A COIFMAN-ROCHBERG TYPE CHARACTERIZATION
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ABSTRACT. We give a characterization of quasipower weights in terms of Calderén
transform of measures on (0, 00), similar to the one given by Coifman and Rochberg
for the Muckenhoupt class A;j.

In the last few years (cf. [BMR 1,2,3,4,5] and the references therein) we have
been studying the connections between weighted norm inequalities and interpola-
tion theory. For example, in [Mi] and [BMR3] we have shown that certain basic
self improving inequalities in the theory of weights can be reinterpreted as inverse
reiteration theorems. In this fashion the classical self improving results in the
theory of weights follow as a consequence of the properties of solutions of certain
elementary differential inequalities associated, via reiteration, to the K-functionals
of the weights in question (cf. [Mi], [BMR 2, 3] and the references therein.) Our
approach leads to new methods to attack the classical problems while at the same
time producing new results in interpolation theory.

In this note we illustrate once again the interplay between the theory of weights
and interpolation theory focussing our analysis on the Coifman-Rochberg theorem
[CR]. This celebrated result gives a very simple algorithm to construct all the
weights in the Muckenhoupt class A;, and therefore, by the Jones factorization
theorem, provides a constructive characterization of all weights in the A, classes,
p> 1

To be more precise, the Coifman-Rochberg theorem gives a characterization of
A1 weights based on the properties of the Hardy-Littlewood maximal operator, our
analysis here will lead us to an analogous characterization of quasipower weights in
terms of the Calderén operator.

It is instructive to see the route we take to arrive to the formulation of the
results.

Recall that w € A; iff there exists C' > 0 such that

Mw < Cw, (1)

where M denotes the Hardy-Littlewood maximal operator.
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The Coifman-Rochberg theorem provides the following characterization of A; :
w € A if and only if there exists 0 < h € L, f € L _,a € (0,1), such that
w = h(M f)*. This, of course, is based on the validity of the formula

M((M[)*) < C(Mf). (2)

p
loc?

If we let p =1/, g = f*, then (2) takes the following form: for any g € L
M(M,g) < CM,g. 3)

Taking rearrangements and using well known estimates for the maximal operator

we get
1/p

(o) "o (3 [ rora)”. @

Let us now recall that given a compatible pair of Banach spaces A = (4g, A1), we
let for a € Ag + A1, t > 0, K(t,a; A) be defined by

K(t,a; A) = inf{{|aol| 4, + tlla1]|a, },
where the inf runs over all possible decompositions a = ag + a1, with a; € A;,i =

0,1.
In terms of K —functionals, (3’) can be rewritten as

K((‘)l/p,g; L, LOO)
oG

K(t'/?, g, LP, L)
t1/p

K(t, ;L L) < Ct 4)

This suggests to define the class A(L', L) as follows: f € A(L!,L>) iff f is
non increasing and there exists a constant C' > 0 such that for all ¢ > 0 we have,

K(t, f, L', L>

ROLEED < o5, 5)
Remark. Note that if we let p = 1 in (3)-(3’) the resulting inequality can be rein-
terpreted as a limit case of Gehring’s Lemma studied in detail in [BMR3].

From our previous discussion, we see that the Coifman-Rochberg theorem in this
context implies that for any p > 1, and g € L”, we have

K((_)l/p, 9, Lp, Loo)
(W

e AL, L™). (6)

Of course once we know the validity of (6) a direct elementary proof of it can be
established without relying on the Coifman-Rochberg theorem and the rearrange-
ment inequalities for the maximal operator. Indeed, more generally the following
reiteration formula is valid for pairs of Banach spaces

K((-)'%, g5 Ag p, A1)
()=

K(t'=%,g;Agp, A1)
Py 2, (6")

K(t, (L', L) <ect
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We only consider the elementary proof of the (6) in detail, the proof of (6’) is
analogous, if we use Holmstedt’s formula. Now, we want to write

K(s'/?, g; LP, [ 1, L/p
IS (3 [T wran) = s+ b
0

s
in such a way that

1F G, + ElIRC, B)o ~ K, K((')l/f.’ﬁ}f S )

1/p
Note that since (% fot g*(u)pdu) decreases, the optimal way to do this is appar-
ently to write

s 1/p s 1/p
(o)~ (L rore) v

g(s:t)

1 s 1/17
+ (—/ f*(u)pdu> X(t,00) () -
sJo
—~

(s:%)

Then,

t s 1/p
ot = [ (5 [ oran) as
t s 1/p
= 71/17 * p
/0 5 (/0 g% (u) du) ds
t 1/p  pt
* Pd —1/pd
< (/0 g (u) u> /0 S S

and similarly
1/p

ol <o (3 [ o wra)

Remark. In this note we do not consider the most general results that can be
obtained by our methods. For example, a more general version of (6) (resp.(6’)) is
closely related to the iteration results for maximal operators in [Ne], (cf. our related
article [BMRS] for rearrangement estimates of variants of the Hardy-Littlewood
maximal operator.)

In order to continue our discussion we need to introduce some classes of weights
and develop notation.
Let us denote by L! the compatible pair of Banach spaces

L' = (L' (dz), L (dz/z))
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on the interval (0,00). It is well known (cf. [BK]) that

K(t, f:T1) = /OOO min {% 1} F(x)dz.

In the sequel w will denote a weight, i.e., a non negative Lebesgue measurable
function defined on the interval (0, 00). We say that w satisfies the M; condition if
there exists a constant C > 0 such that for almost all t > 0

/t T 0@ 4 < cwt). (7)

xr

We shall say that a weight satisfies an M condition if there exists a constant C' > 0
such that for almost all t > 0

1 t
E /0 w(z)dz < Cw(t). (8)

t

It is well known (see [Mu ], [Ma]) that a weight w satisfies the M; condition if
and only if Pf € L'(w) for all f € L'(w), where P is the Hardy operator defined
by

1t
Pt = [ 1)tz
0
and L!(w) is the class of Lebesgue measurable functions f defined on the interval

(0,00) such that / |f(t)|w(t)dt < +oco. Similarly the class M* controls the
0
boundedness of the operator @, the adjoint of P, defined by

as = [ 2as,

Actually, Qf € L'(w) for all f € L*(w) if and only w satisfies M. We define the
Calderén operator S by S=P+@Q =PoQ = Qo P, so that

We shall say that a function defined on (0, 00) is S-locally integrable (f € Sio.)
if Sf(t) exists everywhere ¢ > 0. In a similar way a non negative Borel measure p,
defined on the borelians (0, 00), is S-locally finite if

Su(t) = /Ooomin{%,%} du() < oo,

for all ¢ > 0.
It will be also convenient to use the notation f ~ g whenever for some constant
C > 0 and for all z we have

1) < g0) < CF @)
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We say that a weight w on (0, 00) is a quasipower, i.e. w € Q, if
Pw ~w, Qw ~ w.

In particular, quasipower weights satisfy w ~ Sw. These weights are frequently
used in interpolation theory to extend the classical interpolation spaces of Lions
and Peetre (see [BL], [BK], [G] and [K]).

Remark. In [BMRI1] we considered real interpolation spaces constructed using the
more general class of C,-weights. These weights control the weighted norm in-
equalities of S in LP(w). Since these classes change with the parameter “p”, real
interpolation spaces of Lions-Peetre type based on these weights have reiteration
properties that effectively depend on the “second” parameter. In this context ex-
trapolation theorems of Rubio de Francia type come up as substitutes for reiteration

theorems.

In reference to the previous remark recall that, in particular, C; are the weights
that satisfy both M' and M; conditions.

Since w ~ Qw, every quasipower weight is equivalent to a non increasing quasi-
power weight. Remark also that a quasipower weight is an A;-weight.

At this point we should note that the classes @, C; and A; are all different from
each other.

The class C; is strictly larger than Q as it is shown in [BMRI1]. Indeed, let

A = 1/t ifo<t<1
“’()‘{1/\/,:_—1 if1<t.

It is easy to compute

St 71-_2+% ifo<t<1
w =
%+ QV:_l +2&rctan\/%, ifl<t

and therefore we see that w € C; but w ¢ Q. Tt is also easy to see that w is not in
A;1. Indeed, if w € A; then for some constant C' > 0 we would have

b
bia/ w(a:)da:z%(l—\/a+\/b—1)<0,

for almost all a € (1/2,1) and for all b > 1, which is false.
On the other hand, the weight w = 1 is in .4; but is not in C;.
The class A; is different from Q. In fact, consider the weight

. 1
m lf 0 <t< .
= 1
C, otherwise,

it is readily seen that w € A;, and moreover,

1
m When t— 0 5
Sw(t)~4 " & (10)
— when ¢t — oo.
logt

Therefore, Sw ¢ M* and consequently w ¢ Q.
The main result of this note is the following
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Theorem. Let f be a non negative function in f € Sy,.. Then, for every p > 1
there exists ¢ > 1 such that

J— 1/p —_— 1/p
Kt,fiL)\ " 1., (KEGHIDY 5
e o\ () ’

Conversely, if F' is a non negative function on (0,00) such that
1 _
F(t) ~ 1K, F;T),

then there exist p,q > 1 such that

=\ /P
F(t)~(7K(t’t];’L)> :

The proof of the theorem can be easily deduced from the following auxiliary
results. We begin with a very simple technical lemma.

Lemma 1. Let f be a S-locally integrable function. Then,

W) $7w) =)~ [ T4y
(2) Sf is a Cl function.

(3) If u is non negative S-locally finite measure then xSu(x) is non decreasing,
and Su(zx) is non increasing.

Proof.
(1) By Fubini’s theorem we have

[w%@)dy:/j%/oyf@)d
:/lf(z)dz/wd—g+/xf(z)dz/j%
<1 >/f dz+/ f(@(%‘i)dy

— —Sf(x)+Sf(1

(2) is an inmediate consequence of (1)

(3) If the measure y is absolutely continuous with respect to Lebesgue measure,
ie. du = fdx, f > 0, we note that (zSf(z)) = Qf(z) > 0 and (Sf(z)) =
—z7'Pf(z) <0, for all z > 0. For a general measure, let 0 < z < z’. Then we
have

xSp(z) = u((0,z]) + / fd,u(y)

(z,00)

= 1(0,2']) — p((zr,2")) + / T duly) + /( T du(y)

(z,2'] Y

<u@aD+ [ (S-r)aoe [ S

< a'Sp(a')
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and
1 1

sut) = sue) = (5 - )+ [ (55 ) )
> (3 ) ) o0

Remark. For p absolutely continuous with respect to the Lebesgue measure, and
using the expression

SF() = LK f ),

it is also easy to prove (3).

Lemma 2. Let w be a weight on (0, 00), then

(1) If zw(z) is a non decreasing, then w® satisfies M, for all 0 < a < 1.
(2) If w ~ Pw, then w < CQuw, for some constant C > 0.
(3) If w ~ Quw, then w < CPw, for some constant C > 0.

Proof.
(1) Let t > 0. Since z < t implies that z%w(x)® < t*w(t)® we have

1 [t 1
—/ w(z)¥dr <
0 1

t —«

w(t)®.

(2) For some constants C,C' > 0 we have
w < CPw < CSw = CQ(Pw) < C'Quw.

(3) is similar to (2).
As a consequence we obtain the following

Corollary 3. Let i be a non negative S-locally finite measure and let 0 < a < 1. If
we consider the weight w = (Su)* then w ~ Pw and w < CQuw, for some constant
C >0.

Remark. Corollary 3 is sharp. In fact if we consider once again the function w
defined by (9) above, by using the computation of Sw given in (10) we see that
Sw ¢ M*' and (Sw)™ ¢ M; for any 0 < a < 1.

However, a suitable modification of (Sf)* does produce quasipower weights:

Proposition 4. Let i be a non negative S-locally finite measure and let 0 < o < 1.
Then there exists a positive € such that the weight

(Sp(z))”

() = 2
1S a quasipower.

Proof. Since (Sp)® € M* by [BMR1] Proposition 2.3, there exist € > 0 such that
Su)” 1

w(z) = =
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consequently, for some constant C' > 0 and for all z > 0 we have

l/‘”%)@gcww)
T Jo )

‘/I:E
For any x > 0 we have
* Sp(y)”®
Quin) = [,

gamw/wdyzoﬁmyzcmm

ya—i-l e

x
The result follows.
The converse is also true
Proposition 5. Let w be a quasipower weight, then there exist f S-locally inte-
grable function, a € (0,1) and € > 0, such that

(Sf(2)"

w~S ——

xE

Proof. Since w ~ Qw there is no loss of generality if we assume that w is a non
increasing function. Moreover, the reverse Holder inequality for Ci-weights (cf.
[BMR1], proposition 2.3) implies that for some € > 0 the weight wy(z) = 2°w(x) €
M. We are going to prove that w; is also a quasipower weight. The condition M,
says that Quw; < Cw;. Also

1 /0lt wy (z)de = l/ot r°w(x)dz

t t
1 rt
< Z/ tfw(z)dr < Ct*w(t),
0
thus,
On the other hand,
¢ Fw(T) .
wy (t) =t7w(t) < C —t°dx
t :E

SO/ m“”m:c/ wil®) 4.
t T t

therefore
w1 S CQ(wl)

By Lemma 2, we see that w; € Q.
As before, since wy; ~ Qw;, we can assume without loss that w; is non increasing.
In particular, from (11) we see that w, satisfies the Gehring condition (3.5) in
[BMR3], pag 16. It follows from Theorem 2.1 of [BMR3] that there exists § > 0

such that 114
1/t c [t
<—/ wi“) < —/ wy < C'wy.
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Thus, if we f(z) = w; (2)'+9, we have f ~ P(f), and moreover

Qf(t) = / D e <oy / T o@ g < of).

xr

Again by Lemma 2, we have that

f~Pf~Qf ~5F,

and therefore

wy ~ (Pf)* ~Q(f)* ~ (Sf)%,

for « = 1/(1 4 6), and the desired result follows.
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