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Abstract

The aim of this paper is to give a representation for the types in some stable
Banach sequence spaces, namely in the Orlicz. Lorentz and dual of Lorentz sequence
spaces. We also find a characterization for the Lorentz sequence spaces whose class
of weakly-null types is locally compact for the topology of uniform convergence on
bounded subsets.

1. Introduction and notation

The class of stable Banach spaces was introduced by Krivine and Maurey (see [7]),
in order to extend to this class of Banach spaces a previous result by Aldous
concerning the closed infinite-dimensional subspaces of L.

A Banach space E is said to be stable if for any pair of bounded sequences (x,,),.
(¥)r in E and for any pair of non-trivial ultrafilters %, ¥ on N we have

limlim ||z, +y,| = imlim ||z, + ¥,
n kv b onu

We also recall that a type in a (separable) Banach space £ is a map 7 from E into
R, defined by 7(x) = lim,,, ||+ 2,]|, where (x,), is a bounded sequence in E and % is
a non-trivial ultrafilter in N. Note that there exists a subsequence (27,), of (x,), such
that 7(x) = lim,, , ||+, | for all xe E. We therefore say that 7 is a weakly-null type
if 7 can be defined by a weakly-null sequence in K. Let 7 () (respectively 7 (E))
represent the class of types (respectively weakly-null types) defined on £. The space
J (E) can be equipped with two natural topologies: the topology of pointwise
convergence (P.C.T.) and the topology of uniform convergence on bounded sets
(T.U.C.B.). Both of them are metrizable and 7 (£) is locally compact with respect to
P.C.T.

Here we make explicit the types of Orlicz and Lorentz sequence spaces and of their
duals. In Section 2 the class (M) appears as a subset of the compact set C; ,
naturally associated to the Orlicz function M (see (9], I'4-a-6). This implies that P.C.T.
and T.U.C.B. coincide on F,(I™) (as already stated in [3] with shortened proof). In
Section 3 we characterize the Lorentz sequence spaces d(w, p) for which P.C.T. and
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T.U.C.B. coincide on T y(d(w, p)). This class is the Lorentz space analogue of Orlicz
spaces with regularly varying Orlicz function studied in (4], and the ultrapowers of
such spaces can be very simply described. In Section 4 wo state a duality result for
types and, as a corollary, we obtain the stability of duals of reflexive Lorentz
sequence spaces.

If the space £ is stable we can define the convolution of types as a separately
continuous operation in J(E). In fact if 7 = lim, .z, and o = lim, , y, the type
T*0 is well defined by

T*0(x) = lim lim lx+z, +y,|.

n-x k-
If Ais a real number, we also may define the type Ar by

Ar{x) = lim lx+ Az,
n-x
(= Alr(x/A)) if A + 0).
We say that a type 7 is symmetric if 7(x) = 7(—2) for all » in £ and a symmetric
type 7 is an IP-type (where 1 SP<)if Arrpur = (AP+uP)VP 1 for all Apu=0.
Recall that (see [1] and [12]) if E is a Banach Space with a 1-symmetric basis. we
may represent a tvpe in the following way

Tx) = lim [x+a Dz,
where a is a fixed vector in E. (r,), is a block basic sequence with |z, || = C for all
n, and @ denotes disjoint sum. The vector a and the scalar (' are unique. Indeed,
suppose that also we could represent 7(r) = lim,  r+b® Yl with |ly, || = D. Then

7(0) = 7(—2a) = T(2a—2b) = .. = 7(2na—2nb) > [2na — 2nb||

for all neN. Thus @ = b and so C=D.

Recall that a is the coordinate-wise limit for all bounded sequences defining the
same type. Moreover for reflexive svmmetric spaces. a type is symmetric if and only
ifa=0.

In the sequel we will use standard Banach space notation such as may be found
in [9].

An Orliez function is a continuous non-decreasing convex function M. defined for
{2 0. such that M(0) = 0, M(1) =1 and lim,  M(@t)= x. We say M satisfies the A,-
condition at ( if M(2t) < KM(¢). for some constant K and for 0 <t < to- In the sequel
we always require this condition for the function M. The space

P = {x = (xli),: T M) < x}
equipped with the norm
lzll = inf{p >0; iﬂl(@) < l}
i=1

is an Orlicz sequence space. Note that if x + ( then llz|| is the unique number such
that EiﬁlM(lx(i)l/”x]]) = 1. By M_(-) we denote the modular defined by M )=
Zf,lﬂ(lx(i)l t) for x in I™ and t > 0. The unit vectors form a 1-symmetric basis of /Y.



)
[\]
~1

Representing types in sequence spaces

We represent by d(w, p) the Lorentz sequence space

d(wzp)Z{ i 0)*P w, <oo}

where 1 < p < 0, = (w,); is a non-increasing sequence of positive numbers such
that lim, , o, = 0.0, = 1 and 2%, w, = c0. (where (2(2)*); denotes the non-increasing
rearrangement of the sequence (|z(i)]),). In this space we consider the norm ||z| =
(ZE, 2(1)*P o, i)'/P. The canonical basis is a symmetric basis in this space. Recall that
d(w,p) does not contain ¢, and it is reflexive when p > 1 (see [9]. proposition I-4-e-3
and I-c13).

2. Types in Orlicz sequence spaces
The stability of these spaces was proved in [5] and [11]. First, using the

representation of types described above, we verify this fact in a simple way. Indeed
let (x,,),. (¥)r be two bounded sequences in I¥ and %, ¥ two non-trivial ultrafilters
on N. Since ¢, does not embed in I™, by passing to subsequences if necessary, we may
prove that

limlim [z, +y, ] = lim lim |2+ y ® 2}, @ v, ||

n¥ k¥’ n>x k—~x
and

limlim |2, +y, | = lim lim |24y @ «, @ y,|.

kY nw k—-xn-x

where (27,),,. (y}) are block basic secquences (see [1, 2, 12]). Then

lim lim |z, +y, | = inf{p >0 iM(M)

nit kv i=1 P

my u('x ') lim ZM(M)s 1},
n->x i=1 p ko> i=1 p

which is trivially equal to lim,, lim,, |z, +y,|. We have therefore obtained the
stability of /¥,

Next we want to find a representation for the class of the weakly-null tvpes in M.
Let 7 be an element of 7 (I™). We know that 7 can be represented in the following
way: 7(x) = lim, , | @ 2,| where |z,| = 7(0) for all neN. Then

T(x) = inf{p >0,M, (%)+ limM, G) < 1},

If 7(0) + (otherwme 7 is the trivial type. i.e. 7(x) = ||z| for all x€l™). we have
M, (1/7(0)) = 1 for all neN. and thus the functions N, (t) defined by

No(t) =M, /1(0)(0 (neN,0<t<1)

belong to the class €'}, | (sec [9], p. 140). Since C'y1.1 1s a non-void norm-compact
subset of C10, 1], there exists a subsequence of (N,), which converges uniformly to an
element N, in the class €, ,. Thus

T(x) = inf{p > ():Mz(i)-h\', (‘%0)) < 1}
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for all & in {*. Therefore 7(2) is the unique solution of the implicit equation

w (Ve a (TO) _
s (r(x))”’(v(r)) -

It is clear that any other function N of (|0, 1] satisfying this equation for all x in [
coincides with V.. Indeed, since 7(Az) goes to 7(0) when A varies from 0 to oo, the

equality
5 (19) - 3(22)
T(x) T(2)
for all 2 in ™ implies that N = N,. Therefore we may define an injective map ® from
T H(IPN\{0} into C'y, | x (0, 00) such that 7~ (N,.7(0)). By easy computations we can

check that N,, =N,
; . (_t7(0) - (_tr(0) )
N, &) =N N
0= 5

T Y, (1)
and : _‘\’(7*0(0))“"(7*0(0))

forany 0 <t < 1.Ain R and 7, ¢ weakly-null types in 7 (!

M

M) In particular note that
(*;2,7)0 = ||2 a; e,

for all (a;) e R™. 1

In €'y, ;. as a subset of ([0, 1], there are two natural topologies, the topology of
pointwise convergence and the topology of uniform convergence. Since ('), | is a
compact subset of {0, 1], it is well known that both topologies coincide on it. Tt is
easily seen that if 7, converges to 7 in the P.C.T., then A, (¢) converges to N,(t), for
all te[0,1]. Hence ||N, —X,||, converges to 0 and the map @ is continuous. In [3] it
is shown that the converse is also true:if [N, —XN |, converges to 0, then 7, converges
to 7 uniformly on bounded subsets of {*. We summarize the preceding results in the
following proposition.

ProrosiTiON 2:1. The class T (1M )\{0} is homeomorphic to a subset of Cy, | x (0, 00);
the two natural topologies on T (M) coincide and so this space is locally compact for the
T.U.CB.

Now we will characterize the image of the function ®.

Prorosition 22, Let N be an Orlicz function (we assume N(1)=1). The two
Jollowing conditions are equivalent :

(1) there is a type T such that N = N _;

(i1) for each € > 0, I¥ is (1+¢€)-isomorphic to a closed subspace of 1.

Proof. (i) = (ii). This part could be also deduced from a result due to Krivine and
Maurey appearing in |6, 13]. Here we shall give a proof for the sake of completeness,
using an argument of Woo|14].

Let 7 be a type such that N =N, and 7(0) = 1. Given ¢ > 0, 7 can be defined by a
normalized block basic sequence (z,), such that the corresponding functions M,
satisfy &
sup |M, (1)—N(t)] < on for all neN.

LES L9}



Representing types in sequence spaces 529

Let us show that the closed span generated by the vectors {z,} is (1 +¢)-isomorphic to
[ Indeed, let x be a norm one element x = XA x,elM As | = Ziﬁlfﬂx"(lx\nl), we
have ¥ N(|A,|) < 1 +e¢ and, by convexity,

1

syl < LS v <1
i:xi I+e \1+6i=1A " .

If (e,), is the canonical basis of I, we obtain 12, Ay e,lly < 1+6 In asimilar way,
the statement |27 A, e, [,5 = 1 implies that |22, A, ol < 1+e.

n=1
(ii) = (i). For this implication we use the following fact.

LeMma 2:3. Assume that IN (1 + ¢)-embeds in IM for any positive €. Given € > 0 there
is a normalized block basic sequence (x,), in I such that

<
l‘”

X (1+¢)

2

O
%A,
n=1

o
Z Aﬂ en
n=1

x
Z Az,
n=1

1 M

(We will sketch the proof of the lemma, later.)

We come back to the proof of the proposition. Given ¢ > 0, consider the block basic
sequence (x,), and let 7, be the type defined by Xp)p 1€, 7(2) = lim,, o @ 2, |. If
(o;)€ RN we have

”Zai elly < (x;;7,)(0) < (1 +ellX o el,~.

As 7.7 for T.U.C.B. when ¢ goes to 0, (%,a,7,)(0) converges to (#,a,7)(0) =

12, a;e;ll,~. Hence I¥ = [¥: with the same norm. If1<m<k(andm, keN), lett, , be
the real number such that N, ) = m/k. Then

A’V(tm,k)""(k_m)N(t],k) = N1(tm,1c)+(k_m)Nr(tLlc)
for all m, ke N with m < k, which implies N = N_.

Sketch of the proof of Lemma 2-3. If the functions N(t) and ¢t are not equivalent at
zero as Orlicz functions, the result follows from the Bessaga-Pelczynski theorem.,
because the canonical basis of IV is weakly null (see [9], propositions r1, 12).

Suppose now that they are equivalent at zero. Let € be a positive number, which
will be fixed later. Let (x,), be a sequence in ™ (1+¢)-equivalent to the canonical
basis of 1. We may suppose x, = x+x;, for each neN, where (27)), is a block basic
sequence. We have therefore

122+ 21+ 25 < llex+esllyy = lle,—e,)l < (14€) lal—a3ll = (1+¢) ]+ a3

By |4], proposition 31 we get that [2]| <7 whenever ¢ <e¢(y). Hence simple
computations show that (x7,), is (1+9')-equivalent to the canonical basis of I¥
(n" ~ e+ Ky where K is the equivalence constant between I~ and i

Remarks 2-4. (i) If NeC,, = ﬂ_\>OCM_.\ then there exist 7€.7,(I™) such that
& = N,. This follows from the proof of the theorems 4, 18 of [9].

(ii) If I¥ is isomorphic to a subspace of I then there exists a type 7€ .7 ,(IM) such
that V and WV, are equivalent at zero Orlicz functions. (The same idea appearing in
the proposition proves this assertion.)

(iii) If an Orlicz function N(t) is equivalent to but different from the function ¢?,
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we know that N¢ (', | for M(t) = t?. Then the norm induced by (" is distorted in the
space (see [8] for the distortion problem).

(iv) H. Hudzyck pointed to us that we may estimate from above and below the
types, by using the Simonenko indices in Orlicz spaces. Indeed, let

M) 40
., = inf and = su
P = M) T =0 a0y

the corresponding Simonenko indices (see [10]). where M’(t) denotes the right-hand
side derivative of the function M. Then, by integrating. we get that

adM(t) < M(at) < aPM(t)

forallt > 0and 0 < a < 1. If 7€ 7 (M), 7(0) = 1 and N, = N, we can deduce the same
inequalities for the function N. Since 1 < 7(x). we eventually arrive at

(L4+M_ (1) < 7(x) < (L+M (1)

(v) In [13] a representation for some special kinds of types in non-atomic
rearrangement invariant function spaces is obtained by using variables in extended
measure spaces (sce also [5]).

(vi) The results stated earlier for Orlicz sequence spaces may be easily extended to
the more gencral case of modular sequence spaces.

3. Lorentz sequence spaces

We can refine the general representation of the types given carlier for symmetric
spaces, by using the results in [2] and [12]. In fact, if £ is a Banach space with a
1-symmetric basis and not containing ¢,, we may split the block basic sequence into
two parts, one asymptotically converging to a vector beE and the other one
converging to 0 in the {*-norm (see lemma 4 in [2] or lemma 5 in [12]). Then, for
Te€J (E). we have

7(x) = lim [(x+a) Db x,|
n—x
where ‘a’. ‘b’ are fixed vectors in E. (x,,), is a block basic sequence with |z, || = € for
all n, and lim,__ [x,]|, = 0. (As we said before. the vector a is unique, namely a is
the coordinate-wise limit of the sequence defining the type.) We apply this
representation for Lorentz sequence spaces and we also may obtain a more specific
deseription of the types.

PrOPOSITION 3:1. If 7 is a type on d(w. p) then there exist tiwo vectors a. b in d(w. p) and
a real non-negative number p suck that 7(x) = (|(x+a) @ b||? + p?)"'?. Moreover a and
y are unique, b is unique up to rearrangement and a = 0 if and only if T is symmetric.

Proof. By the preceding observations we may assume that
7(x) = lim [(x+a) ®bD x|
n>x

Suppose that x, a and b have finite support. When n is large enough we can pick a
natural number & satisfying

l(x+a) @b® 2,7 = [(@+a) ®blP+ 2 2,()*F 0

i=1
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But

L ke k
b ,()*Pw;— 3 T, (0)*P o, | < lz, 02 2 w;—~>0
i=1 i=1 i=1

when n goes to infinity. Hence

x
lim 3 2, (1)*" 0, = lim [, | = p?
n >x =1 n-x

and so 7(x) = ([[(x+a) @ b|P+ uP)V/».

In the general case we get the same expression by approximation. Suppose now that
we have another representation, say

7(x) = ([(x+a) @ b'| P+ u'?)l/7,

I£6%(1) > ... > b*(k) > b’*(1) = b*(k+ 1) for some ke N then taking x+a = Zlf:ltiei,
with the ¢, belonging to the open interval (b'*(1). b*(k)) and re N we would have

M=

3 xL r = 4
b*(i)pwi+ 2 o+ 2 b*(i)p‘“rﬂ"*'/"p =3 o+ X b/*(i)pwr+i+/‘/p

1 i=1 k+1 i=1 k+1

which would imply w; = w,,,, for 1 <i < r. Therefore we would have w, = w, for all
t€N which contradicts the assumption on the sequence (w,),. Reiterating this
argument we obtain b* = b'* and so 4 = 4.

COROLLARY 3-2. (i) For 1 < P < 00 the space d(w, p) is stable.

(i) 4 type 7 on d(w. p) is a 1-type if and only if a = b = 0 and ¢ = p.

Proof. (i) Let (x,), and (¥&)x be two bounded sequences in d(w,p) and let 7 and o
be the types defined by 7(x) = lim,  Jlx+z,| and o(x) = lim, . [[x+y,!l. These

types also have the following representation

7(x) = (l[(x+a) @ b||? + uP)/P

and o) = ((x+a") @b'||P+u'?)»,
Then
lim lim |z, +y,)| = lim o(x,) = lim ((z, +a) @ b' [P 4 7)1/
n->x k—-x n->x n—x
= (l(x+a+a’) Db @YNP+u®P +4'P)V? = lim lim lz, +y,l.

ko>x n-x
(i1) Recall that a type 7 is a l-type if it is symmetric and AT * i1 = (A9 po)Var
forall A, 2 0. If 7(2) = (Jlx ® bl|”+ uP)V? we have

AT fir(x) = (Jlx @ Ab @ Bbl|P + (AP + ) yr)V/e
and (Aq+ﬁq)l/q7(x) — (”x @ (/\q_*_ﬂq)l/qb”p_*_ (,\q_‘_lgtI)p/q/,p)l/p.

From the preceding proposition we have Ab @ b = (A7+ 49V p and (A2 + )P P =
(AP +BP) u?, so that b = 0 and either p=qoru=0.

In general, the class of weakly-null types in d(w, p) is not locally compact for the
T.U.C.B. In the next proposition we obtain a characterization of the Lorentz
sequence spaces for which 7 (d(w, p)) is locally compact for the T.U.C.B. Let us use
the notation W(n) = 22 w;.
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ProposiTiox 3-3. The following assertions are equivalent:
(i) T ,(d(w.p)) is locally compact for the T.U.C.B.:
en 1. W(2n)
0 Wi

(iil) non-trivial ultrapowers of the space d(w. p) can be written as

d(w, p))U = d(w.p:1) D, L”.

=2:

where I is an (uncountable) set of indices. LP is a (non-separable) abstract L*-space and
@ , means the direct sum in the IP-sense (|lx @ y|? = |z[”+ [ylI®).

Proof. (i)=>(ii). Let (7,), be the sequence of types defined by 7,(x) =[x @ b,

where
n -1p n
b, = (Z u)i> 2
i=1 i=1
(and where (e,); is the canonical basis). It is clear that ||b,] = 1. lim, , [b,l, =0

and that, for all zed(w,p). lim, . 7,(x) = (lzl|?+ HVP. If we consider the type
7(x) = (||z]|?+ 1)V/? we have that 7, converges to 7 in P.C.T. and so it also converges
in the T.U.C.B. Then lim, , b, ®@b,] = 2'/?. On the other hand we have

n —1/p 2n
b, @b =(2 wi) e,
i=1 i=1

and eventually lim,_, W(2n)/W(n) = 2.
(ii) = (iii). We use the following claim which will be proved later.
Claim. Condition (ii) is also equivalent to (i) bis: lim, W)W, = 1 for all keN
Let (), (¥,), be two bounded sequences in d(w, p) such that

lim ||, ], = tim ||y, ], = lim [l gl = 9.

n-x n—-x
By passing to subsequences if necessary, we shall see that
lim |, +y, )17 = lim |l |17+ lim fy,[”.
n—x n—-x n—-xX

We may assume that z,, and y, are disjoint vectors with bounded supports. It is wel
known that d(w, p) is p-convex, i.e.

2, +yall? < e, 17+ Nyl
On the other hand

X xX xL
Hxn +yan = E (il',, +yn)* (i)pwi = Z x:(i)pwvn(i)+ E yz(i)pwnﬂ(i):
i=1 i=1 i=1
where o, and 7, are two increasing maps from N into N with disjoint range. Let .
be a fixed natural number. For each ne N we define I§, = {i > 1:Ni <o, (i)—1). It
clear that y*(o,(i)—17) = a}(). and so 23 (1) < y*(Vi) for all iel%. Then

x
T i o, < T i) o, < Z i) o = 1Dyl

iel® iel¥ =1

o,
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where the operator D is defined by D (y) = (yy,); (see in [9]. 12-b1 the definition
of Boyd indices). We shall establish that

. 1.
lim 1Dy, < 3 lim 1y, . ()
n -x “‘n-,x

Since lim,_, wy,/®, =1 and lim,_ |ly,|l. = 0, it is easy to see that

lim 3 y%(Ni)?w; = lim 3 y*(Ni)P wy,.

n—-x i=1 n—x i=1
It is also true that
g 2 x X .
2 Yn( NP Wy S E Ne—1)P Wi €... < X Yn(Ni—N+ DP0ninir-
i=1 i-1 i=1
Then
b . 1N~1 x 1 oG
> YnNi)Pwy,; < v b3 :(‘\’l_.]) Wy ;= T 2 W; = \v”yn”
i=1 ¥ 50 =1 i=1 i

which proves (*); here

lim ¥ x*()? o, s%lim Iyl

n—-x iel?%
As
by x:(?.')pw”,,(i) = ()P Oy = 2 POy — 2 23 (0)” Oy i1y
g% el i=1 iel®
> o
EDY x:(@)pw(xﬂ)i— ) x(1)? w;
i=1 iel
we have

. . 1.
lim X a¥()?w, @ = lim E x¥i w(Nﬂ)i—Vllm e,
n--x i¢1% n -x i=1 R

and therefore we obtain

x
: Sk *
lim ¥ 23(i)? v, = lim Z XE()P w, —thm o,
n--x i=1 n >x =1
An analogous inequality is true for lim, 2% y*( W, @ S0 we eventually have

: 1
lim [lz, +y,? 2 lim [2,]?+ lim Iyl — (lim |7+ lim [y, |17)
n—-x n—x no>-x ‘ n—x n—~x
for each natural number N, which implies (4-2).
Now as d(w, p) does not contain ¢, we may write (see [3])

dlw.pN/U = E,D E,.

where K, the space of elements of the ultrapower represented by a sequence of
vectors with uniformly bounded length, is order isomorphic to a space d(w, p;I) and
E, is the space of elements represented by a sequence (x,), with llmn,gC lx,l.. =0.
B\ the preceding, under assertion (ii) E is an abstract L? space (see [9]. r1-b1).
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(iii) = (ii). Assertion (iii) implies that if the sequence (x,), defines the type 7 and
(y,,), defines the type o and if these two sequences are disjoint then (x, +y,), define
the type 7+ . Suppose that (d,), is a sequence in 7 y(d(w, p)) which converges to «
for P.C.T. but not for T.U.C.B. Then, by passing to subsequences if necessary, ther
exists a bounded sequence (z,), in d(w,p) so that o, (x,)—o(x,)] = e>0 for al
neN. We may suppose that the sequence (z,), defines a type 7. By a diagons
argument, we can find a bounded sequence (y,), in d(w. p) having the followin,
properties: (a) (y,), defines the type a. (b) lim, |o,(x,)—lz,+y,Il =0, (c) th
sequences (x,),, (¥), are almost disjoint. Hence we have lim,, 2, +y.ll =7*a(0
and then

lim o, (x,) = 7*0(0) = lim o(x,)

which is a contradiction.

Proof of the claim. First we remark that condition (ii) on W implies in fact that

. Wan)
lim W) =

n->x

for all a > 0. Indeed, for every keN,

W(2kn)— W(kn) < W(k+1)n)—W(n) & W(kn)

W(kn) W(kn) W(kn)
Then lim W(k+1)n)—W(n) _ |
nx W(kn)
and by induction
. W(kn)
1 =k ceN.
nni W) k for keN
. Wkn) k
Thus == . .
us ,llm; Wiin) ] for k.le N,
and so }liIle( P;E(oc;;) =a foraeQr.

Now an approximation argument gives the resuit for ce R".
(ii) = (ii) bis. We have w,,/®, < 1 and then

gy o WU+ 1) 0) = Wlkn))/n _ W(tk+1) n) = Wikn)
w, ~ W(n)/n - Win) ‘

n

(i) bis = (ii). Since the sequence (W(n)), increases to oo we obviously have

i W(2n)

W2n)—-W(2n-2) .
12 W) = lim

Wn)—W(n—1) "o w,

Wyp — Wap

= 2.

= lim
n -x

n

Remarks. (1) Note that condition (ii) is also equivalent to the following statemen
there exists ke N with £ > 2 such that lim,_,, w,,/w, = 1.
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(2) For each x > 0, set w™'(x) = inf{n;w, < z}. Then (ii) is also equivalent to the
following assertion :
forall ye(0,1), lim "'oY (yw,) = .
n->oC
(This is merely a transcription of (ii) bis.)
This has to be compared to the condition for d(w, p) to be isomorphic to an Orlicz
sequence space, namely there exists v > 0 such that

1

<0
w0 (Yoy,)

(see |9], T4-c:2).

ProprosiTION 34. There exists a Lorentz sequence space d(w. p) for which 7 (d(w, p)) is
locally compact for the T.U.C .B. but which is not isomorphic to any Orlicz sequence space.

Proof. We consider a decreasing function o defined on (¢, 0) such that
(a) w(xloglog x) = y, w(x) for some fixed y,€(0. 1) and (b) the function h(x) = log w(e®)
is convex.

In order to define the function A, we set @(t) = t+log logt (for ¢ = e). which is a
continuous bijection of [¢, 00) and choosing t, > e we set t; = @(¢,), ..., {,.,, = ¢(t,) for
kz0and i, =¢7 ), ....t, = ¢ (ty,) for k < 0; we also set 7, = klogy, for keZ.

Let Ay be affine on the interval [ty 1\ ]. with hy(ty) = Ty, hy(ty_y) = Ty_,. We
then define hy on [ty 4.ty 1] by hy(t) = hy(P(t)—logy, and recursively on the
interval (e,{y]. As ¢ is concave, increasing and ¢'(f) > 1, it is easy to see that &, is
a decreasing convex function. By using an Ascoli argument we may define

h(t) = lim hy (¢)

k—x

(for some subsequence of hy,) which is clearly decreasing convex and satisfies
h@(t) = h(t) +logy, (t€ (e, ).
Consider w(x) = exp h(log x) for x € (¢*, 0). We clearly have
w N (y,0(x)) = xrloglog x.
Set Y (x) = xlogloga. We obtain o™ (yEw(z)) = y®(x), where ™ is the kth iterate
of . By induction it is casy to see that
Y®(x) < Cpa(loglog x)k < D, xloga.

1

1
Thus =
w T PR Ty

:(:D,

and hence d(w, p) is not isomorphic to any Orlicz space.
On the other hand we have

lim inf(wzk”) >y, foreach keN withk > 1.
w

n-->x n

Moreover, because of the convexity of the function 4,

k
Wyk Wk
2°n 2'n
W, Wok-1

n
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for every keN, and the sequence (w,,/w,), 1s non-decreasing. Hence we ha
lim, ., w,,/w, = yy* for each k > 1. and so lim,_, w,,/w, = 1.

4. Dual of Lorentz sequence spaces

Let p > 1 and let d(w, p)* be the dual space of d(w. p). We shall show that d(w,
satisfies the property in Proposition 3:1 for d(w.p). If X is a sequence space,
us denote by 7 ,,(X) the class of the types defined by a sequence (x,), such that |z,
tends to 0 when »n increases to co.

ProposiTioN 4:1. Let X be a Banach space with a 1-symmetric basis and
containing c,. Let X¥ be the closure in the dual X* of the space of functionals with fir
support. If every type 7€ T o(X) is of the form 7(x) = (lz||? 4+ aP)? for some a > 0, t
every type 1€ T ool X¥) is of the form 1(x*) = (lx*||9+a?)e, where q is the conjug
exponent to p (i.e. p 1 +q7 ' = 1).

Proof. Let z* be a fixed element in X* with bounded support and let (x}), b

bounded sequence in X* defining a type T€T po(X¥). with lim, . [ail, =0 ¢
lim,  |2%]| = a. We can choose x€ X with |z| = 1 and {a,x*) = [[«*||, and, for e
n>1, x,eX with |z, =1 and (x,. 25> = (1 —€) lx¥ll. As X does not contain

we may suppose x, = &, +I,+x,, where x, is a fixed vector, (x,), a sequence
vectors with uniformly bounded supports converging coordinate-wise to 0 ¢
lim, 2%, =0. Then lim, ., {x,+x,.2*)=0. Thus we may supposc t!

x, = &,. Now

lim [Cox + px), x* + 25> —alx, x*) — flay. 2751 =0
and alar, a*> + flxty > et + (1 —e) Bl
Therefore

lim inf (o + faf, ¥ + 2%y = alla*|| + (1—¢) fa = [[2*]"+ (1 —e)?a?]He
for an appropriate choice of a, # = 0 with 2P+ 47 < 1. But

lim |Jax* + ga¥| = (2P +B2)VP < 1

n—x
by hypothesis on 7 ,(X), and thus we obtain
lim inf Ja* + 2% = {[a*]9+ (1 —€)?a?]
for every € > 0, and hence liminf [|z* + 2% = [lx*|9+a?]a.
Conversely choose ¥, in X almost norming x*+x7. i.e. [y, i =1 and
(a*+ak,y,» = (1—6) lle+ a3l

We decompose y, = x,+z, where z, has the same support as x* and z, is disj¢
from x*. We have lim,,  {(x*,x,> = (x*.x). where x is the coordinate-wise limi
the sequence (x,),, SO we may suppose &, = x. As before we may also assume 1
lim, . |z,ll. = 0. Then

Ca*tak, y,y = ¥ ey + a2,y < ¥ el + 127 1z,
< (la* 2+ fak19Me all? + 1z, 17)77-
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As lim [[lg, | — ([2]” + [z,17)?) =0 and lim 7] = a,
we obtain (1—e)limsup fa*+27] < (lz*]9 + a®)"/

for every € > 0 and eventually
limsup |z*+ 25| < (fla* |9+ a9y
COROLLARY 4-2. If p > 1, then types T on d(w, p)* are of the form
(%) = (I(x* +a*) @ b*||7+p)™
for a*, b*ed(w, p)* and peR*.

Proof. The existence of a* b* u follows from Proposition 31, the remarks
preceding it and Proposition 4'1.

Remark. We do not know if b* and x are uniquely determined.

CoROLLARY 4-3. (i) For 1 < p < oo the space d(w, p)* 1s stable.
(ii) A type on d(w,p)* is a U-type if and only if b* =0 and r = q.

Proof. Assertion (i) is shown as assertion (i) of Corollary 3-2.
To prove (ii), set br=b*Pb*D.. @ b* (sum of k terms). We have

i+ BRI+ Rt = o @ KD+ K .

As the left-hand side is larger than k(||b*]|?+ #) and the right-hand one is at most of
order k4T we see that ¢ = r. If ¢ > r, letting x = 0 we obtain

(6Fl ~ K7 (Io*Ne+pt)e.
k—>x

But we have

”k_l/r b? @j—l/r b?‘“q-i-k(k'”rﬂ)q +j(j~1/rlu)q — ]\21/7 b*”q+ (QI/T/A)Q.

Now when j— o0 and then I > oo the first member tends to 2 (IIb*]|9+ p9) and the
second equals 297([[b*(|7+p%) which is a contradiction. So g = 7.

We obtain [|b* @ b*||? = 2[b*[%, which forces the sequence © = (0;); to be constant
on the support of the non-increasing rearrangement of the vector b* @ b*. (Note that
b* @ b* is normed by a vector x @ x of d(w, p) satisfying ||z @ z|? = 2||x}|?.) Now the
same is true for the sequence @™ = (@) for which we can choose a vector z* in
d{w, p)* so that

2% @ b« = 2%+ 16* G, o=

and the same for llz* @ b* @ b*|| (choose z = Ale,+...ey) with large A). Thus if
b* 4 0 then w, is constant. a contradiction.

CoROLLARY 4-4. The following assertions are equivalent :
(i) To(d(w.p)*) is locally compact for the T.U.C.B.:

(i) d(w.p)*N/U = d(w.p:1)* ®, L

(iil) T4(d(w. p)) is locally compact for the T.U.CB.
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Proof. The implication (ii) = (i) is analogous to the case of d(w, p), and (i) = (ii) is
easy. (ii) implies that d(w. p)* is super-reflexive. so that d(w, p)*N/¥ = (d(w, p)N/%)*.

Hence by duality

dw, p)N/U = d(w.p: 1) D pLP

which is condition (iii) of Proposition 3-3. Thus (ii) = (iii) and the converse is proved
similarly.

The first author’s research is partially supported by DGICYT: PS87-0059.
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