

Stability of Vector Valued Banach Sequence Spaces^(*)

by

Jesús BASTERO and Jose M. MIRA

Presented by A. PEŁCZYŃSKI on June 14, 1984

Summary. In this paper we prove that the space of vector valued sequences $\Lambda(E_i)$, with Λ stable, symmetric, p -convex, sequence lattice and E_i stable p -Banach space is stable, in the sense of Krivine and Maurey.

The stable Banach spaces were introduced by Krivine and Maurey [4] in order to extend a theorem of Aldous concerning the subspaces of L^1 to a more general class of Banach spaces. The stable p -Banach spaces, $0 < p < 1$, were considered in [1] for the first time, and, the same result as Aldous-Krivine-Maurey was obtained there for this class of spaces.

In this paper we prove that the space of vector valued sequences $\Lambda(E_i)$, with Λ stable, symmetric, p -convex, sequence lattice and E_i , stable p -Banach spaces, is stable.

Our notation is standard and all vector spaces are real. A p -convex norm, $0 < p \leq 1$, on a vector space E is a map $x \mapsto \|x\| \in \mathbb{R}_+$, so that,

$$\|ax\| = |a| \|x\|, \quad a \in \mathbb{R}, \quad x \in E$$

$$\|x+y\|^p \leq \|x\|^p + \|y\|^p \quad x, y \in E$$

$$\|x\| > 0, \quad x \neq 0$$

A p -convex norm induces a locally bounded topology on E . We shall say E is a p -Banach if E is complete for this topology.

In the sequel \mathcal{U} and \mathcal{V} will denote non trivial ultrafilters on \mathbb{N} . A separable p -Banach space E is stable iff

(*) To Professor L. Vigil on his 70th birthday.

two bounded sequences of $\Lambda(E_i)$, so that, f_n' 's and g_m' 's are finitely non zero and $\lim_{n \rightarrow \infty} \|f_n\|_\infty = \lim_{m \rightarrow \infty} \|g_m\|_\infty = 0$ ($\|f\|_\infty = \sup_i \|f(i)\|$). If $\sigma = \lim_{n \in \mathbb{N}} \bar{f}_n$, $\tau = \lim_{m \in \mathbb{N}} \bar{g}_m$, then

$$\sigma * \tau (h) = \lim_{n \in \mathbb{N}} \lim_{m \in \mathbb{N}} \|h + f_n + g_m\|_{\Lambda(E_i)}$$

uniformly on $h \in \mathcal{H}$.

Proof. Suppose that Λ and E_i are Banach spaces. If $f_n(i) = 0$ for all $i > N_n$ and $h(i) = 0$ for $i \notin I$,

$$\begin{aligned} \left| \|h + f_n + g_m\|_{\Lambda(E_i)} - \|\bar{h} + \bar{f}_n + \bar{g}_m\|_\Lambda \right| &< \left\| \sum_1^\infty (\|h(i) + f_n(i) + g_m(i)\| - \right. \\ &\quad \left. - \|h(i)\| - \|f_n(i)\| - \|g_m(i)\|) e_i \right\| \leq \left\| \sum_I (\|f_n(i) + g_m(i)\| + \right. \\ &\quad \left. + \|f_n(i)\| + \|g_m(i)\|) e_i \right\| + \left\| \sum_1^{N_n} 2 \|g_m(i)\| e_i \right\| \leq \\ &\leq 2v (\|f_n\|_\infty + \|g_m\|_\infty) + 2N_n \|g_m\|_\infty. \end{aligned}$$

Then, $\lim_{n \rightarrow \infty} \lim_{m \rightarrow \infty} \left| \|h + f_n + g_m\|_{\Lambda(E_i)} - \|\bar{h} + \bar{f}_n + \bar{g}_m\|_\Lambda \right| = 0$ uniformly on \mathcal{H} . Hence, the desired result follows from Lemma 2.

Next we must use a sort of “splitting lemma” in p -Banach spaces. We need to break each element of a bounded sequence in two disjoint parts forming two new sequences; the first one will be an equisummable sequence and the other one will have its coordinates converging to zero uniformly.

4 LEMMA. Let $(x_n)_n$ be a bounded sequence in Λ , then, there exists a subsequence $(x_{n_k})_k$ of $(x_n)_n$ so that $x_{n_k} = x'_{n_k} + x''_{n_k}$, $k \in \mathbb{N}$ and

- i) the supports of x'_{n_k} and x''_{n_k} are disjoint,
- ii) $(x'_{n_k})_k$ is an equisummable family,
- iii) $\|x''_{n_k}\|_\infty \xrightarrow{k \rightarrow \infty} 0$.

Proof. In order to prove the lemma we may assume $\|x_n\| \leq 1$, $\forall n \in \mathbb{N}$. For each $\varepsilon > 0$ and $j \in \mathbb{N}$ there exists an integer M , depending upon j and ε , such that if $\|x\| \leq 1$ and the module of their coordinates is non increasing (i.e. $|x(1)| \geq |x(2)| \geq \dots$), $\left| \{i; \varepsilon^{j+1} \leq |x(i)| < \varepsilon^j\} \right| \leq M$. Indeed, this statement holds because of c_0 is not contained in Λ and Λ is a sequence lattice. We apply this assert to the sequence $(x_n^*)_n$, where x_n^* is the non increasing rearrangement in module of the coordinates of x_n . It follows that we can choose a subsequence $(x_{n_k}^*)$ of $(x_n^*)_n$ satisfying that, for each integer $j > 0$,

$$\left| \{i; 2^{-j-1} \leq |x_{n_k}^*(i)| < 2^{-j}\} \right| = c_j$$

for all $k \in \mathbb{N}$. Now we split $x_{n_k}^*$ in two disjoint parts $x_{n_k}^{*\prime}$ composed by

the coordinates bigger than 2^{-k} and $x_{n_k}^{*\prime\prime}$ by the rest. Obviously, $\|x_{n_k}^{*\prime\prime}\|_\infty \xrightarrow{k \rightarrow \infty} 0$ and, since the basis $(e_i)_i$ is boundedly complete (see [5] Theorem 1.c.10), for each $\varepsilon > 0$, there exists a $v \in \mathbb{N}$ such that

$$\left\| x_{n_k}^{*\prime\prime} - \sum_1^v x_{n_k}^{*\prime\prime}(i) e_i \right\| < \varepsilon$$

for all $k \in \mathbb{N}$. Hence, it follows immediately the conclusions of the lemma. $\#$

REMARKS.

1. — If the sequence $(x_n)_n$ is composed by non increasing positive vectors, i.e., $x_n(i) \geq x_n(i+1) \geq 0$ for all $n, i \in \mathbb{N}$, it is possible to improve the conclusions of the lemma, so that, the corresponding subsequence $(x'_{n_k})_k$ is norm convergent. The arguments are essentially the same, but we must force the convergence by coordinates with a convenient speediness. (see [6]).

2. — Yves Raynaud pointed to us that by substituting the symmetry of Λ for the condition “ Λ does not contain 1_n^∞ — uniformly”, the conclusion of Lemma 4 holds. Since there exist Banach spaces Λ with 1-symmetric basis such that Λ does not contain c_0 , but Λ contains 1_n^∞ — uniformly, the conclusion of the Lemma is not equivalent to “ Λ does not contain 1_n^∞ — uniformly”, even Λ is symmetric.

We return to the proof of Theorem 1. Let $(f_n)_n$ and $(g_m)_m$ be two bounded sequences of $\Lambda(E_i)$ and let \mathcal{U}, \mathcal{V} be non trivial ultrafilters on \mathbb{N} . We must prove that

$$\lim_{n \in \mathcal{U}} \lim_{m \in \mathcal{V}} \|f_n + g_m\|_{\Lambda(E_i)} = \lim_{m \in \mathcal{V}} \lim_{n \in \mathcal{U}} \|f_n + g_m\|_{\Lambda(E_i)}$$

We recall that it suffices to prove the above equality when f_n and g_m have finite support. In view of Lemma 4 we can get corresponding subsequences $(f_{n_k})_k$ and $(g_{m_j})_j$ of $(f_n)_n$ and $(g_m)_m$, respectively, such that

- i) $f_{n_k} = f'_{n_k} + f''_{n_k}$ with $\text{supp } f'_{n_k} \cap \text{supp } f''_{n_k} = \emptyset$, $k \in \mathbb{N}$,
- ii) $\|f''_{n_k}\|_\infty \rightarrow 0$, if $k \rightarrow \infty$,
- iii) $\{f'_{n_k}; k \in \mathbb{N}\}$ is a bounded equisummable family and analogous conditions for $(g_{m_j})_j$.

Hence, by passing to subsequences, we have

$$\lim_{n \in \mathcal{U}} \lim_{m \in \mathcal{V}} \|f_n + g_m\|_{\Lambda(E_i)} = \lim_{k \in \mathcal{U}} \lim_{j \in \mathcal{V}} \|(f'_{n_k} + g'_{m_j}) + (f''_{n_k} + g''_{m_j})\|_{\Lambda(E_i)}$$

and

$$\lim_{m \in \mathcal{V}} \lim_{n \in \mathcal{U}} \|f_n + g_m\|_{\Lambda(E_i)} = \lim_{j \in \mathcal{V}} \lim_{k \in \mathcal{U}} \|(f'_{n_k} + g'_{m_j}) + (f''_{n_k} + g''_{m_j})\|_{\Lambda(E_i)}$$

Since $\mathcal{U}_1 = \{f'_{n_k}; k \in \mathbb{N}\}$ and $\mathcal{U}_2 = \{g'_{m_j}; j \in \mathbb{N}\}$ are equisummable families, we can suppose that there is a $v \in \mathbb{N}$ such that

$$|\{i; f'_{n_k}(i) \neq 0\}| \leq v \text{ and } |\{i; g'_{m_j}(i) \neq 0\}| \leq v$$

for all $k, j \in N$.

Let $\sigma = \lim_{k \in \mathbb{N}} \overline{f'_{n_k}}$ and $\tau = \lim_{j \in \mathbb{N}} \overline{g'_{m_j}}$ be the corresponding types on Λ , since $\mathcal{H} = \{f'_{n_k} + g'_{m_j}; k, j \in N\}$ is a bounded equisummarable family in $\Lambda(E_i)$, we get

$$\lim_{n \in \mathbb{N}} \lim_{m \in \mathbb{N}} \|f_n + g_m\|_{\Lambda(E_i)} = \lim_{k \in \mathbb{N}} \lim_{j \in \mathbb{N}} \sigma * \tau (\overline{f'_{n_k} + g'_{m_j}})$$

and

$$\lim_{m \in \mathbb{N}} \lim_{n \in \mathbb{N}} \|f_n + g_m\|_{\Lambda(E_i)} = \lim_{j \in \mathbb{N}} \lim_{k \in \mathbb{N}} \tau * \sigma (\overline{f'_{n_k} + g'_{m_j}}).$$

In order to continue the proof we need the following lemma

5. LEMMA. Let $(f_n)_n$ be a sequence in $\Lambda(E_i)$ such that $|\{i; f_n(i) \neq 0\}| \leq v$ for all $n \in N$, then, there exist a $\lambda \in N$ and a subsequence $(f'_n)_n$ of $(f_n)_n$ such that

- i) $f'_n = f'_n^{(1)} + f'_n^{(2)}$ $n \in N$.
- ii) $f'_n^{(1)}$ belongs to $\text{span} [e_1, \dots, e_\lambda]$, for all $n \in N$.
- iii) The sequence $(f'_n^{(2)})_n$ is a block sequence of $(e_n)_{\lambda+1}^\infty$.

Proof. Let us first considerer that $\{n; f_n(i) \neq 0\}$ is finite for all $i \in N$. Choose $\lambda = 0$, $f'_1 = f_1$ and put $f'_1^{(2)} = f'_1$. Pick next f'_2 , so that, $\max \{i; f'_1(i) \neq 0\} < \min \{i; f'_2(i) \neq 0\}$ and put $f'_2^{(2)} = f_2$. We continue the inductive construction of (f'_n) in an obvious way.

Now asumme that there is a first index i such that $f_n(i) \neq 0$ for an infinity of n 's. Pick the corresponding subsequence, namely again $(f_n)_n$, such that $f_n(i) \neq 0$, $\forall n$. We have two possibilities for this subsequence: either $\{n; f_n(j) \neq 0\}$ is finite for all $j > i$ or not. In the first case, we may return to the preceeding solved situation, by putting $\lambda = i$, $f_n^{(1)} = f_n \chi_{\{i\}}$ and $f_n^{(2)} = f_n - f_n^{(1)}$. Otherwise, we select the corresponding subsequence and so on, (the existence of λ is insured because $|\{i; f_n(i) \neq 0\}| < v$, $\forall n \in N$).

We turn again to the proof of the theorem. By applying the preceding lemma to the sequences (f'_{n_k}) and (g'_{m_j}) we get further subsequences, denoted by $(f'_{n_k})_k$ and $(g'_{m_j})_j$, and $\lambda \in N$ such that

$$\overline{f'_{n_k} + g'_{m_j}} = \overline{f'_{n_k}^{(1)} + g'_{m_j}^{(1)} + f'_{n_k}^{(2)} + g'_{m_j}^{(2)}}$$

$$\overline{f'_{n_k}^{(1)} + g'_{m_j}^{(1)}} \in \text{span} [e_1, \dots, e_\lambda] \text{ for all } k, j \in N$$

$(f'_{n_k}^{(2)})$, $(f'_{n_k}^{(2)})_k$ and $(g'_{m_j}^{(2)})_j$ are two block sequences of $(e_n)_{\lambda+1}^\infty$.

Then, there exist $\lim_{k \in \mathbb{N}} \lim_{j \in \mathbb{N}} \overline{f'_{n_k}^{(1)} + g'_{m_j}^{(1)}}$ and $\lim_{j \in \mathbb{N}} \lim_{k \in \mathbb{N}} \overline{f'_{n_k}^{(1)} + g'_{m_j}^{(1)}}$. Since the E_i

$$\lim_{k \in \mathbb{N}} \lim_{j \in \mathbb{N}} \overline{f'_{n_k}^{(1)} + g'_{m_j}^{(1)}} = \lim_{j \in \mathbb{N}} \lim_{k \in \mathbb{N}} \overline{f'_{n_k}^{(1)} + g'_{m_j}^{(1)}}$$

Moreover, if k and j are quite far apart

$$\overline{f'_{n_k}^{(2)} + g'_{m_j}^{(2)}} = \overline{f'_{n_j}^{(2)}} + \overline{g'_{m_j}^{(2)}}$$

and then, by applying the stability of Λ , the type

$$\lim_{k \in \mathbb{N}} \lim_{j \in \mathbb{N}} \overline{f'_{n_k}^{(2)} + g'_{m_j}^{(2)}} = (\lim_{k \in \mathbb{N}} \overline{f'_{n_k}^{(2)}}) * (\lim_{j \in \mathbb{N}} \overline{g'_{m_j}^{(2)}}) = \lim_{j \in \mathbb{N}} \lim_{k \in \mathbb{N}} \overline{f'_{n_k}^{(2)} + g'_{m_j}^{(2)}}$$

Hence

$$\begin{aligned} \lim_{n \in \mathbb{N}} \lim_{m \in \mathbb{N}} \|f_n + g_m\|_{\Lambda(E_i)} &= \sigma * \tau * (\lim_{k \in \mathbb{N}} \lim_{j \in \mathbb{N}} \overline{f'_{n_k}^{(1)} + g'_{m_j}^{(1)}}) * \\ &* (\lim_{k \in \mathbb{N}} \overline{f'_{n_k}^{(2)}}) * (\lim_{j \in \mathbb{N}} \overline{g'_{m_j}^{(2)}}) = \lim_{m \in \mathbb{N}} \lim_{n \in \mathbb{N}} \|f_n + g_m\|_{\Lambda(E_i)} \end{aligned} \quad \#$$

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SARAGOSSA, (SPAIN)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MURCIA, (SPAIN)

REFERENCES

- [1] J. Bastero, ℓ^p -subspaces of stable p -Banach spaces, Archiv. der Math., **40** (1983) 538-544.
- [2] J. Bastero, J. M. Mira, Stabilité des espaces de Banach de suites vectorielles, C.R. Acad. Sc. Paris, **299** (1984), 339-341.
- [3] D. Garling, Stable Banach spaces, random measures and Orlicz function spaces, In Lecture Notes 928, Springer (1982), 121-175.
- [4] J. Krivine, B. Maurey, Espaces de Banach stables, Israel J. Math. I, **39** (1981), 273-295.
- [5] L. Lindenstrauss, J. Tzafriri, Classical Banach Spaces I, Springer, 1977.
- [6] H. P. Raynaud, Stabilité des espaces d'opérateurs C_E , Exposé au Séminaire d'Analyse Fonctionnelle, Paris VII, 1982-83.

Х. Бастеро, Х. М. Мира, Устойчивость векторных значимых последовательностей

В настоящей статье доказывается, что пространство векторных значимых последовательностей $\mathcal{O}(E_i)$, с устойчивыми симметричными p -выпуклыми решетками последовательности и E_i устойчивыми p -банаховыми пространствами, устойчиво в смысле Кривина и Морея.