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Abstract

The isotropy constant of any d-dimensional polytope with n vertices is bounded by C
√

n/d where C > 0
is a numerical constant.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

The boundedness of the isotropy constant (see definition below) is a major conjecture in
Asymptotic Geometric Analysis. The answer is known to be positive for many families of convex
bodies, see for instance [15] or [12] and the references therein. In this paper we focus our atten-
tion on the isotropy constant of polytopes or, equivalently, of projections of the unit ball of �n

1
space (in the symmetric case) and of the regular n-dimensional simplex Sn (in the non-symmetric
case).

M. Junge [9] proved that the isotropy constant of all orthogonal projections of Bn
p , the unit ball

of the �n
p space, 1 < p � ∞, is bounded by Cp′ an estimate improved to C

√
p′ in [13] (p′ is the
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conjugate exponent of p and C a numerical constant). Later [10, Theorem 4] M. Junge showed
that the isotropy constant of any symmetric polytope with 2n vertices is bounded by C logn, see
also [14].

In a recent paper [12], B. Klartag and G. Kozma show the boundedness of the isotropy con-
stant of random Gaussian polytopes. The integral over a polytope, which defines its isotropy
constant, is computed by passing to an integral over its surface (faces). A consequence of their
results is that “most” (see precise meaning below) d-dimensional projections of Bn

1 as well as
of Sn have bounded isotropy constant. When reading this statement one should have in mind
the well-known fact that every symmetric convex body in R

d is “almost” a projection of a Bn
1 -

ball, with possibly large n. In the same spirit, positive answers for other random d-dimensional
polytopes with n (� Cd) vertices were given in [1,6].

Our main theorem (Corollary 3.5) states that for any d-dimensional polytope K with n vertices
its isotropy constant LK verifies

LK � C

√
n

d
,

where C > 0 is a numerical constant.
We now pass to describe the contents of the paper. The second section introduces the geo-

metric tool (Proposition 2.1) necessary to deal with integration on d-dimensional projections of
polytopes (Corollary 2.8). Some time ago, one of the authors learned about this tool from Prof.
Franck Barthe. The ideas originate from a paper by U. Betke [3], where a general result was
presented, namely a related formula for mixed volumes of two polytopes. However, for the sake
of completeness, we provide the proof of the particular result we need. It also seems that the
content of the proof is more geometric.

In the third section we use these tools to prove our aforementioned main result (Corollary 3.5)
by easily reducing it to the cases K = PEBn

1 or K = PESn (Theorem 3.4) where E ⊂ R
n is

any d-dimensional subspace and PE is the orthogonal projection onto E. Also in this section
we give a proof of the observation that for “most” subspaces, that is, for a subset A of the
Grassmann space Gn,d of Haar probability measure � 1−c1e

−c2 max{logn,d}, one has LPEBn
1

< C

and LPESn < C for every E ∈ A with numerical constants C,c1, c2 (Proposition 3.3).
The next section studies the isotropy constant of projections of random polytopes with vertices

on the sphere Sn−1. Using the techniques from Section 2 and [1] we show that, with high proba-
bility, the isotropy constants of all d-dimensional projections of random polytopes are bounded

by C
√

n
d

(Proposition 4.1).

In the last section we show that for every isotropic convex body, the isotropy constants of its
hyperplane projections are comparable to the isotropy constant of the body itself (Corollary 5.1).
Recall that the analogous result for hyperplane sections was already proved in [15]. The proof
uses Steiner symmetrization in a similar way as it appears in [5], with better numerical constants.
In particular, we have LPH Bn

p
� C for any hyperplane H and 1 < p < ∞ improving Junge’s

estimate [9] for the case of hyperplanes. In [2] a different proof of this fact is given with the hope
it might be extended to lower-dimensional projections.

We recall that a convex body K ⊂ R
n is isotropic if it has volume Voln(K) = 1, the barycenter

of K is at the origin and its inertia matrix is a multiple of the identity. Equivalently, there exists
a constant LK > 0 called isotropy constant of K such that L2

K = ∫
K

〈x, θ〉2 dx, ∀θ ∈ Sn−1.
It is well known [15], that every convex body K ⊂ R

n has an affine transformation K1
isotropic, so we can write LK := LK . This is well defined and moreover,
1



1454 D. Alonso-Gutiérrez et al. / Journal of Functional Analysis 258 (2010) 1452–1465
nL2
K = inf

{
1

Voln(K)
2
n
+1

∫
a+T K

|x|2 dx; a ∈ R
n, T ∈ SL(n)

}
. (1.1)

For a convex body K ⊂ R
n, r(K) = min{|x|: x ∈ K} is the inradius of K .

We will think of Sn as an n-dimensional regular simplex in R
n with center of mass at the ori-

gin. We will write �n = conv{e1, . . . , en+1} for the natural position of an n-dimensional regular
simplex in R

n+1.
The Lebesgue measure on an affine subspace E will be denoted by λE . For a measurable set

A ⊆ E, if d is a dimension of E, Vold(A) will stand for λE(A).
The notation a ∼ b means a · c1 � b � a · c2 for some numerical constants c1, c2 > 0.

2. Projections of polytopes

Throughout this section, K ⊆ R
n is a polytope (non-empty but possibly of empty interior),

E ⊆ R
n is a linear subspace of dimension d (1 � d � n − 1) and PE is the orthogonal projection

onto E.
Let us fix some notation and recall necessary definitions (we follow the book by Schnei-

der [18, Chapters 1, 2]). For a subset A ⊆ R
n, affA denotes the minimal affine subspace which

contains A. The dimension of a convex set A is dim affA. When writing relintA we mean the
relative interior of A w.r.t. the topology of affA. If G ⊆ R

n is an affine subspace then G0 de-
notes the linear subspace parallel to G. A convex subset F ⊆ K of a polytope K is called a face
if for any x, y ∈ K , (x + y)/2 ∈ F implies x, y ∈ F (see also [18, Section 1.4, p. 18]). The set
of j -dimensional faces (j -faces, in short) of K will be denoted as Fj (K) (j = 0,1, . . . , n), and
F (K) =⋃n

j=0 Fj (K) ∪ {∅} is the set of all faces of K (∅ is also a face). K can be decomposed
into a disjoint union of {relintF ; F ∈ F (K)} (see [18, Theorem 2.1.2]). For that reason for any
x ∈ K the unique face F ∈ F (K) such that x ∈ relintF will be denoted by F(K,x).

For x ∈ K , a normal cone of K at x is

N(K,x) = {u ∈ R
n; ∀z∈K〈z − x,u〉 � 0

}
.

N(K,x) is a closed convex cone. We shall also consider another closed convex cone, namely

S(K,x) =
⋃
λ>0

λ(K − x).

(In general, i.e. when K is a convex body, S(K,x) does not have to be closed.) By [18, (2.2.1)],

N(K,x)∗ = S(K,x), (2.2)

where the polarity used here is the polarity of convex cones, namely, if C ⊆ R
n is a convex cone,

C∗ = {y ∈ R
n; ∀x∈C〈x, y〉 � 0

}
(see also [18, Section 1.6, p. 34]). We shall also need to consider normal cones taken w.r.t. an
affine subspace. If G is an affine subspace of R

n and L ⊆ G is a convex body, then for x ∈ L we
define a normal cone for L at x taken w.r.t. G:
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NG(L,x) = {u ∈ G0; ∀z∈L〈z − x,u〉 � 0
}
.

Note that NG(L,x) ⊆ G0. The similar duality relation to (2.2) holds:

NG(L,x)∗G0 = S(L,x), (2.3)

where the polarity is taken w.r.t. G0.
For any face ∅ �= F ∈ F (K), define

N(K,F) := N(K,x), wherex ∈ relintF.

This definition does not depend on the choice of x (see [18, Section 2.2, p. 72]). NG(L,F ) is
analogously defined.

For a given polytope K ⊆ R
n and a linear subspace E ⊆ R

n of dimension d , let us fix any
u ∈ E⊥ \ {0} which satisfy

u /∈
⋃{

PE⊥N(K,F); F ∈ F (K) \ {∅}, dimPE⊥N(K,F) � n − d − 1
}
. (2.4)

Clearly, such u exists, since (2.4) excludes only a finite union of sets of dimension < n − d from
E⊥ which is of dimension n − d .

Consider the following subsets of F (K):

F̃ (K,E,u) := {F ∈ F (K); u ∈ PE⊥N(K,F)
}
,

F̃d(K,E,u) := F̃ (K,E,u) ∩ Fd(K).

Proposition 2.1. Let K ⊂ R
n be a polytope, E a d-dimensional subspace, u ∈ E⊥ verifying (2.4)

and F̃ (K,E,u) as described above. Then

(a) {PE(relintF); F ∈ F̃ (K,E,u)} is a family of pair-wise disjoint sets,
(b)

⋃{PEF ; F ∈ F̃ (K,E,u)} = PEK .

Moreover, F̃ (K,E,u) ⊆⋃0�j�d Fj (K) and for each F ∈ F̃d(K,E,u), PE |F : F → PEF is
an affine isomorphism.

In the proof of the proposition we shall use several lemmas.

Lemma 2.2. Let L be a polytope in R
n and G ⊆ R

n be an affine subspace. If x ∈ L ∩ G then

PG0N(L,x) = NG(L ∩ G,x).

Proof. By taking polars w.r.t. G0 we see that the assertion is equivalent to

N(L,x)∗ ∩ G0 = NG(L ∩ G,x)∗G0 (2.5)

(for the l.h.s. we used the fact that for a convex cone C, (PG0C)∗G0 = C∗ ∩ G0). Since G0 =
G − x by (2.2) we get
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N(L,x)∗ ∩ G0 = S(L,x) ∩ (G − x) =
⋃
λ>0

λ(L − x) ∩ (G − x)

= S(L ∩ G,x).

Applying (2.3) we see that the r.h.s. of (2.5) is also equal to S(L ∩ G,x). �
Lemma 2.3. (See [18, Section 2.2].) Let L be a polytope contained in an affine subspace G ⊆ R

n.
Then ⋃

F∈F0(L)

NG(L,F ) = G0.

Lemma 2.4. With the hypothesis as in the previous lemma, for x, y ∈ L,

NG(L,x) ∩ NG(L,y) = NG

(
L, (x + y)/2

)
.

Proof. The inclusion ⊆ is immediate from the definition of a normal cone. For the converse
inclusion take u ∈ NG(L, (x+y)/2). Then 〈x− x+y

2 , u〉 � 0, 〈y− x+y
2 , u〉 � 0, so 〈x−y,u〉 = 0.

Now, for all z ∈ L,

〈z − x,u〉 =
〈
z − x + y

2
, u

〉
+
〈
y − x

2
, u

〉
� 0,

so u ∈ NG(L,x). Similarly u ∈ NG(L,y). �
Lemma 2.5. (See [18, Section 2.4].) With the hypothesis as in Lemma 2.3, for ∅ �= F ∈ F (L),

dimNG(L,F ) = dimG − dimF.

Remark 2.6. Actually we shall use only the inequality dimNG(L,F ) � dimG − dimF which
simply follows from the fact NG(L,F ) ⊆ ((affF)0)

⊥G0 .

Lemma 2.7. Let K ⊆ R
n be a polytope, E ⊆ R

n be a linear subspace of dimension d and u ∈ E⊥
satisfies (2.4). Let y ∈ K , x = PEy ∈ E, Kx = K ∩ (x + E⊥) (Kx is a polytope in x + E⊥). If
one of the equivalent condition holds:

(i) u ∈ PE⊥N(K,y),
(ii) u ∈ Nx+E⊥(Kx, y),

then {y} ∈ F0(Kx) and dimF(K,y) � d .

Proof. The conditions (i) and (ii) are equivalent by Lemma 2.2. Consider F = F(K,y) and
F ′ = F(Kx, y). By the condition (2.4) on u,

dimPE⊥N(K,F) � n − d,
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so dimNx+E⊥(Kx,F
′) � n − d and also dimN(K,F) � n − d . Therefore Lemma 2.5 applied

to Kx and F ′ implies dimF ′ = 0, so {y} = F ′ ∈ F0(Kx). Eventually, applying the same lemma
to K and F yields dimF � d . �
Proof of Proposition 2.1. (a) Take F1,F2 ∈ F̃ (K,E,u) such that for some x ∈ E,

x ∈ PE(relintF1) ∩ PE(relintF2)

which means that for i = 1,2 one can find yi ∈ x + E⊥ that yi ∈ relintFi and then

u ∈ PE⊥N(K,Fi) = PE⊥N(K,yi).

Consider a convex polytope Kx = K ∩ (x + E⊥). Lemma 2.7 implies that {y1}, {y2} ∈ F0(Kx)

and also

u ∈ Nx+E⊥(Kx, y1) ∩ Nx+E⊥(Kx, y2)

= Nx+E⊥
(
Kx, (y1 + y2)/2

)
,

where the last equality is due to Lemma 2.4. But again, Lemma 2.7 implies that also
{(y1 + y2)/2} ∈ F0(Kx), hence y1 = y2 (see definition of a face) and consequently, F1 =
F(K,y1) = F2.

(b) The inclusion “⊆” is obvious. For the inclusion “⊇” take arbitrary x ∈ PEK . Put Kx =
K ∩ (x + E⊥). Kx is a non-empty polytope in x + E⊥. By Lemma 2.3 one can find y ∈ x + E⊥
such that {y} ∈ F0(Kx) and u ∈ Nx+E⊥(Kx, y). Lemma 2.7 (or just Lemma 2.2) implies u ∈
PE⊥N(K,F) where F = F(K,y). Consequently, F ∈ F̃ (K,E,u).

By the definition of F̃ (K,E,u) and Lemma 2.7, any face F ∈ F̃ (K,E,u) has dimen-
sion � d .

Finally we show that for F ∈ F̃d(K,E,u), PE |F : F → PEF is an isomorphism. The condi-
tion (2.4) and Lemma 2.5 implies

n − d � dimPE⊥N(K,F) � dimN(K,F) � n − dimF = n − d,

so dimPE⊥N(K,F) = dimN(K,F) = n − d . This means (spanN(K,F)) ∩ E = {0} and
N(K,F)⊥ ∩ E⊥ = {0}. The definition of a normal cone yields (affF)0 ⊆ N(K,F)⊥, which
finally gives (affF)0 ∩ E⊥ = {0}. �

The following corollary is an immediate consequence of Proposition 2.1.

Corollary 2.8. Let K ⊆ R
n be a convex polytope, E ⊆ R

n a d-dimensional linear subspace
(1 � d � n − 1). Then there exists a subset F̃ of Fd(K) such that for any integrable function
f : E → R, ∫

PEK

f (x)λE(dx) =
∑
F∈F̃

Vold(PEF)

Vold(F )

∫
F

f (PEy)λaffF (dy). (2.6)

In particular (for f ≡ 1),
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Vold(PEK) =
∑
F∈F̃

Vold(PEF).

Proof. Choose any u ∈ E⊥ satisfying (2.4) for K and E and put F̃ = F̃d(K,E,u). By Proposi-
tion 2.1, ∫

PEK

f (x)λE(dx) =
∑
F∈F̃

∫
PEF

f (x)λE(dx)

=
∑
F∈F̃

Vold(PEF)

Vold(F )

∫
F

f (PEy)λaffF (dy). �

For our purposes we shall use above corollary with f (x) = |x|2. In such case, the obvious

inequality |PEy| � |y| and the identity 1 =∑F∈F̃
Vold (PEF)
Vold (PEK)

lead to the following estimate: if

PEK is a body of dimension d (i.e. is non-degenerated) then

1

Vold(PEK)

∫
PEK

|x|2 λE(dx) � max
F∈F̃

1

Vold(F )

∫
F

|y|2 λaffF (dy). (2.7)

3. Projections of the �n
1 -ball and the regular simplex

First of all, we are going to see that “most” projections of Bn
1 on d-dimensional subspaces

(d � n) have the isotropy constant bounded. It is well known that any symmetric convex polytope
in R

d with 2n vertices is linearly equivalent to PEBn
1 for some E ∈ Gn,d . Indeed, if T : R

n → R
d

is a linear transformation of full rank, then taking the d-dimensional subspace E = (kerT )⊥ ⊆
R

n, T can be represented as T |EPE where T |E : E → R
d is a linear isomorphism being a

restriction of T to the subspace E. As an immediate consequence we obtain the following

Lemma 3.1. Let K = conv{±v1, . . . ,±vn} ⊆ R
d be a symmetric convex polytope with non-empty

interior and let T : R
n → R

d be the linear map such that T ei = vi . Then for E = (kerT )⊥ ∈
Gn,d , PEBn

1 and K are linearly equivalent.

One may also prove a similar lemma in the non-symmetric case. Recall that �n =
conv{e1, . . . , en+1} ⊆ H ⊆ R

n+1 where H , as in the whole of this section, denotes the hyper-
plane orthogonal to the vector (1, . . . ,1) ∈ R

n+1.

Lemma 3.2. Let K = conv{v1, . . . , vn+1} ⊆ R
d (n � d) be a convex polytope with non-empty

interior. Let T : R
n+1 → R

d be the linear map that T ei = vi − v0 where v0 = 1
n+1

∑n+1
i=1 vi

and E = (kerT )⊥ ⊆ R
n+1. Then E ⊆ H is a subspace of dimension d and K − v0 is linearly

equivalent to PE�n. Consequently, K is affinely equivalent to some orthogonal projection of the
n-dimensional regular simplex Sn onto a d-dimensional subspace.

Proof. Clearly (1, . . . ,1) ∈ kerT , so E ⊆ H . Since K has non-empty interior, vectors vi − v0
span the whole of R

d , so T is of full rank. Therefore dimE = d and the argument given above
applies. �
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Now we can prove the following result concerning the isotropy constant of random projections
of Bn

1 and Sn.

Proposition 3.3. There exist absolute constants C,c1, c2 > 0 such that the Haar probability
measure of the set of subspaces E ∈ Gn,d verifying

LPEBn
1

< C and LPESn < C

is greater than 1 − c1e
−c2 max{logn,d}.

Proof. For small values of d , namely d � c logn, the isotropy constant of a random projection
is bounded by an absolute constant with probability greater than 1 − c1

nc2 as a consequence of
Dvoretzky’s theorem.

Let G = (gij ) be a d × n Gaussian random matrix, i.e. the gij ’s are i.i.d. N (0,1) Gaussian
random variables. Since (kerG)⊥ = Im(Gt ) ⊆ R

n, Gt being the transpose matrix of G, and the
columns of Gt are independent and rotationally invariant random vectors in R

n, then a random
subspace E = (kerG)⊥ has dimension d a.s. and is distributed according to the Haar probability
measure μ on Gn,d . Therefore for any constant C > 0,

μ{E ∈ Gn,d ; LPEBn
1

< C} = P{LPEBn
1

< C}.

Lemma 3.1 and the affine invariance of the isotropy constant imply LPEBn
1

= Lconv(±Ge1,...,±Gen)

a.s. Klartag and Kozma proved in [12] that if C is a sufficiently large absolute constant,

P{Lconv(±Ge1,...,±Gen) < C} > 1 − c1e
−c2d

which completes the proof in the symmetric case.
For the non-symmetric case, we proceed analogously. For a d × (n + 1) Gaussian random

matrix G = (gij ), take Ḡ = (gij − 1
n+1

∑n+1
k=1 gik)i�d,j�n+1. Since the sum of the columns of

Ḡ is zero, (ker Ḡ)⊥ = Im(Ḡt ) ⊆ H ⊆ R
n+1. Moreover, since rows of Ḡ (equivalently, columns

of Ḡt ) are independent canonical Gaussian random vectors in H , the random subspace E =
(ker Ḡ)⊥ ⊆ H is distributed according to the Haar probability measure on GH,d (Grassmann
manifold of d-dimensional subspaces of H ). Lemma 3.2 and the affine invariance of the isotropy
constant imply LPE�n = Lconv(Ge1,...,Gen+1) a.s.

Since PE�n = PE(PH �n) and PH �n is an n-dimensional regular simplex (in H ), a non-
symmetric counterpart of the result of Klartag and Kozma [12],

P{Lconv(Ge1,...,Gen+1) < C} > 1 − c1e
−c2d,

finishes the proof. �
In the final part of the section we will use the tools from Section 2 to prove the main result. In

particular, whenever d � cn the boundedness of the isotropy constant holds not only for “most”
projections of Bn and Sn but deterministically for all of them.
1
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Theorem 3.4. Let E ⊆ R
n be a subspace of dimension 1 � d � n−1 and K = PEBn

1 , T = PESn.
Then

LK,LT � C
√

n/d,

where C > 0 is a universal constant.

Proof. As an immediate consequence of (1.1),

L2
K � 1

d

1

Vold(K)2/d

1

Vold(K)

∫
K

|x|2 λE(dx). (3.8)

Applying (2.7), we obtain the bound

1

Vold(K)

∫
K

|x|2 λE(dx) � 1

Vold(�d)

∫
�d

|x|2 λaff�d
(dy) = 2

d + 2
(3.9)

(for the last equality see e.g. [12, Lemma 2.3]). To estimate Vold(K) note that n−1/2Bn
2 ⊆ Bn

1 , so
n−1/2(Bn

2 ∩ E) ⊆ PEBn
1 . Therefore

Vold(K)1/d � c√
nd

. (3.10)

Combining these two, we get

L2
K � 1

d

nd

c2

2

d + 2
� C′ n

d
.

In the case of the simplex it is convenient to embed E and Sn into H . More precisely, we
take Sn = conv{PH ei : i = 1, . . . , n + 1} ⊆ H ⊆ R

n+1 and assume E ⊆ H . Now observe that
T = PESn = PE�n so (2.7) again yields

1

Vold(T )

∫
T

|x|2 λE(dx) � 2

d + 2
.

To bound the volume radius of T from below, we use the Rogers–Shephard inequality [17]:(
2d

d

)−1

Vold(T − T ) � Vold(T ).

Note that

T − T ⊇ conv(T ∪ −T ) = conv(PE�n ∪ −PE�n)

= PE

(
conv(�n ∪ −�n)

)= PEBn+1
1 .

Combining with the estimate (3.10),
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Vold(T )1/d �
(

2d

d

)−1/d

Vold
(
PEBn+1

1

)1/d

�
(

2d

d

)−1/d
c√

(n + 1)d
� c′

√
nd

. �
Due to Lemma 3.2, we immediately get the following:

Corollary 3.5. Let K ⊆ R
d be a non-degenerated (dimK = d) convex polytope with n vertices.

Then

LK � C

√
n

d
.

4. Isotropy constant of projections of random polytopes

In this section we consider polytopes generated by the convex hull of vertices randomly cho-
sen on the Sn−1. The main result is

Proposition 4.1. There exist absolute constants C, c1 and c2, such that if m � n, {Pi}mi=0 are
independent random vectors on Sn−1 and K = conv{±P1, . . . ,±Pm} or K = conv{P0, . . . ,Pm},
then

P

{
LPEK � C

√
n

d
, ∀E ∈ Gn,d, ∀1 � d � n − 1

}
� 1 − c1e

−c2n.

The proof follows [1]. We shall only sketch the main ideas as the technical computations can
be found in that reference.

Sketch of the proof. Let E ⊆ R
n denotes a d-dimensional subspace. The ideas in what follows

will give us the proof for m � cn with an absolute constant c. If m < cn, Corollary 3.5 gives

deterministically LPEK � C
√

m
d

� C′
√

n
d

.

Apply once again (1.1). Writing r(K) the inradius of K and using the inequality (2.7), the
main consequence of Proposition 2.1, we obtain that for any polytope K ⊂ R

n and any d-
dimensional subspace E,

L2
PEK � C

r(K)2
max

F∈Fd (K)

1

Vold(F )

∫
F

|x|2 λaffF (dx).

When K is the symmetric convex hull of m independent random points in Sn−1, it was proved
in [1, Lemma 3.1], that for some constant c such that cn � m � ne

n
2 ,

P

{
r(K) <

1

2
√

2

√
log m

n

n

}
� e−n.

The same proof gives the statement in the non-symmetric case.
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On the other hand, with probability 1, each d-dimensional face of K is a simplex F =
conv{Q1, . . . ,Qd+1} with Qi = εiPji

(or just Qi = Pji
in the non-symmetric case) where

1 � j1 < · · · < jd+1 � m and εi ∈ {−1,1}. The same proof as in [1,12] shows that with proba-
bility 1 we have

1

Vold(F )

∫
F

|x|2 λaffF (dx) = 2

d + 2
+ 1

(d + 1)(d + 2)

d+1∑
i1 �=i2

〈Qi1,Qi2〉. (4.11)

In order to give a bound for this quantity for a fixed F ∈ Fd(K) we proceed in the same way as
in [1, Theorem 3.1], by using a version of Bernstein’s inequality as stated in [4]. We thus obtain

P

{
d+1∑
i1 �=i2

〈Qi1 ,Qi2〉 > ε(d + 1)

}
� 2e−cεn (4.12)

for every ε > ε0, where ε0 is an absolute constant.
Now, for each F ∈ Fd(K) let QF

1 , . . . ,QF
d+1 be vertices of F . Applying (4.12) and the union

bound over Fd(K) (whose cardinality is clearly bounded by
( 2m
d+1

)
), we obtain for ε log m

n
> ε0,

P

{
max

F∈Fd (K)

d+1∑
i1 �=i2

〈
QF

i1
,QF

i2

〉
> ε(d + 1) log

m

n

}

�
(

2m

d + 1

)
2e−cεn log m

n � 2e−cεn log m
n

+(d+1) log 2em
d+1

� 2e−cεn log m
n

+n log 2em
n ,

since the function x log C
x

is increasing when C
x

> e. Consequently, by the union bound over d ,

P

{
∃1 � d � n − 1 s.t. max

F∈Fd (K)

d+1∑
i1 �=i2

〈
QF

i1
,QF

i2

〉
> ε(d + 1) log

m

n

}

� 2e−cεn log m
n

+n log 2em
n

+logn.

Since m � cn, considering the complement set and using (4.11), we can fix ε > 0 a large
enough numerical constant to obtain

P

{
∀1 � d � n − 1, max

F∈Fd (K)

1

Vold(F )

∫
F

|x|2 λaffF (dx) � C

d
log

m

n

}
� 1 − 2e−cn log m

n .

Thus, there exist constants c,C > 0 such that if cn � m � ne
n
2 then the set of points

(P1, . . . ,Pm) for which the inequality LPEK � C
√

n
d

holds for every d-dimensional subspace

E and for every 1 � d � n − 1 has probability greater than 1 − 2e−cn log m
n − e−n > 1 − c1e

−c2n.
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In case m > ne
n
2 , for n large enough, r(K) � 1

4 with probability greater than 1 − e−n so with
this probability

dL2
PEK � 1

Vold(PEK)
2
d

1

Vold(PEK)

∫
PEK

|x|2 dx � 1

Vold( 1
4Bd

2 )
2
d

� cd

and the proof is complete. �
5. A general result

In this section we prove a general relation between the isotropy constant of the hyperplane
projections of an isotropic convex body and of the body itself.

Corollary 5.1. Let K be an isotropic convex body and let H be a hyperplane. Then

LPH K ∼ LK.

Its proof relies on the next proposition which improves the numerical constants appearing in
a more general statement in [5] for the case of projections onto hyperplanes.

Proposition 5.2. Let K ⊂ R
n be an isotropic convex body and let H = ν⊥ be a hyperplane. If

S(K) is the Steiner symmetrization of K with respect to H then,(
1 − c

logn

n

)
LK � LS(K) � LK

for some numerical constant c > 0.

Proof. Without loss of generality, we may assume that ν = en = (0, . . . ,0,1). Write E = 〈en〉
for the 1-dimensional subspace generated by en. The Steiner symmetrization of K is defined by

S(K) :=
{
(y, t) ∈ R

n−1 × R; y ∈ PH K, |t | � 1

2
Vol1

(
K ∩ (x + E)

)}
.

Clearly PH K = PH S(K) = S(K) ∩ H .
Now we study the inertia matrix of S(K). First notice that for x ∈ PH K , Vol1(K ∩ (x +E)) =

Vol1(S(K) ∩ (x + E)). For every θ ∈ Sn−1 ∩ H , Fubini’s theorem yields∫
S(K)

〈x, θ〉2 dx =
∫

PH K

∫
S(K)∩(x+E)

〈y + ten, θ〉2 dt dy

=
∫

PH K

〈y, θ〉2 Vol1
(
K ∩ (x + E)

)
dy = L2

K.

Using the fact that
∫
S(K)∩(x+E)

t dt = 0 for x ∈ PH K , in the similar fashion we show that for

every θ ∈ Sn−1 ∩ H ,



1464 D. Alonso-Gutiérrez et al. / Journal of Functional Analysis 258 (2010) 1452–1465
∫
S(K)

〈x, θ〉〈x, en〉dx = 0.

Also
∫
S(K)∩(x+E)

t2 dt �
∫
K∩(x+E)

t2 dt for x ∈ PH K , thus

∫
S(K)

〈x, en〉2 dx �
∫
K

〈x, en〉2 dx = L2
K.

Taking σ > 0 such that σ 2 := ∫
S(K)

〈x, en〉2 dx/L2
K , we obtain that the inertia matrix of S(K) is

M = L2
K

⎛⎜⎜⎝
1

. . .

1
σ 2

⎞⎟⎟⎠ .

The volume of S(K) is 1, so LS(K) = (detM)1/2n (see [15]), which means

LS(K) = σ 1/nLK =
(

(
∫
S(K)

〈x, en〉2 dx)1/2

LK

)1/n

LK. (5.13)

Since σ � 1, we obtain LS(K) � LK .
A well-known fact due to Hensley [8] states that Voln−1(K1 ∩ H) ∼ (

∫
K1

〈x, en〉2 dx)−1/2 for
any convex body K1 with volume 1 and center of mass at the origin. Using this fact for S(K)

in (5.13) we obtain that for some absolute constant c > 0,

LS(K) �
(

c

Voln−1(S(K) ∩ H)LK

)1/n

LK =
(

c

Voln−1(PH K)LK

)1/n

LK.

Now we use the following inequality:

1

n
Voln−1(PH K)Vol1(K ∩ E) � Voln(K) = 1

(for the proof, see for instance [16, Lemma 8.8] which works in the non-symmetric case). Hence

Voln−1(PH K) � n

Vol1(K ∩ E)
� n

2r(K)
,

where r(K) is the inradius of K .
Since every isotropic convex body verifies r(K) � LK (see [7] or [11], for instance) we obtain

LS(K) �
(

2c

n

)1/n

LK. �
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Proof of Corollary 5.1. Since PH K = S(K) ∩ H we have

LPH K = LS(K)∩H ∼ LS(K) ∼ LK,

where the first equivalence is the corresponding one for sections of convex bodies as proved
in [15]. �
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