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Abstra
t. We give a 
hara
terization of quasipower weights in terms of Calder�on

transform of measures on (0;1), similar to the one given by Coifman and Ro
hberg

for the Mu
kenhoupt 
lass A

1

.

In the last few years (
f. [BMR 1,2,3,4,5℄ and the referen
es therein) we have

been studying the 
onne
tions between weighted norm inequalities and interpola-

tion theory. For example, in [Mi℄ and [BMR3℄ we have shown that 
ertain basi


self improving inequalities in the theory of weights 
an be reinterpreted as inverse

reiteration theorems. In this fashion the 
lassi
al self improving results in the

theory of weights follow as a 
onsequen
e of the properties of solutions of 
ertain

elementary di�erential inequalities asso
iated, via reiteration, to the K-fun
tionals

of the weights in question (
f. [Mi℄, [BMR 2, 3℄ and the referen
es therein.) Our

approa
h leads to new methods to atta
k the 
lassi
al problems while at the same

time produ
ing new results in interpolation theory.

In this note we illustrate on
e again the interplay between the theory of weights

and interpolation theory fo
ussing our analysis on the Coifman-Ro
hberg theorem

[CR℄. This 
elebrated result gives a very simple algorithm to 
onstru
t all the

weights in the Mu
kenhoupt 
lass A

1

, and therefore, by the Jones fa
torization

theorem, provides a 
onstru
tive 
hara
terization of all weights in the A

p


lasses,

p > 1.

To be more pre
ise, the Coifman-Ro
hberg theorem gives a 
hara
terization of

A

1

weights based on the properties of the Hardy-Littlewood maximal operator, our

analysis here will lead us to an analogous 
hara
terization of quasipower weights in

terms of the Calder�on operator.

It is instru
tive to see the route we take to arrive to the formulation of the

results.

Re
all that w 2 A

1

i� there exists C > 0 su
h that

Mw � Cw; (1)

where M denotes the Hardy-Littlewood maximal operator.
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The Coifman-Ro
hberg theorem provides the following 
hara
terization of A

1

:

w 2 A

1

if and only if there exists 0 < h 2 L

1

; f 2 L

1

lo


; � 2 (0; 1); su
h that

w = h(Mf)

�

. This, of 
ourse, is based on the validity of the formula

M((Mf)

�

) � C (Mf)

�

: (2)

If we let p = 1=�, g = f

�

; then (2) takes the following form: for any g 2 L

p

lo


,

M(M

p

g) � CM

p

g: (3)

Taking rearrangements and using well known estimates for the maximal operator

we get

1

t

Z

t

0

�

1

s

Z

s

0

g

�

(u)

p

du

�

1=p

ds � C

�

1

t

Z

t

0

g

�

(u)

p

du

�

1=p

: (3

0

)

Let us now re
all that given a 
ompatible pair of Bana
h spa
es A = (A

0

; A

1

), we

let for a 2 A

0

+A

1

, t > 0, K(t; a;A) be de�ned by

K(t; a;A) = inffka

0

k

A

0

+ tka

1

k

A

1

g;

where the inf runs over all possible de
ompositions a = a

0

+ a

1

, with a

i

2 A

i

; i =

0; 1.

In terms of K�fun
tionals, (3') 
an be rewritten as

K(t;

K((�)

1=p

; g;L

p

; L

1

)

(�)

1=p

;L

1

; L

1

) � Ct

K(t

1=p

; g;L

p

; L

1

)

t

1=p

: (4)

This suggests to de�ne the 
lass A(L

1

; L

1

) as follows: f 2 A(L

1

; L

1

) i� f is

non in
reasing and there exists a 
onstant C > 0 su
h that for all t > 0 we have,

K(t; f; L

1

; L

1

)

t

� Cf(t): (5)

Remark. Note that if we let p = 1 in (3)-(3') the resulting inequality 
an be rein-

terpreted as a limit 
ase of Gehring's Lemma studied in detail in [BMR3℄.

From our previous dis
ussion, we see that the Coifman-Ro
hberg theorem in this


ontext implies that for any p > 1; and g 2 L

p

; we have

K((�)

1=p

; g; L

p

; L

1

)

(�)

1=p

2 A(L

1

; L

1

): (6)

Of 
ourse on
e we know the validity of (6) a dire
t elementary proof of it 
an be

established without relying on the Coifman-Ro
hberg theorem and the rearrange-

ment inequalities for the maximal operator. Indeed, more generally the following

reiteration formula is valid for pairs of Bana
h spa
es

K(t;

K((�)

1��

; g;A

�;p

; A

1

)

(�)

1��

;L

1

; L

1

) � 
t

K(t

1��

; g;A

�;p

; A

1

)

t

1��

: (6

0

)
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We only 
onsider the elementary proof of the (6) in detail, the proof of (6') is

analogous, if we use Holmstedt's formula. Now, we want to write

K(s

1=p

; g;L

p

; L

1

)

s

1=p

�

�

1

s

Z

s

0

g

�

(u)

p

du

�

1=p

= f(s; t) + h(s; t);

in su
h a way that

kf(�; t)k

1

+ t kh(�; t)k

1

� K(t;

K((�)

1=p

; g; L

p

; L

1

)

(�)

1=p

;L

1

; L

1

):

Note that sin
e

�

1

t

R

t

0

g

�

(u)

p

du

�

1=p

de
reases, the optimal way to do this is appar-

ently to write

�

1

s

Z

s

0

g

�

(u)

p

du

�

1=p

=

�

1

s

Z

s

0

f

�

(u)

p

du

�

1=p

�

(0;t)

(s)

| {z }

g(s;t)

+

�

1

s

Z

s

0

f

�

(u)

p

du

�

1=p

�

(t;1)

(s)

| {z }

h(s;t)

:

Then,

kf(�; t)k

1

=

Z

t

0

�

1

s

Z

s

0

g

�

(u)

p

du

�

1=p

ds

=

Z

t

0

s

�1=p

�

Z

s

0

g

�

(u)

p

du

�

1=p

ds

�

�

Z

t

0

g

�

(u)

p

du

�

1=p

Z

t

0

s

�1=p

ds

= 


p

t

�

1

t

Z

t

0

g

�

(u)

p

du

�

1=p

and similarly

t kh(�; t)k

1

� t

�

1

t

Z

t

0

g

�

(u)

p

du

�

1=p

:

Remark. In this note we do not 
onsider the most general results that 
an be

obtained by our methods. For example, a more general version of (6) (resp.(6')) is


losely related to the iteration results for maximal operators in [Ne℄, (
f. our related

arti
le [BMR5℄ for rearrangement estimates of variants of the Hardy-Littlewood

maximal operator.)

In order to 
ontinue our dis
ussion we need to introdu
e some 
lasses of weights

and develop notation.

Let us denote by L

1

the 
ompatible pair of Bana
h spa
es

L

1

= (L

1

(dx); L

1

(dx=x))
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on the interval (0;1). It is well known (
f. [BK℄) that

K(t; f ;L

1

) =

Z

1

0

min

�

t

x

; 1

�

f(x)dx:

In the sequel w will denote a weight, i.e., a non negative Lebesgue measurable

fun
tion de�ned on the interval (0;1). We say that w satis�es the M

1


ondition if

there exists a 
onstant C > 0 su
h that for almost all t > 0

Z

1

t

w(x)

x

dx � Cw(t): (7)

We shall say that a weight satis�es anM

1


ondition if there exists a 
onstant C > 0

su
h that for almost all t > 0

1

t

Z

t

0

w(x)dx � Cw(t): (8)

It is well known (see [Mu ℄, [Ma℄) that a weight w satis�es the M

1


ondition if

and only if Pf 2 L

1

(w) for all f 2 L

1

(w), where P is the Hardy operator de�ned

by

Pf(t) =

1

t

Z

t

0

f(x)dx

and L

1

(w) is the 
lass of Lebesgue measurable fun
tions f de�ned on the interval

(0;1) su
h that

Z

1

0

jf(t)jw(t)dt < +1. Similarly the 
lass M

1


ontrols the

boundedness of the operator Q, the adjoint of P , de�ned by

Qf(t) =

Z

1

t

f(x)

x

dx:

A
tually, Qf 2 L

1

(w) for all f 2 L

1

(w) if and only w satis�es M

1

. We de�ne the

Calder�on operator S by S = P +Q = P ÆQ = Q Æ P , so that

Sf(t) =

Z

1

0

min

�

1

x

;

1

t

�

f(x)dx:

We shall say that a fun
tion de�ned on (0;1) is S-lo
ally integrable (f 2 S

lo


)

if Sf(t) exists everywhere t > 0. In a similar way a non negative Borel measure �,

de�ned on the borelians (0;1), is S-lo
ally �nite if

S�(t) =

Z

1

0

min

�

1

x

;

1

t

�

d�(x) <1;

for all t > 0.

It will be also 
onvenient to use the notation f � g whenever for some 
onstant

C > 0 and for all x we have

1

C

f(x) � g(x) � Cf(x):
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We say that a weight w on (0;1) is a quasipower, i.e. w 2 Q, if

Pw � w; Qw � w:

In parti
ular, quasipower weights satisfy w � Sw. These weights are frequently

used in interpolation theory to extend the 
lassi
al interpolation spa
es of Lions

and Peetre (see [BL℄, [BK℄, [G℄ and [K℄).

Remark. In [BMR1℄ we 
onsidered real interpolation spa
es 
onstru
ted using the

more general 
lass of C

p

-weights. These weights 
ontrol the weighted norm in-

equalities of S in L

p

(w). Sin
e these 
lasses 
hange with the parameter \p", real

interpolation spa
es of Lions-Peetre type based on these weights have reiteration

properties that e�e
tively depend on the \se
ond" parameter. In this 
ontext ex-

trapolation theorems of Rubio de Fran
ia type 
ome up as substitutes for reiteration

theorems.

In referen
e to the previous remark re
all that, in parti
ular, C

1

are the weights

that satisfy both M

1

and M

1


onditions.

Sin
e w � Qw, every quasipower weight is equivalent to a non in
reasing quasi-

power weight. Remark also that a quasipower weight is an A

1

-weight.

At this point we should note that the 
lasses Q, C

1

and A

1

are all di�erent from

ea
h other.

The 
lass C

1

is stri
tly larger than Q as it is shown in [BMR1℄. Indeed, let

w(t) =

�

1=

p

t if 0 < t � 1

1=

p

t� 1 if 1 < t:

It is easy to 
ompute

Sw(t) =

(

� � 2 +

4

p

t

if 0 < t � 1

2

t

+

2

p

t�1

t

+ 2ar
tan

1

p

t�1

; if 1 < t

and therefore we see that w 2 C

1

but w =2 Q. It is also easy to see that w is not in

A

1

. Indeed, if w 2 A

1

then for some 
onstant C > 0 we would have

1

b� a

Z

b

a

w(x)dx =

2

b� a

(1�

p

a+

p

b� 1) < C;

for almost all a 2 (1=2; 1) and for all b > 1, whi
h is false.

On the other hand, the weight w = 1 is in A

1

but is not in C

1

.

The 
lass A

1

is di�erent from Q. In fa
t, 
onsider the weight

w(t) =

8

>

>

>

>

<

>

>

>

>

:

1

t(log t)

2

if 0 < t <

1

e

1

(log t)

2

if t > e

C; otherwise,

(9)

it is readily seen that w 2 A

1

, and moreover,

Sw(t) �

8

>

<

>

:

1

tj log tj

when t! 0 ;

1

log t

when t!1:

(10)

Therefore, Sw =2M

1

and 
onsequently w =2 Q.

The main result of this note is the following
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Theorem. Let f be a non negative fun
tion in f 2 S

lo


. Then, for every p > 1

there exists q > 1 su
h that

 

K(t; f ;L

1

)

t

q

!

1=p

�

1

t

K

0

�

t;

 

K(�; f ;L

1

)

(�)

q

!

1=p

;L

1

1

A

:

Conversely, if F is a non negative fun
tion on (0;1) su
h that

F (t) �

1

t

K(t; F ;L

1

);

then there exist p; q > 1 su
h that

F (t) �

 

K(t; f ;L

1

)

t

q

!

1=p

:

The proof of the theorem 
an be easily dedu
ed from the following auxiliary

results. We begin with a very simple te
hni
al lemma.

Lemma 1. Let f be a S-lo
ally integrable fun
tion. Then,

(1) Sf(x) = Sf(1)�

Z

x

1

Pf(y)

y

dy.

(2) Sf is a C

1

fun
tion.

(3) If � is non negative S-lo
ally �nite measure then xS�(x) is non de
reasing,

and S�(x) is non in
reasing.

Proof.

(1) By Fubini's theorem we have

Z

x

1

Pf(y)

y

dy =

Z

x

1

dy

y

2

Z

y

0

f(z)dz

=

Z

1

0

f(z)dz

Z

x

1

dy

y

2

+

Z

x

1

f(z)dz

Z

x

z

dy

y

2

=

�

1�

1

x

�

Z

1

0

f(z)dz +

Z

x

1

f(z)

�

1

z

�

1

x

�

dy

= �Sf(x) + Sf(1):

(2) is an inmediate 
onsequen
e of (1).

(3) If the measure � is absolutely 
ontinuous with respe
t to Lebesgue measure,

i.e. d� = fdx, f � 0, we note that (xSf(x))

0

= Qf(x) � 0 and (Sf(x))

0

=

�x

�1

Pf(x) � 0, for all x > 0. For a general measure, let 0 < x < x

0

. Then we

have

xS�(x) = �((0; x℄) +

Z

(x;1)

x

y

d�(y)

= �((0; x

0

℄)� �((x; x

0

℄) +

Z

(x;x

0

℄

x

y

d�(y) +

Z

(x

0

;1)

x

y

d�(y)

� �((0; x

0

℄) +

Z

(x;x

0

℄

�

x

y

� 1

�

d�(y) +

Z

(x

0

;1)

x

y

d�(y)

� x

0

S�(x

0

)
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and

S�(x)� S�(x

0

) =

�

1

x

�

1

x

0

�

�((0; x℄) +

Z

(x;x

0

℄

�

1

y

�

1

x

0

�

d�(y)

�

�

1

x

�

1

x

0

�

�((0; x℄) � 0:

Remark. For � absolutely 
ontinuous with respe
t to the Lebesgue measure, and

using the expression

Sf(t) =

1

t

K(t; f ;L

1

);

it is also easy to prove (3).

Lemma 2. Let w be a weight on (0;1), then

(1) If xw(x) is a non de
reasing, then w

�

satis�es M

1

, for all 0 < � < 1.

(2) If w � Pw, then w � CQw, for some 
onstant C > 0.

(3) If w � Qw, then w � CPw, for some 
onstant C > 0.

Proof.

(1) Let t > 0. Sin
e x < t implies that x

�

w(x)

�

� t

�

w(t)

�

we have

1

t

Z

t

0

w(x)

�

dx �

1

1� �

w(t)

�

:

(2) For some 
onstants C;C

0

> 0 we have

w � CPw � CSw = CQ(Pw) � C

0

Qw:

(3) is similar to (2).

As a 
onsequen
e we obtain the following

Corollary 3. Let � be a non negative S-lo
ally �nite measure and let 0 < � < 1. If

we 
onsider the weight w = (S�)

�

then w � Pw and w � CQw, for some 
onstant

C > 0.

Remark. Corollary 3 is sharp. In fa
t if we 
onsider on
e again the fun
tion w

de�ned by (9) above, by using the 
omputation of Sw given in (10) we see that

Sw =2M

1

and (Sw)

�

=2M

1

for any 0 < � < 1.

However, a suitable modi�
ation of (Sf)

�

does produ
e quasipower weights:

Proposition 4. Let � be a non negative S-lo
ally �nite measure and let 0 < � < 1.

Then there exists a positive " su
h that the weight

w(x) =

(S�(x))

�

x

"

is a quasipower.

Proof. Sin
e (S�)

�

2M

1

by [BMR1℄ Proposition 2.3, there exist " > 0 su
h that

w(x) =

(S�(x))

�

x

"

2M

1

;
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onsequently, for some 
onstant C > 0 and for all x > 0 we have

1

x

Z

x

0

S�(y)

�

y

"

dy � C

S�(x)

�

x

"

:

For any x > 0 we have

Qw(x) =

Z

1

x

S�(y)

�

y

"+1

dy

� S�(x)

�

Z

1

x

dy

y

"+1

= C

S�(x)

�

x

"

= Cw(x):

The result follows.

The 
onverse is also true

Proposition 5. Let w be a quasipower weight, then there exist f S-lo
ally inte-

grable fun
tion, � 2 (0; 1) and " > 0, su
h that

w �

(Sf(x))

�

x

"

:

Proof. Sin
e w � Qw there is no loss of generality if we assume that w is a non

in
reasing fun
tion. Moreover, the reverse H�older inequality for C

1

-weights (
f.

[BMR1℄, proposition 2.3) implies that for some " > 0 the weight w

1

(x) = x

"

w(x) 2

M

1

. We are going to prove that w

1

is also a quasipower weight. The 
ondition M

1

says that Qw

1

� Cw

1

. Also

1

t

Z

t

0

w

1

(x)dx =

1

t

Z

t

0

x

"

w(x)dx

�

1

t

Z

t

0

t

"

w(x)dx � Ct

"

w(t);

thus,

Pw

1

� Cw

1

: (11)

On the other hand,

w

1

(t) = t

"

w(t) � C

Z

1

t

w(x)

x

t

"

dx

� C

Z

1

t

x

"

w(x)

x

dx = C

Z

1

t

w

1

(x)

x

dx;

therefore

w

1

� CQ(w

1

):

By Lemma 2, we see that w

1

2 Q.

As before, sin
e w

1

� Qw

1

, we 
an assume without loss that w

1

is non in
reasing.

In parti
ular, from (11) we see that w

1

satis�es the Gehring 
ondition (3:5) in

[BMR3℄, pag 16. It follows from Theorem 2.1 of [BMR3℄ that there exists Æ > 0

su
h that

�

1

t

Z

t

0

w

1+Æ

1

�

1=1+Æ

�

C

t

Z

t

0

w

1

� C

0

w

1

:
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Thus, if we f(x) = w

1

(x)

1+Æ

, we have f � P (f), and moreover

Qf(t) =

Z

1

t

f(x)

x

dx � w

1

(t)

Æ

Z

1

t

w

1

(x)

x

dx � Cf(t):

Again by Lemma 2, we have that

f � Pf � Qf � Sf;

and therefore

w

1

� (Pf)

�

� Q(f)

�

� (Sf)

�

;

for � = 1=(1 + Æ), and the desired result follows.
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