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Abstract

We prove a trigonometric integral inequality involving isotropic measures in the
plane which can be applied to characterize the solution of extremal problems of
convex bodies in R

2 in terms of properties of measures. The methods used include
new estimates of hypergeometric functions and some cancellation lemmas.

1 Introduction and notation

Let f be a positive, continuous function defined on the unit circle, f : T → (0,∞).
Consider the function given by

Ff,j(a, α) = Fj(a, α) =
1

2π

∫ 2π

0

f(θ)dθ
(

a2 cos2(θ + α) + a−2 sin2(θ + α)
)j/2

for any a > 0, and any α, j ∈ R. The problem we are considering is to determine the
extreme values of the function Fj . A simple computation gives a geometric interpretation
of this problem and shows the motivation for it. Let ρK(·) be the radial function of
a star-shaped body K ⊂ R

2 with respect to the origin, i.e. ρK(θ) = max{λ ≥ 0 :
λ(cos θ, sin θ) ∈ K} for any θ ∈ T (see, for example [3], [5]). If we consider for any j ∈ R

the dual quermassintegral W̃j(K) given by

W̃j(K) =
1

2

∫

T

ρK(θ)2−jdθ

(see [3], [4]), then Fj(a, α) = W̃j(SK), where S ∈ SL(2) is the linear transformation
defined by

(

±a cosα ∓a sinα
a−1 sinα a−1 cosα

)

.
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In [2], the authors study the problem of determining the positions of the convex body
L ⊆ R

n for which

W̃j(L) = max or min{W̃j(SL);S ∈ SL(n)},

depending on the index j. In the particular case of the plane, this is actually the problem
of computing extreme values for the function Fj . Since SL(2) is a group, we can reduce
the problem of finding the extreme values for Fj to finding necessary and sufficient condi-
tions for Fj to attain its extreme value for a = 1 and α = 0. If we use partial derivatives
it is easy to check that

∂Fj

∂a
(a = 1, α = 0) = 0 ⇐⇒ f̂(2) = 0, (1.1)

∂Fj

∂α
(a = 1, α = 0) = 0 ⇐⇒ f̂(−2) = 0, (1.2)

hence, if Fj attains its extreme value for a = 1 and α = 0 then the Fourier coefficients

f̂(±2) = 0. These conditions can be expressed in terms of isotropic measures. We recall
that a measure µ on T is isotropic if and only if

∫

T

uiuk dµ(θ) = Cδi,k

i, k ∈ {1, 2}, where (u1, u2) = (cos θ, sin θ). Hence the conditions (1.1) and (1.2) simply
mean that the measure f(θ)dθ is isotropic and as a consequence a necessary condition
for Fj to attain its extreme value for a = 1 and α = 0 is that f(θ)dθ is isotropic.

The problem we are interested in is if the converse of the last assertion also holds,
i.e., is it true that if f(θ)dθ is isotropic then Fj attains the extreme value for a = 1 and
α = 0? More generally, it can be checked that if we take a Borel measure µ on T and we
consider

Fµ,j(a, α) =
1

2π

∫ 2π

0

dµ(θ)
(

a2 cos2(θ + α) + a−2 sin2(θ + α)
)j/2

a necessary condition in order that Fµ,j attains its extreme value for a = 1 and α = 0 is
that µ is isotropic. Hence we can ask if the reverse is also true.

For j < 0, the problem has an affirmative answer, since by using general properties
of isotropic measures (see [2]) the following result can be proved:

Theorem 1.1 Let µ be an isotropic probability on T then Fµ,j(a, α) ≥ Fµ,j(1, 0), for all
j < 0, 0 < a and α ∈ R.

For j ≥ 3, there is a similar result for a particular kind of measure, and the following
was proved very recently in [2] (by using convexity methods).

Theorem 1.2 Let f(θ) = ρK(θ)2−j, where K is a centrally symmetric convex body in

R
2. If f̂(±2) = 0, then Fj(a, α) ≥ Fj(1, 0), for all j ≥ 3, a > 0 and α ∈ R.

In the case j ∈ (0, 2), the problem we are dealing with is if an isotropic Borel measure
on T satisfies the condition that

Fµ,j(a, α) ≤ Fµ,j(1, 0). (1.3)

Note that we cannot expect a result for general Borel probabilities in this case, as the
following counterexample shows.
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Example 1.3 If we consider the Borel measure µ = 1
4 (δ0 + δπ/2 + δπ + δ3π/2) and take

α = 0, it can be checked that

Fµ,j(a, 0) =
1

2

(

a−j + aj
)

> 1

as a direct consequence of the arithmetic-geometric mean inequality. Consequently, one
might think that we only should consider absolutely continuous measures dµ(θ) = f(θ)dθ,
but a straightforward approximation argument ensures that for general C∞ positive func-
tions f or even for measures of the form dµ(θ) = ρ2−i

L (θ)dθ, with L a general star body,
the result is not true, so we have to restrict ourselves to a very particular case of absolutely
continuous measures on T.

Our main result is the following

Theorem 1.4 Let f : T → (0,∞) be a continuous, 2π-periodic, positive function whose
Fourier series is of the form

f(θ) ∼
∞
∑

k=0

B4k cos(4kθ).

Suppose that the Fourier coefficients satisfy

(i) |B4k| ≤ |B8|, for all k ≥ 2 and |B4| < 0.070B0, |B8| < 0.022B0

(ii) ‖f‖∞ < 1.261B0

then Fj(a, α) ≤ Fj(1, 0) for all a, α ∈ R and for all j close to 1.

The special form of the Fourier series is satisfied for (and is equivalent to) functions
such that f(θ) = f(2π − θ) = f(π − θ) = f(π

2 − θ), for all θ ∈ [0, 2π]. In this case we
will say that f has “enough symmetries”. A geometric example of this kind of function
is (2 − j)-power of the radial function of a star body, symmetric with respect to the
coordinate axes and to the bisectors of the quadrants.

In section 2 we present the proof of the theorem 1.4, which uses sharp estimates for
the hypergeometric functions that may be of independent interest.

In the final section we apply our main result to the extreme dual quermassintegral of
convex bodies in the plane, in particular to the case f(·) = ρB2

1

(·), where B2
1 is the unit

ball of ℓ21, since its corresponding Fourier coefficients satisfy the conditions (i) and (ii)
of theorem 1.4. We prove a couple of lemmas for functions with “enough symmetries”

which guarantee the conditions on the Fourier coefficients we need. Several subtleties for
cancellations of Fourier coefficients appear there which are of interest in themselves.

2 The proof of the main theorem

In order to prove theorem 1.4, we will combine two points of view. On the one hand we
will give some general estimates for Fj(a, α) for a’s far from 1 and on the other hand
for a’s close to 1 we use some techniques involving Fourier coefficients and estimates of
hypergeometric functions. We begin with a lemma which gives an upper estimate for
Fj(a, α) in terms of ‖f‖∞, a and j.
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Lemma 2.1 If f : [0, 2π] −→ R is continuous, then for every j ∈ (0, 2) and every
a ∈ (1,+∞)

Fj(a, α) ≤ ‖f‖∞Θj(a) = ‖f‖∞aj

(

log(a2 +
√
a4 − 1)√

a4 − 1

)min{j,1}

and Fj(a, α) ≤ ‖f‖∞Θj(1/a) for all 0 < a < 1.

Proof:
We can assume without loss of generality that ‖f‖∞ = 1, which implies that

Fj(a, α) =
1

2π

∫ 2π

0

f(θ − α) dθ

(a2 cos2 θ + a−2 sin2 θ)j/2
≤ 2

π

∫ π/2

0

dθ

(a2 cos2 θ + a−2 sin2 θ)j/2
.

If we take a > 1 and j > 1 we obtain that

φ(a) =
2

π

∫ π/2

0

dθ

(a2 cos2 θ + a−2 sin2 θ)j/2
=

2aj

π

∫ π/2

0

dθ

((a4 − 1) cos2 θ + 1)j/2

≤ 2aj

π

∫ π/2

0

dθ
√

(a4 − 1) cos2 θ + 1

≤ 2aj

π

∫ π/2

0

dθ
√

((

1 − 2θ
π

)√
a4 − 1

)2
+ 1

=
aj

√
a4 − 1

log(a2 +
√

a4 − 1).

On the other hand if we take a > 1 and 0 < j < 1 we use Jensen inequality and then we
arrive at

2

π

∫ π/2

0

dθ

(a2 cos2 θ + a−2 sin2 θ)j/2
≤
(

a√
a4 − 1

log(a2 +
√

a4 − 1)

)j

.

If a < 1, notice that φ(a) = φ(1/a), and hence the result follows from the case a > 1.
�

This result proves theorem 1.4 for a’s large enough, as the following corollary shows.

Corollary 2.2 Let f : T −→ (0,∞) be as in theorem 1.4. Then for every α ∈ R and
every a ≥ 5.686,

F1(1, α) ≤ F1(1, 0).

Proof:
If a ≥ 5.686 it can be checked that

a√
a4 − 1

log(a2 +
√

a4 − 1) < 0.734,

hence by using lemma 2.1, since ‖f‖∞ < 1.261B0, we get that for every α ∈ R and every
a ≥ 5.686

F1(a, α) ≤ 0.734‖f‖∞ < 0.926B0 < B0 = F1(1, 0).
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(The numerical computations have been performed with Maple processer).
�

As a consequence of the last lemma and corollary the only thing we have to do to
complete the proof of the main theorem is to prove the inequality in the range of a’s for
which Θ1(a) > 1.261−1 (i.e. close to a = 1).

In order to study the situation for a’s close to 1, let us introduce some notation. If
a > 0 and j ∈ (0, 2) we define ga(θ) for every θ ∈ T by

ga(θ) =
1

(

a2 cos2 θ + a−2 sin2 θ
)j/2

.

The following lemma allows us study the inequality (1.3) in terms of Fourier coefficients.

Lemma 2.3 Let ga be defined as before. If we denote by

ℓ =
a2 − 1

a2 + 1
∈ (−1, 1) (2.4)

then

ga(θ) =

∞
∑

k=0

A2k cos(2kθ)

where

A0 =
(

1 − ℓ2
)j/2

∞
∑

m=0

ℓ2m

(−j/2
m

)2

(2.5)

A2k = 2ℓk
(

1 − ℓ2
)j/2

∞
∑

m=0

ℓ2m

(−j/2
m

)(−j/2
m+ k

)

(2.6)

and the trigonometric series converges absolutely and uniformly in θ. Furthermore A0 < 1
whenever a 6= 1 and

(i) {A2k}∞k=0 is a non increasing sequence convergent to 0 if a < 1,

(ii) {(−1)kA2k}∞k=0 is a non increasing sequence convergent to 0 otherwise.

Proof:
It is very easy to see that for every θ ∈ T

1

a2 cos2 θ + a−2 sin2 θ
=

1 − ℓ2

(1 + ℓ)2 cos2 θ + (1 − ℓ)2 sin2 θ

=
1 − ℓ2

|eiθ + ℓe−iθ|2
=

1 − ℓ2

(1 + ℓe−2iθ) (1 + ℓe2iθ)
.
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So for every θ ∈ T

(

1 − ℓ2
)−j/2

ga(θ) =

∞
∑

n,m=0

(−j/2
n

)(−j/2
m

)

ℓn+me2iθ(n−m)

=
∞
∑

m=0

∞
∑

k=−m

(−j/2
m

)(−j/2
m+ k

)

ℓ2m+ke2iθk

=

∞
∑

k=0

ℓke2iθk
∞
∑

m=0

ℓ2m

(−j/2
m

)(−j/2
m+ k

)

+
−1
∑

k=−∞

ℓke2iθk
∞
∑

m=−k

ℓ2m

(−j/2
m

)(−j/2
m+ k

)

=
∞
∑

m=0

ℓ2m

(−j/2
m

)2

+2
∞
∑

k=1

ℓk cos(2kθ)
∞
∑

m=0

ℓ2m

(−j/2
m

)(−j/2
m+ k

)

and we get (2.5) and (2.6).

Since 0 < j < 2, we get that
j
2 +m+ k

m+ k + 1
< 1 and

∣

∣

∣

∣

(−j/2
m

)(−j/2
m+ k

)
∣

∣

∣

∣

= (−1)2m+k

(−j/2
m

)(−j/2
m+ k

)

.

Hence
∣

∣

∣

∣

(−j/2
m

)(−j/2
m+ k

)∣

∣

∣

∣

≥
∣

∣

∣

∣

(−j/2
m

)( −j/2
m+ k + 1

)∣

∣

∣

∣

,

which implies the monotonic character stated in (i) and (ii). Eventually, since the func-
tion h(t) = tj/2 is concave in [0,+∞), we get that whenever a 6= 1

A0 =
1

2π

∫ 2π

0

ga(θ) dθ <
1

2π

∫ 2π

0

dθ

aj cos2 θ + a−j sin2 θ
= 1.

�

We come back to the proof of the theorem. According to the preceding lemma, in
order to prove theorem 1.4 it is enough to show that

Fj(a, α) =

∞
∑

k=0

A2k
1

2π

∫ 2π

0

f(θ) cos 2k(θ + α) dθ ≤ B0 = Fj(1, 0)

and so, if we assume the conditions imposed on the function f in the theorem (1.4) the
problem reduces to showing that

∞
∑

k=0

A4kB4k cos(4α) ≤ B0 (2.7)

for all ℓ ∈ (−1, 1) and α ∈ R (recall that Ak’s depend on ℓ). Hence, we have to obtain
sharp estimates for A4k.
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Note that the A4k are hypergeometric functions. Indeed, given a, b, c ∈ R and z ∈ C

the hypergeometric function F (a, b; c; z) is defined by

F (a, b; c; z) =

∞
∑

m=0

(a)m(b)m

(c)m

zm

m!
,

where (a)m = a(a+ 1) · · · (a+m− 1) (see [1]). It can be checked that

A0 = (1 − ℓ2)j/2F (
j

2
,
j

2
; 1; ℓ2),

A4k = 2ℓ2k(1 − ℓ2)j/2

(−j/2
2k

)

F (
j

2
,
j

2
+ 2k; 2k + 1; ℓ2),

for k ≥ 1. In order to get some upper estimates for A4k that will be useful later, we give
some general upper estimates for some hypergeometric functions.

Lemma 2.4 Let α ∈ (0, 1) and k ∈ N ∪ {0}. For every x ∈ (−1, 1)

F (α, α; 1;x) ≤ eα−1(1 − x)−α + (1 − eα−1) + x(α2 − αeα−1),

F (α, α+ 2k; 2k + 1;x) ≤ (1 − x)−α

(

−α
2k

)

[

(−1)k

(−α
k

)

e
α−1

2

− (1 − x)α

(

(−1)k

(−α
k

)

e
α−1

2 −
(−α

2k

))]

≤ (1 − x)−α

(

−α
2k

) (−1)k

(−α
k

)

e
α−1

2 .

Proof:
First of all, we study F (α, α+ 2k; 2k + 1;x). If m ≥ 0 and k ≥ 1, on the one hand

0 ≤ α · · · (α+m− 1)

m!
= (−1)m

(−α
m

)

.

On the other hand

(α+ 2k)m

(2k + 1)m
=

(α+ 2k) · · · (α+ 2k +m− 1)

(2k + 1) · · · (2k +m)

=
(2k)!

(α) · · · (α+ 2k − 1)

α(α+ 1) · · · (α+ 2k +m− 1)

(2k +m)!

=

(−α
2k

)−1
α · · · (α+ k − 1)

k!

(α+ k) · · · (α+ 2k +m− 1)

(k + 1) · · · (2k +m)

= (−1)k

(−α
k

)(−α
2k

)−1 2k+m
∏

n=k+1

α+ n− 1

n
.

Hence, since α < 1, we get that

(α+ 2k)m

(2k + 1)m
≤ (−1)k

(−α
k

)(−α
2k

)−1(
α+ 2k +m− 1

2k +m

)m+k

≤ (−1)k

(−α
k

)(−α
2k

)−1

e
α−1

2 .

7



Then

F (α, α+ 2k; 2k + 1;x) =
∞
∑

m=0

(α)m(α+ 2k)m

m!(2k + 1)m
xm

≤ (−1)k

(−α
k

)(−α
2k

)−1

e
α−1

2

∞
∑

m=0

(−α
m

)

(−x)m

=
(1 − x)−α

(

−α
2k

) (−1)k

(−α
k

)

e
α−1

2

and also

F (α, α+ 2k; 2k + 1;x) = 1 +
∞
∑

m=1

(α)m(α+ 2k)m

m!(2k + 1)m
xm

≤ 1 + (−1)k

(−α
k

)(−α
2k

)−1

e
α−1

2

∞
∑

m=1

(−α
m

)

(−x)m

=
(1 − x)−α

(

−α
2k

)

[

(−1)k

(−α
k

)

e
α−1

2 − (1 − x)α

(

(−1)k

(−α
k

)

e
α−1

2 −
(−α

2k

))]

.

In order to get upper estimates for F (α, α; 1;x), we compute
(α)2m

(1)mm!
. If m ≥ 0

(α)2m
(1)mm!

= (−1)m

(

α

m

) m
∏

n=1

(

α+ n− 1

n

)

≤ (−1)m

(

α

m

)(

α+m− 1

m

)m

= (−1)m

(

α

m

)

eα−1.

and we proceed as before.
�

Corollary 2.5 If j = 1 and under the same conditions as in lemma 2.3, then

A0 ≤ e−1/2 +
(

1 − ℓ2
)1/2

[

1 − e−1/2 − ℓ2

2

(

e−1/2 − 1

2

)]

A4 ≤ e
−1

4 ℓ2
[

1 − (1 − ℓ2)1/2

(

1 − 3e1/4

4

)]

A4k ≤ 2e
−1

4 ℓ2k(−1)k

(−1/2

k

)

, k ≥ 1

∞
∑

k=2

A4k ≤ 2e−1/4

(

(1 − ℓ2)−1/2 − 1 − ℓ2

2

)

.

These upper estimates allow us to continue with the proof of the theorem. By using
the preceding lemmas and the estimates for the coefficients A4k, (k = 0, . . . ) for j = 1,
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we get that

∞
∑

k=0

A4kB4k cos(4α) ≤
∞
∑

k=0

A4k|B4k|

≤ B0

(

A0 +
|B4|
B0

A4 +
|B8|
B0

∞
∑

k=2

A4k

)

≤ B0

(

A0 + 0.070A4 + 0.022

∞
∑

k=2

A4k

)

≤ B0

[

e−1/2 − 0.044e−1/4 +
√

1 − ℓ2
(

1 − e−1/2
)

+0.048e−1/4ℓ2

−1

2
ℓ2
√

1 − ℓ2
(

e−1/2 + 0.14e−1/4 − 0.605
)

+
0.044e−1/4

√
1 − ℓ2

]

< B0,

whenever 0 < ℓ2 ≤ 0.89. Indeed, if we take the function ψ defined for every x ∈ [0, 1) by

ψ(x) = e−1/2 − 0.044e−1/4 + (1 − e−1/2)
√

1 − x+ 0.048e−1/4x

− 1

2
x
√

1 − x(e−1/2 + 0.14e−1/4 − 0.605) +
0.044e−1/4

√
1 − x

,

a direct computation shows that

ψ′(x) ≤ −0.196 + 0.028x√
1 − x

+ 0.038 − 0.055
√

1 − x+
0.018

(1 − x)3/2
< 0

for all x < 0.89. Since ψ(0) < 1 we achieve that ψ(ℓ2) < 1 whenever 0 < ℓ < 0.943 which
implies that F1(a, α) ≤ F1(1, 0) for all α ∈ R and 1 < a < 5.686.

If a ≥ 5.686, the result follows from lemma 2.1 and corollary 2.2.

Remark 2.6 We might extend theorem 1.4 to more general functions f : T → (0,+∞)
with enough symmetries whose Fourier coefficients satisfy weaker conditions than those
appearing in theorem 1.4 (condition (i) ), simply by considering sharper estimates for
the hypergeometric functions in lemma 2.4. These estimates could be easily established
by the technique used in that lemma, simply by considering sharper expressions for
F (α, α+ 2k; 2k + 1;x).

3 An application to the extreme dual quermassinte-

gral of convex bodies

According to section 1, the motivation of theorem 1.4 comes from the characterization of
extreme dual ‘quermassintegrals’ of a convex body in terms of isotropic measures.

In this section we will consider a positive continuous function f : T → (0,+∞) such
that for every θ ∈ T

f(θ) = f(2π − θ) = f(π − θ) = f(
π

2
− θ).
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In this case we will say that f has “enough symmetries”. Examples of the kind of
functions that we have in mind are the functions of the form f(·) = ρK(·)2−j , where K is
a convex body symmetric with respect to the axes and the bisectors. It is easy to check
that if ρK(·)2−j has “enough symmetries” then ρK(·)2−j dσ(·) is isotropic in T. For every
k ∈ Z, we will define Bk by

Bk =
1

2π

∫ 2π

0

f(θ) cos(kθ) dθ.

The following lemmas study the behaviour of the Fourier coefficients Bk of functions with
“enough symmetries”.

Lemma 3.1 Let f : T → (0,+∞) be a function with “enough symmetries”. If f ′ is non
positive and non decreasing on [0, π

4 ] then B4k ≥ 0, for all k ≥ 0.

Proof:
By the symmetries of f and integrating by parts it is easy to show that

B4k =
4

π

∫ π/4

0

f ′(θ) sin(4kθ) dθ.

If k ≥ 1

∫ π/4

0

f ′(θ) sin(4kθ)dθ =

∫ π/4k

0

f ′(θ) sin(4kθ)dθ +

∫ 2π/4k

π/4k

f ′(θ) sin(4kθ)dθ

+ · · · +
∫ kπ/4k

(k−1)π/4k

f ′(θ) sin(4kθ)dθ.

Since f ′ is non decreasing on [0, π
4 ] we deduce that

∫ π/4k

0

f ′(θ) sin(4kθ)dθ +

∫ 2π/4k

π/4k

f ′(θ) sin(4kθ)dθ

=

∫ π/4k

0

(

f ′(θ) − f ′
(

θ +
π

4k

))

sin(4kθ)dθ ≤ 0.

In fact, by using the same idea, for every i = 1, . . . , [k
2 ] we get that

∫ (2i−1)π/4k

(2i−2)π/4k

f ′(θ) sin(4kθ)dθ +

∫ 2iπ/4k

(2i−1)π/4k

f ′(θ) sin(4kθ)dθ ≤ 0,

hence
∫ π/4

0

f ′(θ) sin(4kθ)dθ ≤ 0,

if k is even. In the other case, the last summand is also negative since f ′ ≤ 0 and
sin(4kθ) ≥ 0 in that interval. Eventually, we get that B4k ≥ 0 for all k ≥ 1 and therefore
the result holds.

�
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Lemma 3.2 Let f be, as before, a continuous positive function with “enough symme-
tries”. If F (θ) = f(π

4 − θ) cos(2θ) is such that F ′(0) = 0 and the function F ′′(θ) is non
positive and non increasing in [0, π

4 ], then B4k ≥ B4k+4, for all k ≥ 0.

Proof:
By changing variables we get that

B4k −B4k+4 =
1

2π

∫ 2π

0

f(θ) [cos(4kθ) − cos ((4k + 4)θ)] dθ

=
(−1)k

2π

∫ 2π

0

f
(π

4
− θ
)

[cos(4kθ) + cos ((4k + 4)θ)] dθ

=
(−1)k

π

∫ 2π

0

f
(π

4
− θ
)

cos ((4k + 2)θ) cos(2θ) dθ

= (−1)k 8

π

∫ π/4

0

F (θ) cos ((4k + 2)θ) dθ.

Now, by integrating twice by parts,

B4k −B4k+4 = − 8(−1)k

π(4k + 2)2

∫ π/4

0

F ′′(θ) cos ((4k + 2)θ) dθ.

Let k = 2m be an even number. Then

B4k −B4k+4 =
8

π(4k + 2)2

(

∫ π/2(4k+2)

0

−F ′′(θ) cos ((4k + 2)θ) dθ

+

∫ 5π/2(4k+2)

π/2(4k+2)

−F ′′(θ) cos ((4k + 2)θ) dθ

+ · · ·

+

∫ (4m+1)π/2(4k+2)

(4m−3)π/2(4k+2)

−F ′′(θ) cos ((4k + 2)θ) dθ

)

.

Since −F ′′ ≥ 0 and −F ′′ is non decreasing on [0, π
4 ] we obtain that

∫ π/2(4k+2)

0

−F ′′(θ) cos ((4k + 2)θ) dθ ≥ 0

and for every i = 1, . . . ,m
∫ (4i+1)π/2(4k+2)

(4i−3)π/2(4k+2)

−F ′′(θ) cos ((4k + 2)θ) dθ ≥ 0,

which ensures that B4k ≥ B4k+4.
Let now k = 2m+ 1 be an odd number. As before,

B4k −B4k+4 = − 8

π(4k + 2)2

(

∫ 3π/2(4k+2)

0

−F ′′(θ) cos ((4k + 2)θ) dθ

+

∫ 7π/2(4k+2)

3π/2(4k+2)

−F ′′(θ) cos ((4k + 2)θ) dθ

+ · · ·

+

∫ (4m+3)π/2(4k+2)

(4m−1)π/2(4k+2)

−F ′′(θ) cos ((4k + 2)θ) dθ

)

.
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By similar reasons as before we get that

∫ 3π/2(4k+2)

0

−F ′′(θ) cos ((4k + 2)θ) dθ ≤ 0

and for every i = 1, . . . ,m

∫ (4i+3)π/2(4k+2)

(4i−1)π/2(4k+2)

−F ′′(θ) cos ((4k + 2)θ) dθ ≤ 0

and so the conclusion of the lemma holds.
�

The previous lemmas allow us to get some information about the Fourier coefficients
of

f(θ) = ρ2−j
B2

1

(θ) =
1

(| sin θ| + | cos θ|)2−j

and we obtain the following result.

Proposition 3.3 Let j ∈ (0, x0] (x0 = − 5
3 +

√
73/3 ≃ 1.18). Then the Fourier coeffi-

cients B4k of f(·) = ρ2−j
B2

1

(·) are such that B0 ≥ B4 ≥ · · · ≥ B4k ≥ · · · ≥ 0.

Furthermore since for j = 1 we can compute the Fourier coefficients of ρB2

1

, by
using Maple we get that B0 = 0.793515 . . ., B4 = 0.055311 . . ., B8 = 0.017445 . . . and
‖ρB2

1

‖∞ = 1. Therefore, we can apply the theorem 1.4 and we conclude that

W̃1(B
2
1) = max{W1(SB

2
1); S ∈ SL(2)}.

Remark 3.4 This technique could be also applied to other “symmetric enough” convex
bodies K, simply by considering the estimates given in corollary 2.5 properly improved,
as we noticed in remark 2.6, provided that we could get some control on the behaviour of
the Fourier coefficients of f(·) = ρ2−j

K (·). This might be useful, for example, for other ℓ2p
balls. If we would like to obtain results in R

n (n > 2), we should use spherical harmonics
instead of Fourier coefficients.
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