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By

J. BASTERO*)

Abstract. Each infinite dimensional subspace of IP0<p=1) is shown to con-
tain a copy of some la p=<q<oo using arguments similar to the ones that ap-
pear in Krivine and Maurey’s paper concerning stable Banach spaces. Generally
speaking, if X is a stable infinite dimensional p-Banach space, with 0 <p =1,
then, there exists & ¢ (p=¢< o0), such that, X contains (1 -+ s)-isomorphic
copies of 1¢, for all £ > 0. Moreover, it i3 possible to prove that if a stable p-Banach
space, 0o<p=l, contains an isomorphic copy of la, p =g <o then, it also
contains (1 + ¢)-isomorphic copies of 1g, for all ¢ > 0.

The stable Banach spaces were introduced by Krivine and Maurey in [5] to ex-
tend the theorem of Aldous concerning the existence of [4-copies, 1 < g < oo, in
each infinite dimensional subspace of L}, to a more general situation. Guerre and
Lapresté in [1] proved that each stable Banach spaces is weakly sequentially com-
plete and that each spreading model of a stable Banach space 1s stable, too. Raynaud
(191, (10D obtained new examples of stable Banach spaces and studied the super-
stable Banach spaces. Haydon ([4)), proved that for a stable Banach space X, the
following are equivalents: X has the Darboux property, X has the Schur property
(every weakly convergent sequence is norm convergent), every spreading model of X
is isomorphic to It. More recently Guerre and Levy, using methods of stable Banach
spaces, proved that every subspace E of L! contains [P, where p(B) = sup {p>0;
E is of p-Rademacher type}, ([31)-

The purpose of this paper is to obtain a similar theorem as Krivine and Maurey’s
one in the general context of p-Banach spaces, 0 < p = 1. Moreover, using some
ideas of Guerre and Lapresté, a partial solution to a classical problem of Banach
spaces is found in the context of stable p-Banach spaces; exactly, if X 1s a p-Banach
space containing a basic sequence {an}T equivalent to the l4-basis (p =9 < o),
then for each & >0, there exists a normalized block basis of {an)7 (1 + £)-iso-
morphic to 9.

All vector spaces in this paper will be real. A p-convex seminorm on & real vector
space X is a map & — | x| of X into R.. which verifies:

i) laz| = |al Izl acR, zeX.
iy o+ yl? = l2l? -+ vl v, yeX.

-
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Whenever it is [z| > 0 for all & & 0, we shall say ||.[| is a p-convex norm. A p-
convex seminorm induces a locally bounded topology on X, separate if |.| is a
p-convex norm. We shall say that (X, |[.]) is a p-Banach space if |.|| is a p-convex
norm and X is complete.

We shall say a separable p-Banach space X is stable (in Krivine and Maurey’s
sense) if

lim lim {am + bs | = lim lim | @ + by

) A
whenever {an}{°, {bn};° are bounded sequences in X and % and ¥ non-trivial
ultrafilters on N.

All the finite-dimensional p-Banach spaces are stable; likewise, L? = L?[0, 1],
0<p<=1 is also stable, because the function exp(— jx — y|3), =, ycL? is of
positive type (see [8]) and it permits to include L? in a Hilbert space, U: L? — H,
such that (Ug, Uy) = exp(— @ — y|?), o, y € LP. This ensures the stability of L?,
as it is proved in [6].

A function ¢ of X, stable p-Banach space, into B+ is a fype on X if there exist
a bounded sequence {a,};° in X and a non-trivial ultrafilter % on N such that,
for all xe X, o(x) = lim |2 + a,}. Given ¢ =lima,. v = lim by, two types on

n % ¥
#
X and A€ R, the product of convolution o * v is a type defined by
ox1(x) =limlim |x +ap + bp. 2veX
n m
v

and the product Zo is Ao(x) =lim o + Aagl, ve X,
n
e

These operations verify the same properties in this situation as on stable Banach
P
spaces.
Let {a,}7° be a bounded sequence in X ; it is possible to define a p-convex semi-
381 1

norm |.| on X @ R®M by

n
x—f—zliei =A10% % Ao (@)
=1
i
whenever x € X, Z1,..., 4, € R, the ¢;’s are the vector (0,...,0,1,0...) in BE™
and o is the type defined by {a,}7>. We shall say (X @ R®™, ||.]) is the spreading
model of X associated to o when | .| is a p-convex norm, what happens, for example,
if {ax}7° has no Cauchy subsequences. The sequence {e,}° is symmetric, i.e.
n 7l1
Zliei = . Zﬂ.{em‘ N
i=t i=1
for each permutation (m;, ....m,) of integers and for each finite real sequence

;»1 3 aeny ln .
A type ¢ on X is non-trivial if ¢(0) &= 0 and symmetric if o(x) = o(—.x) for
all x € X. It is clear for symmetric types that

ok xlno=|A]o%x|Apy|o for A, ....Jn€R;
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thus, each non trivial, symmetric type on X origines a spreading model of X. In

fact, if 0= 90-{—21@'61' we have.
p\1/p
o

i=1

p

+

2) > hies §(‘ x4+ > hie
i=1 1

n
X — Z Aie;
1

hence,
n—1

20 H).nen'\il’=’ D hiei — > hiei 4 Anen
1 1

1 Z ;ui €
1

and, as |es| = 0(0) = 0, necessarily 4n = 0.
So, for non trivial and symmetric types, the sequence {en}7" is a monotone, sym-
metric, invariant for signs and basic sequence with constant 21/7-1
M

n
(i.e. Z;tiei Z?.iei
1 1

A symmetric type o is a l4-type (0 < ¢ < o) if a0 * fo = (a4 + fOV0 for all
«, B =0 (xo*po=max{a, f}o when ¢ = oo). Moreover, if in this case ¢ is non
trivial, the basis {e,}3° is a l4-basis (or co-basis, if ¢ = o0) in the complection of

X @ RM™.

A conical class of types on X is a family C of types which satisfies:

»

n—1t

z )»i € — )\.n €n
1

p
=0

D

+

A

< 2up-1 if n<m and Ai,....,Am€ R) .

i) C contains non trivial types and it is closed for the product topology of RY.
ii) If ¢ and 2 =0, then loeC.
iii) If ¢, 7eC, then oxteC.

For stable p-Banach spaces it is possible to repeat the arguments of Krivine and
Maurey (see [6]), to obtain:

Proposition 1. Let X be a infinite dimensional stable p-Banach space 0 < p = 1.
Then, there exists a non trivial symmetric type o on X, such that:

() for each o = 0 there is a unique B = 21-VP satisfying o * a0 = Bo.

(The type o exists in each conical class of symmetric types on X.) U]

The previous statement (.) implies, as for stable Banach spaces, that ¢ is a l9-type
for some ¢, p = q = oo.

Proposition 2. Let X be a stable p-Banach space 0 < p =1 and ¢ a non trivial,
symmetric type on X verifying (), then: there exists a q, p = q = oo such that, o is

a la-type.

Proof. Let X @ RW be the spreading model of X associated to ¢ and without
any restriction we can suppose ¢(0) = 1. By homogeneity, for each 4, u =0 there
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iIs a unique real number F(4, u) = 0 such that, Ao*uo = F(4, M) o (exactly.
F(d, p) = Ao*xpua(0) = | ey + pesl). The function F(4, u) verifies for all

)"lu’vzo:F(luu):F(luiz)r F(zio):;"
F(}.,F(/A, V)) = F(F(;' ,u),v), F(;UV,,U,’V) = VF(AHH')

and F (1,1 — 4)? < AP 4 (1 — A)? (see [5]) and furthermore, F is continuous. Hence,
as it is easy to prove, either there exists a ¢ (p < g < oo) such that

F(2,p)= Q9+ uVe,  J,u=0
(what occurs if F(1,1) > 1) or F(1,1) =1 (the case F'(1,1) <1 is not possible,
E E
Se Se
1 1

plicative ). In the last situation, F(1, 1) = 1. necessarily. ¢ is a co-type. Indeed. if

n

Se

1

o
because if k < n < 2Vp-1 and the sequence ‘ ’ is multi-
n=1

0 <=1, and § = F(1,«), by induction, it is easy to see that
fro=oc%00% %o (neN)
S0

prr <3 |alPtfe|? <3 |a|pi<oo  (neN)
i=0 i=0

and f# < 1. But, as ¢ is symmetric, we have

2fer] = (ex +aea 4 - Faten1) + (61 — ez — - — aeyyn)
<2UPgr  neN.

thus f=1.

(This part of the proof was remarked to the author by B. Maurey.)

The statement of above propositions prove that on each stable p-Banach space,
there is a spreading model, associated to a non trivial symmetric type, such that,
the sequence {e,}7° of this spreading model origines a space isometric to 1 for some
¢, p = q = co. Now, repeating similar arguments, with minor variations, to the
ones which appear in [6], it can be obtained the following

Proposition 3. Let X be a stable p- Banach space, and let ¢ be a non trivial symmetric
type on X defined by a bounded sequence {a}{° of X; if o is a l4-type for some q,
P=g =00 for each ¢ > 0, there is a basic subsequence {bn}7 of {an}y, (1 + &)-
isomorphic to the basis {e,}7° of the spreading model of X originated by ¢. [

In the sequel we are going to obtain the main results, before mentionated in the
introduction.

Corollary 4. Let X be a infinite dimensional stable p- Banach space, 0 < p < 1,
then there exists a q (p = q << oo) such that, for each ¢ > 0, X contains a (1 + ¢)-
1somorphic copy of 14.
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Proof. It is a inmediate consequence of the above propositions and of the following
result of Y. Raynaud (see, [11], part V): “co has no translation invariant distance,
uniformly equivalent to the canonical norm and stable.” (This result was com-
municated to the author by S. Guerre and Y. Raynaud.)

Corollary 5. If X is a infinite-dimensional subspace of LP = L?[0,1],0 <p =1,
there exists a ¢ (p < q < 2) such that, for each & > 0. there is a subspace of X, (1 + ¢)-
isomorphic to 19.

Proof. Note that X is of cotype Rademacher 2 (see [12]) and, then, X cannot
contain any isomorphic subspace to I9 if 2 <g<<oo. []

Now, we shall find a partial solution (for stable p-Banach spaces) to a classical
problem that appears, for example, in {7], problem 2.e.2. In order to get it, we shall
begin with a technical lemma and after that we shall use some ideas of Guerre and
Lapresté in a inverse way.

Lemma 6. Let X be a stable p-Banach space (0 < p = 1), and let v and o be two
types on X with ©(0) = 1 and o = lim an. Suppose that for each n € N there exists

@

a finite real sequence A, ..., A such that 6, = AV % - * Mo converges to 1,
when n — oo, in the topology of the space of the types on X, then, given a compact
KCX,aveN and ¢ > 0, it is possible ¢ find integers n1, .... ng and real numbers
k

WL, oo Mk verifying: v << mp < - < N, =1 and

,uian«
i=1

(%) — {<e for all zeK.

k
T +Z i Ay,

‘=1

Proof. As 7(0)=1 and ¢, (0) —> 7 (0), we assume without loss of generality.

n—>co

that ¢,(0) = 1 for all n. Let ¢’ be one of the types on (We shall denote
o' =Mlo* %o

while there is not confusion). For each k-tuple N = (n1,.... n) of integers, let

fnl®) =

equicontinuous on K U {0} and thus, by Ascoli’s theorem, the sequence fy converges
uniformly on K U {0} through the ultrafilter % % -+ % % of N¥ associated to the

reiterated limit lim ... lim (see [12]). As fy also converges to ¢’. we can choose k

ni ne
« @
integers nq < +++ < g with v < my satisfying

k
x—{—Zliam be a function of X into Ri; when N e N¥, the fy’s are
1

o'(x) — < min {¢/3, 617}

k
X —|—Zliam
1

for all z € K U {0}, where 0 is a positive number such that for some 4 > 0,
|t —t'| <& and t.t'€[0, 4] imply |#/P — £'VP| < ¢f3.
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By the same reasons, ¢, — 7 uniformly on K U {0}. hence. we can select a
ng € N so that r—oe

| opo@) — ()| < &/3

for all x e K U {0}. Now, applying the above to ¢’ = o,, and defining

k
Z Ai Ay,
1

-1

pi = Ai

=+ O\) we have

i

k
(note that. as ¢’(0) = 1, tham
1

k P k p k p
x+21iam — x—%—z[uiam §.1— Zliam < é
1 i 1
and then
E
T(@) — ||+ > pia, Iélf(x)—a'(xﬂ
, 1
3
+ O”(CL‘)—— x_}‘z}*iam ‘
1
k i k
+ 242 A, — lle 4+ D paay, || < e
1 1

for all ze K.

Corollary 7. Let X be a stable p-Banach space and let {a,};° be a sequence in X,
equivalent to the l9-basis (p = q << o0), then, for each & > 0. there exists a normalized
block basis of {an}>, (1 + &)-equivalent to the 19-basis.

Proof. Let % be a non trivial ultrafilter on N; the type ¢ = lima, on X,
u

origines a spreading model of X, X @ [¢;]7° such that {e;}{° is a basic sequence
equivalent to the [¢-basis. Now, we considere the type ¢ * (— o), that is non trivial
and symmetric; its spreading model, X @ [§;]{°, verifies that the basic sequence
{&:}{° is also equivalent (with a different constant) to the [¢-basis. Repeating the
arguments of Lemma 1 of [1], it can be obtained a non trivial {¢-type on X, 7, with

T=1limo,, where o, =AM [o%(—o)]*-- %A (0% (— 0)]. Hence, using the
n—>o0

above lemma and the proof of Theorem III.1 of [6}, for the type 7 it is attained
a normalized block sequence of {a,}y° (1 - £)-equivalent to the 9-basis and the
result holds.
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