodic function that for t 2 [0; 1] is de�ned by p

3

(t) = t

3

�

3

2

t

2

+

1

2

t (see, for instance, [11], pg. 62). Notice that jp

3

(t)j �

1

20

for all t � 0.

Proposition 1.1. The following inequalities hold:

(1) �(1 + x)

2=x

�

1

6

(x+ 1)(x+ 2) (x � 2),

(2) �(1 + x)

2=x

�

4

23

(x+ 1)(x+ 2) (1 � x � 2),

(3) �(1 + x)

2=x

�

2

�

p

23

x

p

(x+ 3)(x+ 7) (x � 5),

(4) �(1 + x)

2=x

�

1

e

2

(x+ 1)(x+ 2) (x � 1).

Proof. We are only going to prove (1) and (3) because (2) and (4) can be shown in

a similar way.

(1) It is enough to prove that for every x � 2

f(x) = log�(1 + x)�

x

2

log

�

1

6

(x+ 1)(x+ 2)

�

� 0:

Let us compute f

0

:

f

0

(x) = �

2� log 6

2

+  (x + 1)�

log (x+ 1)(x+ 2)

2

+

1

x+ 2

+

1=2

x+ 1

where  (1 + x) = (log �(1 + x))

0

. Now using that

 (1 + x) < log(x+ 1)�

1=2

x+ 1

�

1=12

(x+ 1)

2

+

1=120

(x+ 1)

4

for 1+x > 0 (see, for instance, [3], section 541) and considering y =

1

x+1

we obtain

that

sup

x2[2;+1)

f

0

(x) � sup

y2(0;1=3]

g(y);

where

g(y) = �

2� log 6

2

�

1

2

log(y + 1) +

y

y + 1

�

y

2

12

+

y

4

120

:

Since g is concave on (0; 1=3] and g

0

(1=3) > 0, we get

sup

y2(0;1=3]

g(y) = g(1=3) < 0:
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Hence f is a nonincreasing function on [2;+1) and so for every x � 2

log �(1 + x)�

x

2

log

�

1

6

(x+ 1)(x+ 2)

�

� f(2) = 0:

(3) Consider the function F : [5;+1) �! R de�ned by

F (x) =

4

x

log�(x+ 1)� 2 logx� log(x+ 3)� log(x+ 7)� log

4

23�

2

:

We are going to show that F (x) � 0. We have

xF (x) = 4 log�(x+ 1)� 2x logx� x log(x+ 3)� x log(x+ 7)� x log

4

23�

2

�4 log

�

x

x

e

�x

p

2�x

�

� 2x logx� x log(x+ 3)� x log(x+ 7)� x log

4

23�

2

= G(x):

If we denote � = � log

4e

4

23�

2

> 0, we get that

G

0

(x) =

�

log

�

1�

3

x+ 3

�

+

3

5x

+

3

x+ 3

+

�

2

�

+

�

log

�

1�

7

x+ 7

�

+

7

5x

+

7

x+ 7

+

�

2

�

:

We have

h(y) = log(1� y) +

y

5(1� y)

+ y +

�

2

> 0

whenever y 2 [0; 7=12], since h is concave and h(0); h(7=12) > 0. It is clear that

for every x � 5, 7=(x+ 7) and 3=(x + 3) belong to the interval [0; 7=12], therefore

G

0

(x) > 0 on [5;+1). Hence we conclude that G(x) � G(5) > 0 for all x 2 [5;+1),

and so F (x) > 0, for all x � 5.

Proposition 1.2. Let 1=2 � x � 1 and y � 2. Then

�(1 + xy)

1+

2

y

� (1 + (y + 2)x)

�

�(1 + x)

3

�(1 + 3x)

:(1.1)

Proof. First of all note that for every y � 2, (1.1) holds for x = 1 and x = 1=2,

simply using Proposition 1.1 and because

�(1 + y)

1+2=y

�(3 + y)

=

�(1 + y)

2=y

(y + 2)(y + 1)

�

1

6

and

�(1 +

y

2

)

1+2=y

�(2 +

y

2

)

=

�(1 +

y

2

)

2=y

1 +

y

2

�

2

p

23

r

y + 4

y + 2

�

�

6

:

Now we only have to prove that for every y � 2 the function f

y

: [

1

2

; 1]! R de�ned

by f

y

(x) = 3 log�(1+x)� log �(1+3x)� (1+

2

y

) log�(1+xy)+ log �(1+(y+2)x)

is concave. If we compute its derivate, we obtain

f

00

y

(x) = 3 

0

(1 + x)� 9 

0

(1 + 3x)� y(y + 2) 

0

(1 + xy) + (y + 2)

2

 

0

(1 + (y + 2)x):

Next we use that there exists a function � : (0;+1) �! [0; 1] such that for every

z > 0

 

0

(z) =

1

z

+

1

2z

2

+

1

6z

3

�

�(z)

30z

5
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(see [3] or [4]). Then we get that

f

00

y

(x) = �

1

(x+ 1)(x+

1

3

)

�

1 +

4

3

�

x+

1

2

(x+ 1)(x+

1

3

)

�

| {z }

S1

+

�1 + 9x

2

+ 12x

3

(1 + x)

3

(1 + 3x)

3

| {z }

S2

+

1=y

(x +

1

y

)(x+

1

y+2

)

"

1 +

2(y + 1)

y(y + 2)

�

x+

1

y+1

(x+

1

y

)(x+

1

y+2

)

#

| {z }

S3

+�(x; y);

where

�(x; y) �

9

30(1 + 3x)

5

+

y(y + 2)

30(1 + xy)

5

�

y(y + 2)

6(1 + xy)

3

+

(y + 2)

2

6(1 + (y + 2)x)

3

�

9

30(1 + 3x)

5

+

y(y + 2)

30(1 + xy)

5

:

Notice that S1 and S3 can be deduced from the identity

�k(k + 2)

(1 + kx)

+

�k(k + 2)

2(1 + kx)

2

+

(k + 2)

2

1 + (k + 2)x

+

(k + 2)

2

2(1 + (k + 2)x)

2

=

1

k

(x+

1

k

)(x+

1

k+2

)

"

1 +

2(k + 1)

k(k + 2)

�

x+

1

k+1

(x +

1

k

)(x +

1

k+2

)

#

applied to k = 1 and k = y respectively.

Now we are going to study each summand separately:

S1: It is easy to check that

min

x2[

1

2

;1]

�

1 +

4

3

�

x+

1

2

(x+ 1)(x+

1

3

)

�

=

7

4

(x = 1):

S2: It can be shown that

max

x2[

1

2

;1]

9x

2

+ 12x

3

� 1

(1 + x)

2

(1 + 3x)

2

< max

x2[

1

2

;1]

9x

2

+ 12x

3

(1 + x)

2

(1 + 3x)

2

=

21

64

(x = 1):

S3: max

x2[

1

2

;1]

 

1 +

2(y + 1)

y(y + 2)

�

x+

1

y+1

(x+

1

y

)(x+

1

y+2

)

!

= 1+

4(y + 3)

(y + 2)(y + 4)

�

x =

1

2

�

.

Notice that since

max

x2[

1

2

;1]

(x+ 1)(x+

1

3

)

(x +

1

y

)(x+

1

y+2

)

=

5y

y + 4

(x = 1=2)

we get that for every 1=2 � x � 1 and every y � 2

1=y

(x+

1

y

)(x+

1

y+2

)

"

1 +

2(y + 1)

y(y + 2)

�

x+

1

y+1

(x+

1

y

)(x +

1

y+2

)

#

�

5

y+4

�

�

1 +

4(y+3)

(y+2)(y+4)

�

(x+ 1)(x+

1

3

)

�

55=36

(x+ 1)(x+ 1=3)

:

On the other hand

�(x; y) �

9

30(1 + 3=2)

5

+

y(y + 2)

30

�

y+2

2

�

5

�

4277

375000

(� 0:012):
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Therefore we obtain that for each y � 2,

f

00

y

(x) �

�21=4

(1 + x)(1 + 3x)

+

21=64

(1 + x)(1 + 3x)

+

55=36

(x+ 1)(x+ 1=3)

+

4277

375000

=

4277

375000

+

�

105

64

+

55

36

(x+ 1)(x+

1

3

)

< 0

for all 1=2 � x � 1.

Proposition 1.3. The function g : [1=2;+1)� [2;+1) �! (0;+1) de�ned by

g(x; y) =

y

�(1 + y)

1=y

�(1 + xy)

1=y

y

x

�(1 + x)

veri�es:

(1) For every y � 2, g(�; y) is nonincreasing in [1=2;+1).

(2) For every x � 1, g(x; �) is nonincreasing in [2;+1) and for every 1=2 � x �

1, g(x; �) is nondecreasing in [2;+1).

Proof. (1) Let y � 2. By using Stirling's formula it is easy to see that

h(x; y) = g(x; y)

�(1 + y)

1=y

y

= y

1

2y

(2�x)

1

2y

�

1

2

exp

�

�(xy)

y

� �(x)

�

:

Since jp

3

(t)j � 1=20, we have

@(logh)

@x

(x; y) =�

y � 1

2xy

+

1

12x

2

�

1

12x

2

y

2

+

Z

+1

0

�

p

3

(t)

(t + xy)

4

�

p

3

(t)

(t+ x)

4

�

dt

��

y � 1

2xy

+

1

12x

2

�

1

12x

2

y

2

+

1

20

Z

+1

0

�

1

(t+ x)

4

�

1

(t+ xy)

4

�

dt

�

1

2x

�

1�

1

y

��

�1 +

1

4x

+

7

120x

2

�

< 0

for all x � 1=2 (note that this result can be extended to x strictly smaller than 1=2).

Therefore logh(�; y) is a nonincreasing function in [1=2;+1) and so it is g(x; y).

(2) Let x � 1=2. If we again use Stirling's expression of the Gamma function we

have

g(x; y) =

e

1�x

x

x

�(1 + x)

x

1=2y

exp

�

1

y

(�(xy) � �(y))

�

:

Consider the function

�(x; y) =

1

2y

logx+

1

y

(�(xy) � �(y))

de�ned for y � 1 and x � 1=2.

�(x; y) =

1

2y

logx+

1

12y

2

(

1

x

� 1)�

1

3y

Z

1

0

p

3

(t)

�

1

(xy + t)

3

�

1

(y + t)

3

�

dt:

Then

@

2

�

@x@y

(x; y) = �

1

2xy

2

+

1

6x

2

y

3

� 4x

Z

1

0

p

3

(t)

(xy + t)

5

dt:
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Since maxfjp

3

(t)j; t � 0g �

1

20

, we achieve

@

2

�

@x@y

(x; y) � �

1

2y

2

x

+

1

6x

2

y

3

+

1

20x

3

y

4

� �

1

2y

2

x

�

1�

1

6x

�

1

40x

2

�

< 0:

Hence if x � 1,

@�

@y

(x; y) �

@�

@y

(1; y) = 0

for all y 2 [2;1) and if 1=2 � x � 1,

0 =

@�

@y

(1; y) �

@�

@y

(x; y)

for all y 2 [2;1) and thus the result holds.

Proposition 1.4. The following inequality holds:

�(1 + 2x)�

�

1 +

x

2

�

2

� 2

x

�(1 + x)

2

�

�

1 +

2x� 1

2

�

2x=(2x�1)

for all x � 5=2.

Proof. We apply Stirling's formula and so we only need to achieve

�

x

x� 1=2

�

x+1=2

�

p

2 ((2x� 1)�)

1=(4x�2)

(1.2)

and

2�(x) +

2x

2x� 1

�

�

2x� 1

2

�

� �(2x)� 2�

�

x

2

�

� 0:(1.3)

The inequality (1.2) is deduced from the fact that the function

F (y) = y(1 + y=2) log(1 + y

�1

)�

y

2

log 2�

1

2

log(�y)

is convex for y > 0. In particular since F

0

(4) > 0 and F (4) > 0 we deduce F (y) > 0

for all y � 4 and so the inequality is true for x � 5=2 (consider 2x� 1 = y).

In order to show (1.3) we use the corresponding expansion and we have

2�(x) +

2x

2x� 1

�

�

2x� 1

2

�

� �(2x)� 2�

�

x

2

�

= �

5

24x

+

x

3(2x� 1)

2

�

1

3

Z

1

0

p

3

(t)

�

2

(x+ t)

3

+

2x

2x� 1

1

(t+ (2x� 1)=2)

3

�

1

(2x+ t)

3

�

2

(t + x=2)

3

�

dt

= �

5

24x

+

x

3(2x� 1)

2

+

1

3

Z

1

0

p

3

(t)

�

2

(t+ x=2)

3

�

2

(x+ t)

3

�

dt

�

1

3

Z

1

0

p

3

(t)

�

2x

2x� 1

1

(t + (2x� 1)=2)

3

�

1

(2x+ t)

3

�

dt

�

1

24x

�

�5 +

23

20x

+

8

(2� 1=x)

2

+

8=5

(2� 1=x)

2

(2x� 1)

�

� �

0:632

24x

< 0;
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since the function

�5 +

23

20x

+

8

(2� 1=x)

2

+

8=5

(2� 1=x)

2

(2x� 1)

is nonincreasing for x � 2. Therefore the result follows.

2. The volume of central sections

of the unit ball in `

n

p

, 0 < p < 2

We apply the preceding inequalities to estimate the volume of the k-dimensional

sections of B

n

p

, stated in the introduction.

Proposition 2.1 (see [12]). Let n 2 N, n � 2, p 2 [1; 2] and let E be any (n� 1)-

dimensional subspace in R

n

. Then

�

�

E \B

n

p

�

�

1=n�1

n�1

�

�

�

B

n

p

�

�

1=n

n

:

Proof. Let E be a hyperplane in R

n

. A well-known result (see [6]) ensures that

�

�

B

n

p

\E

�

�

n�1

L

B

n

p

�

1

p

12

�

�

B

n

p

�

�

(n�1)=n

n

where L

B

n

p

(the isotropy constant) is

L

2

B

n

p

=

�(1 +

3

p

)�(1 +

n

p

)

1+2=n

12�(1 +

n+2

p

)�(1 +

1

p

)

3

(see [9]). Hence it is enough to prove that

�(1 +

3

p

)�(1 +

n

p

)

1+2=n

�(1 +

n+2

p

)�(1 +

1

p

)

3

� 1

for all n � 2 and all 1 � p � 2. Notice that this follows from Proposition 1.2.

Proposition 2.2. Let n 2 N, n � 2, p 2 [1; 2] and let E be any k-dimensional

subspace in R

n

with 1 � k �

n�1

2

. Then

�

�

E \B

n

p

�

�

1=k

k

�

�

�

B

n

p

�

�

1=n

n

:

Proof. Acording to K. Ball's result quoted in the introduction, we only have to

consider the case n � 5.

H�older's inequality implies that

�

�

E \B

n

p

�

�

1=k

k

�

�

�

�

E \ n

1

2

�

1

p

B

n

2

�

�

�

1=k

k

= n

1

2

�

1

p

�

�

B

k

2

�

�

1=k

k

(in fact n

1=2�1=p

B

n

2

is the ellipsoid of maximal volume contained in B

n

p

). Hence it

is enough to show that

n

1

2

�

1

p

�

�

B

k

2

�

�

1=k

k

�

�

�

B

n

p

�

�

1=n

n

for all 1 � p � 2 and for all 1 � k �

n�1

2

, that is,

�(

n

p

+ 1)

1=n

n

1=p

�(

1

p

+ 1)

�

�(

k

2

+ 1)

1=k

n

1=2

�(

1

2

+ 1)

(2.1)

(see for instance [10]).
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By using Proposition 1.3, for every 1 � p � 2 we get that g(1=p; n) � g(1; n);

therefore it is enough to prove (2.1) for p = 1. Furthermore, since �(1 + x) is

log-convex on [0;+1), the function f(x) = �(1 + x)

1

x

is a nondecreasing function

on [0;+1), so

�(

k

2

+ 1)

1=k

� �(

n � 1

4

+ 1)

2

n�1

for all 1 � k �

n�1

2

. On the other hand, since

n�1

4

� 1, we can use Proposition

1.1, (1) and (2), and we obtain that

�(

n�1

4

+ 1)

2

n�1

�(

1

2

+ 1)

�

2

p

�

�

1

92

(n+ 3)(n+ 7)

�

1=4

:

Thus, it su�ces to show that

�(1 + n)

4=n

�

4

23�

2

n

2

(n+ 3)(n+ 7)(2.2)

for all integers n � 5 and this is a consequence of Proposition 1.1.

Remark 2.3. If we consider

K = f(x

1

; : : : ; x

m

) 2 R

n

� � � � �R

n

; kx

1

k

p

2

+ � � �+ kx

m

k

p

2

� 1g ;

with 1 � p � 2 and n;m 2 N, and we use the same method as in Proposition

2.2, it can be shown that for every k-dimensional linear subspace E in R

nm

with

1 � k �

nm�1

2

jE \Kj

1=k

k

� jKj

1=nm

nm

(2.3)

for all p 2 [1; 2] and all n;m 2 N. The only new tool we need is the inequality

n

1=2

�(1 +

n

2

)

1=n

�(1 +

1

2

)�(n + 1)

1=n

� 1 (n � 1)(2.4)

which is a consequence of Proposition 1.3. Moreover we can achieve the inequality

(2.3) for all 1 � k � 2n, when m = 2, and this way extends the results in [8] in this

case, as is shown in the following result.

Proposition 2.4. Let 1 � p � 2, n 2 N and

K = f(x

1

; x

2

) 2 R

n

�R

n

; kx

1

k

p

2

+ kx

2

k

p

2

� 1g :

Then (2.3) holds for all k-dimensional subspace in R

2n

, with 1 � k � 2n.

Proof. Following the same methods as in Proposition 2.2, we only have to prove

�(1 + 2n)�(1 +

n

2

)

2

� 2

n

�(1 + n)

2

�(1 +

2n� 1

2

)

2n=(2n�1)

for n � 2. The case n � 3 is Proposition 1.4 and n = 2 can be checked directly.

Next we are going to estimate the volume of the sections through the origin for

the p-balls B

n

p

, 0 < p < 1. We should notice that Koldobsky (see [7]) studied this

problem for the particular case of central hyperplane sections. He computed the

volume of these sections in terms of the Fourier transform of a power of the radial

function, for every p > 0, and he applied this result to con�rm the conjecture of

Meyer and Pajor on the minimal volume of these particular sections of the unit

p-balls B

n

p

, 0 < p < 2.



INEQUALITIES FOR THE GAMMA FUNTION AND SECTIONS OF B

n

p

9

Proposition 2.5. Let E be any k-dimensional subspace of R

n

, 1 � k � n, and let

0 < p < 1. Then

jB

n

p

\Ej

1=k

k

�

e

1�1=p

�(1 + 1=p)p

1=p

jB

n

p

j

1=n

n

and the constant

e

1�1=p

�(1 + 1=p)p

1=p

2 (0; 1)

is the good order of magnitude for �xed n when p �! 0

+

.

Proof. We use the results from [8]:

jE \B

n

p

j

1=k

k

� n

1�1=p

jE \B

n

1

j

1=k

k

� n

1�1=p

jB

n

1

j

1=n

n

= n

1�1=p

�(1 + n=p)

1=n

(n!)

1=n

�(1 + 1=p)

jB

n

p

j

1=n

n

:

By Proposition 1.3

n

1�1=p

�(1 + n=p)

1=n

(n!)

1=n

�(1 + 1=p)

is nonincreasing with n and this implies the result, since

lim

n!1

n

1�1=p

�(1 + n=p)

1=n

(n!)

1=n

�(1 + 1=p)

=

e

1�1=p

�(1 + 1=p)p

1=p

:

Note that this value belongs to (0; 1). Indeed

e

1�1=p

�(1 + 1=p)p

1=p

=

e

p

p

p

2�

exp(��(1=p))

=

e

p

2�

exp

�

1

2

logp�

p

12

+

1

3

Z

1

0

p

3

(t)

(1=p+ t)

3

dt

�

and

d

dp

�

1

2

log p�

p

12

+

1

3

Z

1

0

p

3

(t)

(1=p+ t)

3

dt

�

=

1

2p

�

1

12

+

1

p

2

Z

1

0

p

3

(t)

(1=p+ t)

4

dt

�

1

2p

�

1

12

�

p

60

> 0:

Finally we show that the result is sharp. It is easy to check that

e

1�1=p

�(1 + 1=p)p

1=p

� e

r

p

2�

when p �! 0

+

and if we consider the 1-dimensional subspace E

0

= span f(1; : : : ; 1)g � R

n

, then

it is easy to prove that

�

�

B

n

p

\E

0

�

�

1

�

�

B

n

p

�

�

1=n

n

= n

1=2�1=p

�(1 + n=p)

1=n

�(1 + 1=p)

�

p

1

2

�

1

2n

n

1

2

+

1

2n

(2�)

1

2

�

1

2n

(p �! 0

+

):



10 J. BASTERO, F. GALVE, A. PE

~

NA, AND M. ROMANCE

Remark 2.6. If we now consider

K = f(x

1

; : : : ; x

m

) 2 R

n

� � � � �R

n

; kx

1

k

p

1

+ � � �+ kx

m

k

p

1

� 1g ;

with 0 < p � 1 and n;m 2 N, and we use the same ideas as in Proposition 2.5, it

can be shown that for every k-dimensional linear subspace E in R

nm

, 1 � k � nm,

jE \Kj

1=k

k

�

e

1�1=p

�(1 + 1=p)p

1=p

jKj

1=nm

nm

for all p 2 (0; 1] and all n;m 2 N.
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