An integral inequality concerning isotropic measures on
the unit circle

Jesus Bastero * Miguel Romance T
Departamento de Matemaéticas Dpto. de Matemadticas y Fisica Aplicadas
Universidad de Zaragoza Universidad Rey Juan Carlos
Plaza San Francisco s/n C/Tulipan s/n
50009 Zaragoza 28933 Mostoles (Madrid)
Spain Spain
Abstract

We prove a trigonometric integral inequality involving isotropic measures in the
plane which can be applied to characterize the solution of extremal problems of
convex bodies in R? in terms of properties of measures. The methods used include
new estimates of hypergeometric functions and some cancellation lemmas.

1 Introduction and notation

Let f be a positive, continuous function defined on the unit circle, f : T — (0,00).
Consider the function given by
1 f(6)de

2m
Ef)<(a,o¢):F»(a,a):—/ ,
’ ’ 2 Jo (a2 cos?( + a) + a~2sin*(0 + a))J/2

for any a > 0, and any «,j € R. The problem we are considering is to determine the
extreme values of the function F};. A simple computation gives a geometric interpretation
of this problem and shows the motivation for it. Let pg(-) be the radial function of
a star-shaped body K C R? with respect to the origin, i.e. px(f) = max{\ > 0 :
A(cos@,sinf) € K} for any 0 € T (see, for example [3], [5]). If we consider for any j € R
the dual quermassintegral Wj (K) given by

W) = 5 [ (00

(see [3], [4]), then Fj(a,a) = W;(SK), where S € SL(2) is the linear transformation
defined by
(:I:acosa ZFasina)

a lsina alcosa
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In [2], the authors study the problem of determining the positions of the convex body
L C R™ for which

W;(L) = max or min{W;(SL);S € SL(n)},

depending on the index j. In the particular case of the plane, this is actually the problem
of computing extreme values for the function Fj. Since SL(2) is a group, we can reduce
the problem of finding the extreme values for F} to finding necessary and sufficient condi-
tions for F} to attain its extreme value for ¢ =1 and o = 0. If we use partial derivatives
it is easy to check that

OF; .

%(azl,a:()):() = f(2)=0, (1.1)
8Fj r
Slla=1a=0=0 < f(-2)=0, (1.2)

hence, if F}; attains its extreme value for a = 1 and o = 0 then the Fourier coefficients

f(£2) = 0. These conditions can be expressed in terms of isotropic measures. We recall
that a measure p on T is isotropic if and only if

/uiuk du(8) = Co; i
T

i,k € {1,2}, where (u1,u2) = (cosf,sinf). Hence the conditions (1.1) and (1.2) simply
mean that the measure f(6)df is isotropic and as a consequence a necessary condition
for F} to attain its extreme value for ¢ = 1 and « = 0 is that f(6)d6 is isotropic.

The problem we are interested in is if the converse of the last assertion also holds,
i.e., is it true that if f(#)df is isotropic then F} attains the extreme value for a = 1 and
a = 07 More generally, it can be checked that if we take a Borel measure p on T and we

consider
_ 1 / o dp(6)
2m Jo (a2 cos?(0 + a) + a~2sin®(0 + a))j/2

a necessary condition in order that F}, ; attains its extreme value for a =1 and oo =0 is
that p is isotropic. Hence we can ask if the reverse is also true.

For j < 0, the problem has an affirmative answer, since by using general properties
of isotropic measures (see [2]) the following result can be proved:

Fﬂ,j (a7 a)

Theorem 1.1 Let p1 be an isotropic probability on T then F), ;(a, o) > F), ;(1,0), for all
71<0,0<aand a€eR.

For j > 3, there is a similar result for a particular kind of measure, and the following
was proved very recently in [2] (by using convexity methods).

Theorem 1.2 Let f(0) = px(0)>77, where K is a centrally symmetric convex body in
R2. If f(£2) =0, then Fj(a,a) > F;(1,0), for all j > 3, a > 0 and o € R.

In the case j € (0,2), the problem we are dealing with is if an isotropic Borel measure
on T satisfies the condition that

Fia,a) < F,;(1,0). (1.3)

Note that we cannot expect a result for general Borel probabilities in this case, as the
following counterexample shows.



Example 1.3 If we consider the Borel measure p = i(do + 07 /2 + 0 + 03 /2) and take
a =0, it can be checked that

F,;(a,0)== (a7 +d)>1

DN | =

as a direct consequence of the arithmetic-geometric mean inequality. Consequently, one
might think that we only should consider absolutely continuous measures du(0) = f(0)d#,
but a straightforward approximation argument ensures that for general C*° positive func-
tions f or even for measures of the form du(f) = ,02L_i(09)d97 with L a general star body,
the result is not true, so we have to restrict ourselves to a very particular case of absolutely
continuous measures on T.

Our main result is the following

Theorem 1.4 Let f: T — (0,00) be a continuous, 2w-periodic, positive function whose
Fourier series is of the form

£(6) ~ > Buy cos(4k).

k=0
Suppose that the Fourier coefficients satisfy
(i) |Bag| < |Bs|, for all k > 2 and |B4] < 0.070By, |Bg| < 0.022B,
(ii) || flloo < 1.261By
then Fj(a,a) < F;(1,0) for all a,a € R and for all j close to 1.

The special form of the Fourier series is satisfied for (and is equivalent to) functions
such that f() = f(2m —0) = f(mr —0) = f(§ —0), for all # € [0,27]. In this case we
will say that f has “enough symmetries”. A geometric example of this kind of function
is (2 — j)-power of the radial function of a star body, symmetric with respect to the
coordinate axes and to the bisectors of the quadrants.

In section 2 we present the proof of the theorem 1.4, which uses sharp estimates for
the hypergeometric functions that may be of independent interest.

In the final section we apply our main result to the extreme dual quermassintegral of
convex bodies in the plane, in particular to the case f(-) = ppz(-), where B? is the unit
ball of £%, since its corresponding Fourier coefficients satisfy the conditions (i) and (%)
of theorem 1.4. We prove a couple of lemmas for functions with “enough symmetries”
which guarantee the conditions on the Fourier coefficients we need. Several subtleties for
cancellations of Fourier coefficients appear there which are of interest in themselves.

2 The proof of the main theorem

In order to prove theorem 1.4, we will combine two points of view. On the one hand we
will give some general estimates for Fj(a,a) for a’s far from 1 and on the other hand
for a’s close to 1 we use some techniques involving Fourier coefficients and estimates of
hypergeometric functions. We begin with a lemma which gives an upper estimate for
Fj(a,a) in terms of || f|oc, @ and j.



Lemma 2.1 If f : [0,27] — R is continuous, then for every j € (0,2) and every
a € (1,400)

min{j,1}
_ 2 4 _
Fy(a,0) < |f0;(a) = || ]’ <log(a W_T))

and Fj(a,a) < ||flle©;(1/a) for all0 < a < 1.

Proof:
We can assume without loss of generality that ||f||cc = 1, which implies that

i _ w/
Fj(a,a) ! /02 f(6 ~ ) df < 2/0 2( i

T o (a2cos? 6 + a—2sin*6)i/2 ~ 7 a2 cos? 0 + a=2sin? 0)4/2°

If we take a > 1 and j > 1 we obtain that

2

o) /”/ 2 do 207 /”/2 do
a) = = ,
T Jo (a2cos?26+a2sin’6)i/2 7w Jy ((a*—1)cos?6+ 1)i/2

IN
|

207 /”/ 2 df
™ Jo  /(a*—1)cos20 +1
de

/2
~ V(-2 var=1)" 1

a’
= ———log(a® +Va* - 1).
g os(e” + v )

On the other hand if we take a > 1 and 0 < j < 1 we use Jensen inequality and then we
arrive at

IN
|

2 (/2 do . j
= — < lo 2 + 4_1 ]
7T/o (a2 cos? 0 +a~2sin?9)i/2 ~ (\/a‘l——l ga W>)
If a < 1, notice that ¢(a) = ¢(1/a), and hence the result follows from the case a > 1.

O

This result proves theorem 1.4 for a’s large enough, as the following corollary shows.

Corollary 2.2 Let f : T — (0,00) be as in theorem 1.4. Then for every a € R and
every a > 5.686,
Fl(]-va) S Fl(]-vo)

Proof:
If @ > 5.686 it can be checked that

\/% log(a? + Va* — 1) < 0.734,

hence by using lemma 2.1, since || f]joc < 1.261By, we get that for every o € R and every
a > 5.686

Fi(a,a) < 0.734]| f||lso < 0.926By < By = Fy(1,0).



(The numerical computations have been performed with Maple processer).
O
As a consequence of the last lemma and corollary the only thing we have to do to
complete the proof of the main theorem is to prove the inequality in the range of a’s for
which ©1(a) > 1.2617! (i.e. close to a = 1).
In order to study the situation for a’s close to 1, let us introduce some notation. If
a>0and j € (0,2) we define g,(0) for every 6 € T by

1

ga(e) = 70"
(a2 cos2 0 + a—2 sin® G)J/Q

The following lemma allows us study the inequality (1.3) in terms of Fourier coefficients.

Lemma 2.3 Let g, be defined as before. If we denote by

a?—1
= 21 e(-1,1) (2.4)
then -
9ga(0) = Z Asy, cos(2k0)
k=0
where

AO — (1 _ 62)j/2 i ng <J/2>2 (25)

m
m=0

Agy = 205 (1— )" i om (:37;/2) <n;7+/2k> (2.6)

m=0

and the trigonometric series converges absolutely and uniformly in 0. Furthermore Ag < 1
whenever a # 1 and

(1) {A2}72, is a non increasing sequence convergent to 0 if a < 1,

(ii) {(=1)* A2k 132, is a non increasing sequence convergent to 0 otherwise.

Proof:
It is very easy to see that for every 6§ € T
1 _ 1-0
a2cos20 +a=2sin’0 (14 0)2cos? 6+ (1 —0)2sin?0
102 11—

|ei0 4 te—i0|* (14 Le=20) (1 + £e2i0)



So for every # € T

(-2 g0 = (F93) (21 )ermenonn
n,m=0
SR

0 —

e B ()

k=0 m=0

" o 5 e
-G

19 k; £* cos(2K0) ;2042’” (_fn/ 2) @ﬁ)

and we get (2.5) and (2.6).

+m+k
Since 0 < j < 2, we get that 27]m<1and

COGE = e GE)
()G GO Gl

which implies the monotonic character stated in (i) and (). Eventually, since the func-
tion h(t) = t7/2 is concave in [0, +00), we get that whenever a # 1

Hence

1 2 1 2m do
Ag= — 0)do < — , . =1
07 on 0 9(6) 2m a’ cos? 0 + a=J sin” §

|
We come back to the proof of the theorem. According to the preceding lemma, in
order to prove theorem 1.4 it is enough to show that

o 1 2
O‘):ZA%ﬂ ; f(0) cos2k(0 4+ o) do < By = F(1,0)
k=0

and so, if we assume the conditions imposed on the function f in the theorem (1.4) the
problem reduces to showing that

> AuxBag cos(4a) < By (2.7)
k=0

for all £ € (=1,1) and a € R (recall that A’s depend on £). Hence, we have to obtain
sharp estimates for Ayy.



Note that the Ay are hypergeometric functions. Indeed, given a,b,¢ € R and z € C
the hypergeometric function F(a,b;c; z) is defined by

F(a,b;c; 2) i m(bmz7

= ()m m!

where (a);, = ala+1)---(a+m —1) (see [1]). It can be checked that

Ay = (1-¢ )J/QF(Q,—,LEQ)
_ 2k (1 _ p2\j/2 i/2 J J 2
Agp 20°F(1 = 0%) <2k )F(2 2+2k2k+1€)

for k > 1. In order to get some upper estimates for Ay that will be useful later, we give
some general upper estimates for some hypergeometric functions.

Lemma 2.4 Let « € (0,1) and k € NU{0}. For every z € (—1,1)
Fla,a;1;x)

1_ o
Fla,a+2k;2k+ 1;2) < z) [ (;) ot

IN

er” 11—x) Cp(1—e N+ a(a? —aeh),

A

Proof:
First of all, we study F(o,a + 2k;2k + 1;2). If m > 0 and k > 1, on the one hand

f o atm—1) :(_1)m<—a).

- m! m

On the other hand

(@+2k)ym  (a+2k)---(a+2k+m—1)
2k +1), (2k +1)--- (2k +m)
B (2k)! ala+1)---(a+2k+m—1)
(o) (a+2k—1) (2k +m)!
—a\ o (a+k—1)(a+k)-- (a+2k+m—1)
- <2k> 3] (k+1)--(2k +m)
f—a) [~ sl g |
B (_1)<k)<2k) n_HHl n

Hence, since a < 1, we get that

G < () ()

IN
T
—_
~—
ol
/‘T
)
N~
RS
o |
Eole
N~
L

o
‘Q

|



Then

Fla,a +2k;2k+ 1;2) =

IA
i
=
ol
i
S
N——
VRS
N
I Q
N———
AN
a
w‘?
2
VRS
=
N——
|
&
3

and also

o0

(@) (a0 + 2k)
Floya+2k:2k+1;2) =14 Y \UmAT 2m m
< )= S (el

< (D)) B G

m=1

g (e () ()

2k

2
In order to get upper estimates for F'(«, o; 1;x), we compute (@ Ifm>0
m

w0 G ()

n

() () (e

IN

and we proceed as before.

Corollary 2.5 If j =1 and under the same conditions as in lemma 2.3, then

_ 1/2 _ 2 1
Ay < el/2+(1—€2) |:1—6 1/2—§<e 1/2—5)]
L 1/4
Ay < e f? [1—(1—62)1/2 (1—3€T>}
Ay < 2e%£2k(—1)’€<_;/2>, k>1

fe%e] 2
ZAM < 24 ((1—@2)—1/2—1—%).
k=2

These upper estimates allow us to continue with the proof of the theorem. By using
the preceding lemmas and the estimates for the coefficients Ay, (kK =0,...) for j = 1,



we get that

Z Ay Bag COS(4a) < Z A4k‘B4k‘
k=0 k=0
By| B
< By <A0+ Bal 4, 1 1Bsl Zm)
< B (Ao +0.0704, + 0.022 Z A4k>
k=2
< By {6—1/2 —0.044e V4 4 /1= 2 (1 _ e—1/2)

+0.048¢ /442
1
—5eVT= (6*1/2 401414 0.605)

0.04461/4:|
/—1 — 52 0,

whenever 0 < ¢? < 0.89. Indeed, if we take the function 1 defined for every x € [0,1) by

1/)(95) = 6_1/2 - 0.0446_1/4 + (1 — 6_1/2)1/1 —r+ 0~048€_1/41‘
1 0.044¢~1/4
— ZavV1—z(e Y2 +0.14¢ * - 0.605) + ——,
2" o ‘ ) Vi—=z

a direct computation shows that

—0.196 + 0.028z 0.018
/

for all z < 0.89. Since 1(0) < 1 we achieve that 1(¢?) < 1 whenever 0 < ¢ < 0.943 which
implies that Fi(a,a) < Fy(1,0) for all a € R and 1 < a < 5.686.
If a > 5.686, the result follows from lemma 2.1 and corollary 2.2.

Remark 2.6 We might extend theorem 1.4 to more general functions f : T — (0, +00)
with enough symmetries whose Fourier coefficients satisfy weaker conditions than those
appearing in theorem 1.4 (condition (7)), simply by considering sharper estimates for
the hypergeometric functions in lemma 2.4. These estimates could be easily established
by the technique used in that lemma, simply by considering sharper expressions for
F(a,a+ 2k; 2k + 1; ).

3 An application to the extreme dual quermassinte-
gral of convex bodies

According to section 1, the motivation of theorem 1.4 comes from the characterization of
extreme dual ‘quermassintegrals’ of a convex body in terms of isotropic measures.

In this section we will consider a positive continuous function f : T — (0, +00) such
that for every 6 € T

f0) =2 —0) = f(r—0) = f(5 —0)

s
2



In this case we will say that f has “enough symmetries”. Examples of the kind of
functions that we have in mind are the functions of the form f(-) = px(-)>~7, where K is
a convex body symmetric with respect to the axes and the bisectors. It is easy to check
that if pr(-)?77 has “enough symmetries” then px (-)277 do(-) is isotropic in T. For every
k € Z, we will define By by

1 2m

By = — f(0) cos(kO) db.

2 Jo
The following lemmas study the behaviour of the Fourier coefficients By of functions with
“enough symmetries”.

Lemma 3.1 Let f: T — (0,+00) be a function with “enough symmetries”. If f' is non
positive and non decreasing on [0, §] then By >0, for all k > 0.

Proof:
By the symmetries of f and integrating by parts it is easy to show that

4 7\'/4
By, = —/ 1'(0) sin(4k0) db.
™ Jo

Ifk>1
27 /4k

m/4 w/4k
/ f/(0)sin(4k0)do = / 1(0) sin(4k0)do + / 1(0) sin(4k0)do
0 0 ™

4k

km/4k
+- 4 / 1'(0) sin(4k0)db.
(k—1)m/4k

Since f’ is non decreasing on [0, 7] we deduce that
27 /4k

7 /4k
/ 1'(0)sin(4k0)dd + / 1'(0) sin(4k0)do
0 ™

/ak

_ /Omk (f’(e) 7 (9 n i)) sin(4k6)do < 0.

In fact, by using the same idea, for every ¢ = 1,. .., [%] we get that
(2i—1)/4k 2im /4k
/ 1/(0) sin(4k0)do + / 1'(0) sin(4k0)df < 0,
(2i—2)7 /4k (2i—1)m/4k
hence
/4
/ 1/(0) sin(4k6)do < 0,
0

if k is even. In the other case, the last summand is also negative since f’ < 0 and
sin(4k#) > 0 in that interval. Eventually, we get that By > 0 for all k¥ > 1 and therefore
the result holds.

|

10



Lemma 3.2 Let f be, as before, a continuous positive function with “enough symme-
tries”. If F(0) = f(§ — 0)cos(20) is such that F'(0) = 0 and the function F"'(0) is non
positive and non increasing in [0, 5|, then By > Bagya, for all k> 0.

Proof:
By changing variables we get that

B4k — B4k+4 = % ) ) f(0) [COS(4/€9) — COS ((4]€ + 4)9)] do
__(2?kA%f(£—@k%MM)+mMMk+®Md9

_ (—Daé%f(g—e)myuk+mwcmmwd0

™

/4
- (71V%ﬂ4 F(0) cos ((4k +2)0) db.

Now, by integrating twice by parts,

8(_1)k /4 "
By, — B4k+4 —m | F (9) cos ((4k + 2)6‘) do.
Let £ = 2m be an even number. Then
8 7 /2(4k+2)
By — Bagra = Tk o) /0 —F"(0) cos ((4k + 2)0) do

5m/2(4k+2)

+ / () cos ((4k + 2)) d6
7 /2(4k+2)

+ PR

(4m+1)7/2(4k+2)
+ / —F"(0) cos ((4k + 2)0) db | .
(4m—3)m /2(4k+2)

Since —F" > 0 and —F" is non decreasing on [0, 7] we obtain that

7/2(4k+2)
/ —F"(8) cos ((4k +2)8) d6 > 0
0
and for every i =1,...,m

(4i4+1)7/2(4k+2)
/ —F"(0) cos ((4k + 2)0) db > 0,
(

4i—3)m/2(4k+2)

which ensures that By > Bygt4.
Let now k = 2m + 1 be an odd number. As before,

8 37 /2(4k+2)
By, — Bagya = B / —F"(0) cos ((4k + 2)0) db
0

- w(4k + 2

7 /2(4k+2)
+ / —F"(0) cos ((4k + 2)0) df
3m/2(4k+2)

(4m+3)m/2(4k+2)
+ / _F"(0) cos ((4k + 2)6) d6 | .
(4m—1)7/2(4k+2)

11



By similar reasons as before we get that
3 /2(4k+2)
/ —F"(0) cos ((4k +2)0) d <0
0
and for every i =1,...,m
(4i43)7/2(4k+2)
/ —F"(0) cos ((4k +2)0) db <0
(4i—1)m/2(4k+2)
and so the conclusion of the lemma holds.
a

The previous lemmas allow us to get some information about the Fourier coefficients

of
1

(|sin @] + | cos 6])2—7

F(0) = pa’ (0) =
and we obtain the following result.

Proposition 3.3 Let j € (0,z¢] (v9 = —5 + V/73/3 ~ 1.18). Then the Fourier coeffi-
cients By of f(-) = pQBE](') are such that By > By > -+ > By > --- > 0.
1

Furthermore since for j = 1 we can compute the Fourier coefficients of PB2; by
using Maple we get that By = 0.793515..., By = 0.055311..., Bg = 0.017445... and
[pB2||oc = 1. Therefore, we can apply the theorem 1.4 and we conclude that

Wi (B?) = max{W,(SB?); S e SL(2)}.

Remark 3.4 This technique could be also applied to other “symmetric enough” convex
bodies K, simply by considering the estimates given in corollary 2.5 properly improved,
as we noticed in remark 2.6, provided that we could get some control on the behaviour of
the Fourier coefficients of f(-) = p?{ﬂ (-). This might be useful, for example, for other ¢2
balls. If we would like to obtain results in R (n > 2), we should use spherical harmonics
instead of Fourier coefficients.
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