PUBLICACIONES DEL DEPARTAMENTO
ANALISIS MATEMATICO

COLLOQUIUM DEL DEPARTAMENTO DE
ANALISIS MATEMATICQ.
CURSO 1993-84

SECCION 1 © Numero 32

FACULTAD DE MATEMATICAS
UNIVERSIDAD COMPLUTENSE

DE



INDICE

Presentacion ... e e e e e e e i
Conferencias impartidas en el Celleoquium 93/94 ................... ii
CONTRIBUCIONES
Bastero, Jesus: "Embedding Em—cubes in the orbit of an element
in commutative and non commutative 2:—spaces“ .................. 1
Benitez, Carlos: "Relacién entre la norma de un funcional
multilineal simétrico y la de su polinomio asociado".........., 9
Dominguez Benavides, Tomas: "Teoria del punto fijo para
aplicaciones uniformemente Lipschitcianas"................. ... 15
Emmanuele, C. : "Complementability of Ll(u,x) in spaces of
vector measures and applications"............... ... oo i 28

Kénig, Hermann: "Isometric imbeddings of euclidean spaces into

finite-dimensional £ —SpaCES. ...ttt i e 42
Lang, J: "Traceg of weiéLted Sobolev space in a singular case"....51
Martinez Ansemil, J.M. :"Sobre la casinormabilidad de un

espacio de funciones holomorfas"......... .. i, 60
Martin, M.A.: "Selfsimilar fractals and Holder maps".............. 68
Martinez, Antén: "Propiedades de los operadores positivos

entre reticulos de Banach".......... .. . . . iiiiiiiiiii 78
Moreno Diaz, J.P. : "Diferenciacién, convexidad y operadores

que alcanzan SU NOTMA" . ... v reneerorer e inoiaronasser, 84
Nikolova, L.: "Real interpolation for famlilies of Banach

spaces and some geometrical properties"....................... 94
Pergson, L.E.: "Some new generalizations aﬁa complements of

classical inequalities". ... . it e e 102
Pfieto, A.: "Alrededor del lema de Schwarz"............... . ... ... 117
Rodriguez-Salinas, B.: "Subespacios de un espacio de Orlicz"..... 127
Tien, N.D.: "Algunos Problemas de Topologfa relacionados con

Medidas de Probabilidad en Espacios de Banach"............... 135




DEPARTAMENTO DE ANALISIS MATEMATICO
U.C.M.
'SEMINARIOS

EMBEDDING /,.-CUBES IN THE ORBIT OF AN ELEMENT
IN COMMUTATIVE AND NON COMMUTATIVE £;-SPACES

by

Jestis Bastero, Ana Pefia and Gideon Schechtman




Embedding £.-cubes in the orbit of an element in commutative
and non conmutative £3-spaces

by

Jests Bastero*, Ana Pefia** and Gideon Schechtman

A £_.-cube is a finite discrete metric space, 1.e., & metric space (M, d) with cardinal-
ity N and such that d(z,y) = 1if ¢ # y, and =0, otherwise. We say that the {-cube
(M, d) (14 ¢)-embeds into the normed space (B, ]|.|]) if there are N points {z1,...,ZN}
in E such that

l—e<|zi—zj| £1+¢

for all § # j.

There are several well known results about the (1 4 £)-embedings of £oo-cubes in
finite dimensional normed spaces. We report here some of them.

In [B-B-K] the following result is proven:

“There exists a numerical constant C > 0 such that the £q-cube of cardinality
N is (14 ¢) embedded in any finite dimensional 1-subsymetric space E, provided that

dim E > —C; log N ” (the result is the best possible, asymptotically in dim E).
£ .

Some extensions of this result appear in [B-B], where sharp estimates are given for
the case of the 1-unconditional space £;(£7') 1 < p,¢ < oo.

In [B-P-S] the authors extended this result for the operator ideals C%, where E is
a 1-symmetric n-dimensional space. Actually they proved that

“Given 0 < & < 1, there exits a constant C(e) > 0 such that for all N satisfying
log N < C(e)n? we can find N points T4, ..., T in C}, satisfying 1 —¢ < |7 — Tj”Cg <
1, for all ¢ # 7.

Tn the papers concerning the commutative case ([B-B] and [B-B-K]) the authors find
the points by using random embeddings defined by mean of vector valued Rademacher '
functions. In the non conmutative case ([B-P-S]) the points are obtained among the
orthogonal projections associted to subspaces randomly choosen in the corresponding

Grassmanian manifold.

Our goal is this paper is to obtain the results coresponding to the cases £7 and
C by considering a group of isometries acting on £7, respectively Cy. We achieve the
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known results included in [B-B-K] and [B-P-S] with some additional information. In
fact, with the use of isometries we can (1 +¢)-embed a £qoo-cube with cardinality N into
the orbit of any element = (N depending on z), i.e. into the set of T'z’s, when T' runs

over all the isometries considered.

As usual £" will denote the space JR™ with the norm ||z||, = (327 |:c,-|”)1/p, ¢ € R",
ei, 1 <1 < n, will be the canonical basis in IR".

The class Cp (1 < p < o0) is the space of all linear operatbrs from R" into R",
endowed with the norm ||A||G!,; = (3 |3,7(A)]”)1/p, where {5;(A)}}, are defined as
the singular values of A, that is, the eigenvalues of VA*A. 1t’s well known that ””C'é‘o
coincides with the operator norm, denoted by |l.[fcc; ||-|cp with the Hilbert-Schmizt
norm and [|.||gn with the trace class norm. (see [G-K] for further information about

Schatten classes).

The main ingredient in our proof is deviation inequalities associated with normal

Levy families.

A family (Xa,dn, Pr),cpv of probability metric spaces is called a normal Levy
family with constants ¢, ¢q, if given any continuous function f : X, — IR with modulus

of continuity w(.) and median My we have
P(|f — My| > wg(e)) < crexp(—cae’n)
for all € > 0.

- The normal Levy families we use in this paper are:

a) (I1,, x {~1,1}",dn, Py)n, where [], is the group of all permutations of the set
{1,2..n}, IP, is the uniform probability on the product space and

1 1, .. :
du((m,€), (n',€")) = 2—"“5 —e'lls + =His (@) # 7'}
n n
m, 7' € I1,, and e,¢' € {~1,1}", (|.| denotes the cardinality of the corresponding set).

b} Let O, be the ortogonal group. Consider the normal subgroup SO, = {T' €
On;det (T) = 1} provided with its normalized Haar measure [P, and with the natural

metzic du(T, 5) = (TSI la* - bf||§)1/2, T = [al,...,a"] and § = [B, ..., b"] are two
elements in SO,. The distance d,, is left-invariant but not right-invariant under the
action of SO, on itself. The family (SOp,dn, Py ) is a normal Levy family (see [G-M],
[M-S}). It is perhaps worth pointing out at this point that the corresponding family

(Ors ll-lcp» PPr)n is not a normal Levy family.

Each element (w,e) € Hn x {—=1,1}" defines an isometry T' = Ty. on E;,'“ by
Tz =} i1 Tr(iyErer, T € £ |




In the same manner we will copsider $Oy, as a group of isometries which acts on

C;WU@Q=UAEAGC;mdUeSQV

We begin with some preparatory lemmas (IE will denote the expectation in a prob-

ability space).

Lemma 1. Let A be a fixed element in O, n 2 1, 1< p < oo. For this element let
14 be the function on S0, defined by pA(U) = UA - Al|gn then
F
) Bpa> Al
ii) The modulus of continuity of ¢4 verifies:
91 /21 /p=1/2|| A 6, H1SpS2y
< oot P =4
wealf) = {21”””HAH0052/’“, if2<p< oo
Proof: i) If n is an even natural number —U € SOy for any U € 50,. Hence

Erpa= = U U A — Al gudIPr + f |UA +.A|lcnd1p,,,]
2 l/so, » S0n ’

1
> 5 f 2| Ay 4P = 1 All -
50,

If n is odd, for every i = 1,...,n We consider the following n X n matrix
P; = [_613 —€32y 05 Eiy e —en] € SOn,
then

1 n
Eps=5— {Z [ 1PUA= AlggdPat (=2 [, WA=l }

i=1

1 n
> . _UA—-(2n—2)4
_anzﬁmnEZRUA+m QUA -~ (2n—2)

= ||Allc;

diPn

Cp

ii) Let U,V any two elements in SOn-
£1<p<2then
1 a(U) — (V) < NUA=VAlgp < nt/? (U = V) Allgp
< I AU~ Vg
If2 < p < o0, then, _
[ a(U) =¥ a(V)| < NUA=VAligy < AN U = Vlley
< 2P| Al U - VI

since si(U - V) £2, i =1,2,..,n. The rest of the proof is an easy consequence of the

following;:




Lemma 2. If I is de identity (n X n)-matrix then || — P”c; < V2dn(I,P) for any P
n S0,.

Proof: Let P € SO, with entries (P;;) 1 <¢,j < n. It is quite clear that
T
2 — — L
”I_ ‘]‘D”C;1 - 22(1 Pn)
and

do(I,PY =2 112_:1(1 — Py).

Let Q = [€1, .. €n—1, —€n]. Since PQ is an ortogonal matrix and det(P@) = —1, then
tr(PQ) < n —2 and so tr(P) — 2Py, < n — 2. Hence the result holds.

/1]

Note 1. If we applied the preceding lemma for 1 4, then, for any ¢ > 0

¢
Po{U € SOp; [ a(U) — My, | >t} < erexp{~c; A n
if 1 <p<2, and
tP
P AU € SOu;1a(U) — My,| >t} < clexP{mQWn}
o0

for 2 < p < oo (the constants c;,c, may represent different values in the different

occurences).

Next, we are going to study a similar lemma for the case of £7, 1 < p < oc. Let
G =TI, x {~1,1}", with the probability P, and the distance d, given before.

Lemma 3. Let x = (z1,..,2,) be a fixed element in £}. Let v, a function defined on
G by $(T) = [Tz — 2|, for any T € G. Then

i) By 2 |||,

ii} The modulus of continuity verifies:

wy, (8) < 2n' /P[] 6177

Proof: i) By definition

T
B = 5553 1 I enoes = 2edly
& /'JT 1=




For every € = (€1,...,6n) € {—1,1}", we consider ¢/ = —¢ and by associating these two
elements we obtain that

1 1
ontl pl Z 2 | Trex — me + || Tre + LEHP

> e Y03 2lell, = ol

B, =

i) Let S = Sy, and T = T,, € G such that d(S,T) < &. Denote by I,J the
following sets: I = {k;n(k) # o(k)} and J = {k;ex # tx}. Hence,

sho(T) — 2(S)| < T — Sz||, = Z(wn(i)ai — To(s)hi)ei

TuJg

p
< 9lfall T U TP < 2nV/?|[2]| odn(T, S)7

where we denote by |[IUJ] the cardinal of the set IUJ, and the result follows inmediately.

/11

Note 2. With the same notation as before

L
Po{T € G;1o(T) — My.|| > £} < ﬁexp{—czm}-

It is well known that similar expressions as those appearing in the notes 1 and 2
with the expectation instead of the median of corresponding functions can be obtained.
We are now ready to state and prove the theorem.

Theorem 4. There exits a constant C > 0 such that, for any ¢ > 0, AeCp and
z € £y, we can find a subset of N points {Uy,....Un} in SO, and a subset of M points
{T1, ..., Tx} in G verifying

i) 1—e < |U:A - UJ-A||C3 <1 +¢, for all i # j, provided that

- _ C
n2=/7]|All% | A2 > logN,

if1<p<2and
ap
nl Al 141152 > O S logN,

f2<p<oo




ii}) 1—¢ £ ||Tie — Tyzlln < 1+4¢ for all i # j, provided that
F
~2 2p, —1 27
||, 7 ||| En >C’EzplogM.

Proof: Let’s give the proof only for the CJ-case (the other is similar). We define the
function F4 : SO, x SO, — R by FA(U V) = |UA - VAHO,, Let N be a natural

number and consider now the set
A={{Uy,...,Un) € 80, x ... x 50y;
|Fa(U;,U;) — EF4| < e¢lBF4, 1 <4, < N,i# g}

The problem is to find out the biggest number N such that A # §. For that, we compute
the probability of A® (the complementary set ). Since

a3 e X Pu(8) < P x P {Ui,jE{l,...,N},i#jAg’j}

where A;; = {(U;,U;) € SOn % SO4;|Fa(U;,Uj) = EFa| < elEF4}} we therefore
obtain N ‘
Ppx..xP,(A%) < (Q)Pn X Pn(AF ;)

L= (];r)lpn X P,{(U, V)€ 50, x 50y;

|Fa(U, V) — EFy| >elEF4}

It is very easy to check that the function F4 and the function ¥4 defined in lemma 1
have the same distribution of probability. Thus we obtain

AL,
PN IOy R 7/ Jutitacs 3
x Pr(A%) < (N) el e f1sp=2;

1A% 5
crexp{—e2~ Psan} if 2 < p < ool

P, x

/11

Remark. It is clear that the optimal (1 + ¢)-embedding of a £°°-cube in C} or £ is
achieved for A= I or z = (1,...,1) respectively, so we obtain the results appearing in
[B-B-K] and [B-P-§].
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